Syntactic Parsing

2022-23

Ion Androutsopoulos

http://www.aueb.gr/users/1on/

These slides are partly based on material from the book
Speech and Language Processing by D. Jurafsky and
J.H. Martin, 2" edition, Pearson Education, 2009 and

3rd edition (in preparation).

Contents

Context-free grammars (CFGs).

* Phrase-structure trees and dependency trees.

Chomsky Normal Form and CKY parsing.

* Transition-based dependency parsing with neural
models.

Extra optional slides:
* Graph-based dependency parsing with neural models.
* Chomsky’s hierarchy and corresponding automata.
* Parsing as search.

* Augmented CFGs.

* Probabilistic CFGs, probabilistic CKY.

NP = Det Nominal
Nominal = N@Adj Nominal

Context-Free Grammars (CFGs)

Disjunction. In effect, two rules.

Det=2>o0|n |10]... Lexicon: in practice,

Adj = mpdowvo | peydro | Bapd | ...

possibly information
from morphological

N =2 BipAio | avtokivnto | ... analysis.

Terminal symbols, e.g., “BipAio” (book), “t0” (the, neuter).
Non terminal symbols, e.g., “Nominal”, “Ad)” (adjective).
Rules o =2 f:

— In CFGs, a must be a single non-terminal, 5 can be a sequence of
any terminals and/or non-terminals (even an empty sequence).

Initial symbol: one of the non-terminals (here “NP”).

Language of the grammar: the sequences of terminal symbols
that can be produced from the 1nitial symbol.

Grammar-based parsing algorithms

* Inputs:
— A grammar of the type supported by the algorithm (e.g., CFQG).

— A sequence of symbols o.

* Outputs:
— Is o part of the language defined by the grammar?
— What is the parse tree of ¢?

— The parse tree 1s a proof that ¢ complies with the grammar. It
also provides information about the syntactic structure of o.

Slightly larger CFG example

NP - Det PN | Pron | Det Nominal ng@gl‘;a’
* Nominal 2 N | Adj Nominal | Nominal PP| zzjen, wa
PP - Prep NP I~ mpewi zujon,
« SO NP VP | VP|_— &6 bl pua pl TP
— — o TTHON TPOG THV
+ VP> V| VNP TPWIVH TTHOH, ... Abhiva, ...
B ron == &£y , Acting as a
 Det 2> o|n|évav|ua | oV | TNV 7 lexicon,
* PN - Oeccorovikn | Abnva

N =2 nton | meldtng | meAdTn

o Adj =2 mpowvn | amoysvuotivi

o V =2 06\ | 0EAeL | TpoTIU® | CVUPOVD
* Prep =2 mpog¢ | and

Example of phrase

NP structure tree using the
y grammar of the previous
N slide.

Nominal

Nominal PP

Nominal NP
| /\

Pron \ Det Adj N Prep Det PN

EY® mPOTIUD UL TPOIVA — TTHOM TPOC mv Afva

Syntactically ambiguous sentences

* “We saw the scientist with the telescope.”
— We saw [yp the [nomina SC1€NtISE [pp With the telescopel]]].
— As 1n “the flight from Thessaloniki™.

* “We saw the scientist with the telescope.”
— We saw [yp the scientist] [pp With the telescope].
— We would also have a rule: VP - V NP PP.

* “We saw the scientist with the telescope from Paris.”
— We saw [the scientist] [with the telescope] [from Paris].
— We saw [the scientist with the telescope] [from Paris].

— We saw [the scientist] [with the [telescope from Paris]].

— We saw [the [scientist with the [telescope from Paris]]].

Syntactically ambiguous sentences

¢ “We saw the scientist with the white coat.”

— We need semantic constraints to rule out the possibility that
the coat might be the observation instrument.
* From a purely syntactic point of view, most sentences
are very ambiguous.

— Large number of parse trees (often exponential increase as
the number of phrases that can be combined increases).

— Time-consuming to discover and return all trees separately.

— Problem for simplistic parsers that use generic search
algorithms (e.g., depth-first search — see optional slides).

Chomsky Normal Form

* Context Free Grammars (CFG) in Chomsky Normal

Form (CNF):

o Only rules of the form A = B Cand A 2 w, were A, B, C
non-terminals and w terminal. For example:

S > VNP

V =2 06\

NP = Det Nominal
Det =2 ua

Adj =2 pown

V =2 emboum

Nominal = Adj Nominal
N = non

Adj =2 amoyevuotivi

Nompart N _
Nominal = wtiion

* Every CFG can be converted to CNF (see J&M).
o But the new grammar may not produce the same parse trees.
* The CKY algorithm (next slides) 1s for CFGs in CNF.

o Yet another dynamic programming algorithm.
o Other algorithms (e.g., Earley) can handle CFGs not in CNF.

10

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TN oM @

o 1

Det
(1,2)

Adj
(2,3)

Nominal

N
(3.4)

11

Ve

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TN oM @

(0,1)

There is no grammar rule
to combine V and Det.

Adj
(2,3)

Nominal

N
(3.4)

12

(0,1)

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TN oM @

There is no grammar rule
to combine Det and Adj.

Det < X
(1,2) (1,3)
\ 4
Adj
(2,3)
Nominal
N

(3.4)

13

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TTNOM @

V < X | Cell (1,3) is empty.
(0,1) (0,3)
Det 4
(1,2) (1,3)
Adj
(2,3)
Nominal
N
(3.4)

14

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TTNOM @

v (7 Cell (0,2) is empty.
(0,1) (0,2) (0,3)
Det
(1,2) (1,3)
 /
Adj
(2,3)
Nominal
N
(3,4)

15

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TN oM @

v
(0,1) (0,2)
Det
(1,2) (1,3)
Adj € Nominal
(2,3) (2,4) l
Nominal
N

(3.4)

16

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TN oM @

(0,1) (0,2)
<€
Det < NP
(1,2) (1,3) (1.4)
\ 4
Adj Nominal
(2,3) (2,4)
Nominal ¥
N

(3.4)

17

CKY algorithm
@ VIV @ uio @ TPWOIVN @ TN oM @

v < S
(0,1) (0,2) (0,3) (0,4)
A 4
Det NP
(1,2) (1,3) (1,4)
v
Adj Nominal
(2,3) (2,4)
Nominal ¥
N
3.4)

Try also: http://Ixmls.it.pt/2015/cky.html

18

Extracting trees from CKY’s table

* We can store 1n each cell the rules that produced the
corresponding non-terminals.

o This allows extracting the parse tree from the table.

o For syntactically ambiguous sentences, multiple parse trees
will be extracted.

o But extracting the parse tree makes the worst case time
complexity of the algorithm exponential, because there are
exponentially many parse trees in the worst case.

o Without parse tree extraction, the time complexity is O(n?),
where 7 1s the sentence length in words.

19

Dependency trees

Wmn”@d\obj
EYM TTNON
det %
wc/ am ' -
M powvT| TPOS hob;
weﬁva
v

* In this case there 1s a node for each word.
o The arcs denote dependencies between words.
o Same trees for different word orders in free word order languages.
o Closer to graph-based semantic representations.

* Obtaining dependency trees:

o We can automatically produce dependency trees from phrase
structure trees (with some additional effort — see optional slides).

o This allows reusing treebanks of phrase structure trees to train
dependency parsers. And using parsers that produce phrase
structure trees to obtain dependency trees.

o But there are also parsers that produce directly dependency trees. 2

Projective vs. non-projective dependency trees £

woj sadew]

* Projective dependency tree: all its arcs are projective.

-
-

o Projective arc: There is a path from the head to every word
between the head and the dependent (modifier).

dOb] f \
/’% » ’.u /—{rnmod ~
| 'l \ | |
'.‘ Anmod}| '| f [case) |

Umtul mnulul the morning ﬂwhl\ to Hou\ton

* Non-projective dependency tree:

o Contains at least one non-projective arc. Less common in
English, more common in more free-word order languages.

o Some parsing algorithms can produce only projective trees.

/€dys/Aysyen(~/mpa-progueis-qamy/:dny (L107 "uef JyeIp) UONIPY p,¢ “UNIBIN

"H'd pue Aysyeanf ‘(@ Aq :3uI1ssad01q d3en3ue| pue yoaads

(mod}
'
d P

dobj ~ ,/]|ano J \, - modl ~
s < | “‘ 3 . | '
[det] | [Adet I, case '.' (1d\L .
Sl / / \ / \ | / |

v Vv f v \ v v \ V| v \ v

JetBlue canceled our fli ght this morning which was already late 21

Transition-based dependency parsing

punct
_— obj Correct transition: SHIFT
o = Stack Buffer
N N s
ROOT He has good control t ROOT hasVBZ goodJJ | i controdl NN .
PRP YBZ 1] NN Bab
He_PRP
Transition Stack | Buffer A
[ROOT] | [He has good control .] | 0
SHIFT [ROOT He] | [has good control .]
SHIFT [ROOT He has] good control .]
LEFT-ARC (nsub3j) [ROOT has] | [good control .] AU nsubj(has,He)
SHIFT [ROOT has good] | [control .]
SHIFT [ROOT has good control] | [.]
LEFT-ARC (amod) [ROOT has control] | [.] AUamod(control,good)
RIGHT-ARC (dob3j) [ROOT has] | [.] AU dobj(has,control)
RIGHT-ARC (root) [ROOT] | [] AU root(ROOT has)

Figure 1: An example of transition-based dependency parsing. Above left: a desired dependency tree

above right: an intermediate configuration, bottom: a transition sequence of the arc-standard system.

: From the paper of D. Chen and C. Manning “A Fast and Accurate Dependency
: Parser using Neural Networks”, EMNLP 2014. E
http://aclweb.org/anthology/D/D14/D14-1082.pdf

Transition-based dependency parsing

Initially all words 1n the buffer, stack contains only ROOT.

Possible actions at each step (‘arc-standard’ model):
o Shift the first word of the buffer to the stack.

o Connect the top two words of the stack with a left arc and particular
label (e.g., NSUBJ), leaving only the right word in the stack.

o Connect the top two words of the stack with a right arc and a
particular label, leaving only the left word in the stack.

Final state: only ROOT 1n the stack, no words in the buffer.

A classifier selects the action to take at each point.
o The classifier may select the wrong action.
o Greedy search, no going back once an action is selected.

o But people secem to backtrack (e.g., “garden path” sentences).

Linear complexity in sentence length.
23

Garden path sentences

The hOI’SG raCed paSt the bam fell. (The horse that was raced past the barn fell.)
The Old man the bOat. (The old operate the boat.)
While the man hunted the deer ran into the woods.

(While the man hunted, the deer ran into the woods.)

While Anna dressed the baby played in the crib. wuie

Anna dressed, the baby played in the crib.)

I COnVinCGd her Chﬂdf@l’l are IlOisy. (I convinced her that children are noisy)

The coach smiled at the player tossed the Frisbee. cm

coach smiled at the player who was tossed the Frisbee.)

The cotton clothes are made up of grows in
MiS SiSSippi « (The cotton that clothes are made up of grows in Mississippi.)

Examples from https://www.washingtonpost.com/news/wonk/wp/2016/05/18/googles-
: new-artificial-intelligence-cant-understand-these-sentences-can-you/ :

24

Probabilities of the

. possible actions: SHIFT, | a...C..‘.l.??f‘.‘?.t}.‘.’.‘i‘.tl‘.’.l?.f‘.l.l?.?.t.l.f’.?:..E
LEFT-ARC(amod),]
: RIGHT-ARC(doby), etc. it :
rrereenesensserenns RSvac A oitiiax lover: ;
.......... - e softmai(mh) [Q. ._.]
Hidden layer: v e
h:(1\/1/;01@+Wt;rt+Wl) [=% J

Word embeddings, POS tag ““““ | wc;;ds POS‘ tags arc labels
: embeddings, label P Sk B
embeddings (e.g., of top 3 : .
words of the stack, of top 3 Configuration ROOT has VBZ good JJ | | control NN ...
words of the buffer, of the ~_nsubj
: He_PRP

i leftmost and rightmost ~ :
: children of the top 2 words of :
: the stack, ...). :

From the paper of D. Chen and C. Manning “A Fast and Accurate
Dependency Parser Using Neural Networks”, EMNLP 2014.
http://aclweb.org/anthology/D/D14/D14-1082.pdf

http://aclweb.org/anthology/D/D14/D14-1082.pdf

Adding context-aware word embeddings

Configuration:
S2 s1 so bo b1 b2 bs
the jumped over the lazy dog ROOT

7

T e
An MLP decides : brovn

the next action, Scoring:
(Scorereftare, ScoreRightarc, Scoreshift)

embeddings of i \\
|

.
V. V V. V; V. V. Vi V. V.
the top 3 Stack E | the | | brown | | fox | l Jjumped ‘ over ‘ ‘ the ‘ ‘ lazy | | dog | | ROOT |

d d th : concat concat concat concat concat concat concat concat concat
woras an € :
. . K
. t : “] R T A TR TR]]]]
: 15t buffer word. : LLSTM [7} LSTM? [LSTM® i+ =} LSTM = LSTM? [LSTM" =} LSTM" = LSTM" ;= LSTM" |
s sEEEEEEEEEEEEEEEEEEEEEEEEEn ‘.“
*
R e e s o e s (O
mEEEEEEEEEEEEEEEEEEEEEEEEEEEEE® ** LSTM' —|— LSTM/ —|— LSTM/ \—|—= LSTM' —|— LSTM/ —|— LSTM' —|—= LSTM' —|— LSTM/S '—|— LSTM/ —|——
- e T B stk N R et T R s T R st oo N N et T B St A T B Bttt R Rvoieli
: L L L L L L L L

.
.
I r I \ . _ _
A bl S M : Xthe Xbrown Xfox Xjumped Xover Xthe Xlazy Xdog XROOT

prOduceS COHteXt Figure 1: Illustration of the neural model scheme of the transition-based parser when calculating the scores of the
aware wor d = possible transitions in a given configuration. The configuration (stack and buffer) is depicted on the top. Each transition
+ is scored using an MLP that is fed the BILSTM encodings of the first word in the buffer and the three words at the top
embeddlngs . s of the stack (the colors of the words correspond to colors of the MLP inputs above), and a transition is picked greedily.
-------------------------------- * Each z; is a concatenation of a word and a POS vector, and possibly an additional external embedding vector for the
word. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence, we
iteratively compute scores for all possible transitions and apply the best scoring action until the final configuration is

reached.

From the paper of E. Kiperwasser and Y. Goldberg “Simple and Accurate Dependency
Parser Using Bidirectional LSTM Feature Representations”, Transactions of ACL, vol. 4,
pp. 313 — 327, 2016. https://aclweb.org/anthology/Q16-1023 : 26

https://aclweb.org/anthology/Q16-1023

Training the oracle

* For each training sentence, we have the correct tree.

o We use it to figure out the correct action that the oracle should
take at each point, in order to train the oracle.

* At each point, the correct decision 1is:
o LEFT-ARC if the resulting dependency is in the correct tree.

o RIGHT-ARC if (1) the resulting dependency is in the correct
tree and (2) all the modifiers (in the correct tree) of the top
token of the stack have already been linked (as modifiers) to the
top token of the stack.

o E.g., if we link “book™ to “flight” with a RIGHT-ARC, we won’t be able to
link “flight” to “through”, because “flight” will no longer be in the stack.

Stack | Word buffer | Relations
[root, book, flight] | [through, Houston] | (the « flight)

o Otherwise, the correct decision i1s SHIFT.

/€dys/Aysyen[~/mpa-piojueys-qamy/:dny (L 10T "uef JyeIp) UONIPH p.€ ‘UM "H'A

pue Aysyeinf " £q :3u1ssa001d 93en3ue pue yoaadS = woly oFew ojdwrexyq

Evaluating dependency parsers

* Unlabeled Attachment Score (UAS): How many words
(viewed as modifiers) were linked to their correct head.

o Ignoring the labels of the dependencies.

* Labeled Attachment Score (LLAS): How many words
(viewed as modifiers) were linked to their correct head with
the correct dependency label.

o We can also measure how well we do per dependency label.

28

Extra optional slides follow.

’ lon Androutsopoulos
e October 24,2021-Q

We are happy to announce gr-nip-toolkit, a natural language
processing toolkit for (modern) Greek, built on top of Greek-BERT
during the BSc theses of C. Dikonimaki and N. Smyrnioudis. The
toolkit currently supports Greek named entity recognition, part-of-

speech (POS) tagging, morphological tagging, and dependency
parsing.

Toolkit code and installation instructions:
https://github.com/nipaueb/gr-nip-toolkit

For POS tagging, morphological parsing, and dependency parsing,
we ... See more

Fig. 1.2: An illustration of GreekBERT pretraining. Figure taken from [Kou+20].

(a) Pre-training (b) Fine-tuning
MLM
,... Mot b e
- (Anmwer Noy Answer O)
& - & -
(Ousd O.] =+ [On| [Omn| [On) [On) (Oem & 0N
| EBERT | 19
EroPu ’ 1/ I X
, ~ b > 0
. [Ena) E.) = [Ex] [Ear] [Erae) [E] [Enen
(Toal [T = = == [= Downsiream task
OSCAR el s P gl — Goid Dataset

Setence ' Sentence 2 MR Mevadqeeinc - ORG | s

S ——
ENTAN MENT

29

Graph-based dependency parsing

* Which arcs to keep and with what labels?

o The selected arcs must form a tree (e.g., no circles).
o And 1t must be the correct tree.

* Arc-factored graph-based dependency parsers:
o Score each candidate arc (and candidate label) separately.

o Greedily assign to each word (modifier) the head of the arc
with the best score, even if the result is not a tree.

o Or use a decoder to select the tree with the best total score.
30

Graph-based dependency parsing

: An MLP " i Total score of the i
: computes the : i selected arcs/tree.
| scorcofeach | MBIy st

: i : f X

: candidate arc Ve [Virown | Voo | [Veesea| | Vi]

: (word pair). : Kfj Kr5 KJj ij Kx5

- s (concat .concat ._concat __concat _concat
»

.

.
“““
. s

““
us®

...

. A DILSTM . E LSTM" E : LSTM? E<—-: LSTM? E
: produces context :

aware word S LSTM/ |~ LSTM! | — LSTM/ | — LSTM/ | — LSTM!

embeddings.

: A decoder selects the “best” tree (max total score of arcs, arcs forming a tree). :

i Alternatively, we can greedily link each modifier to its most probable head, even if the i

i selected arcs may not form a tree. We may use the greedy approach always, or only
during training, and use a decoder for testing.

: From the paper of E. Kiperwasser and Y. Goldberg “Simple and Accurate Dependency :
Parser Using Bidirectional LSTM Feature Representations”, Transactions of ACL, vol. 4,
: pp. 313 — 327, 2016. https://aclweb.org/anthology/Q16-1023 31

https://aclweb.org/anthology/Q16-1023

Graph-based dependency parsing

* Hinge loss (L) between the correct tree y and the most
highly scored incorrect tree y’ (e.g., from a sample):
L = max (O,m — Z MLP([vy; v,]) + 31}}%(Z MLP([vy; vm]))
(hm) ey (h,m) € yr
o If the score of the correct (gold) tree y exceeds that of the
top-scored incorrect tree y' by a margin m, then L = 0.

o Otherwise, loss = 0 and we back-propagate to update the
weights of the MLP(s), biILSTM(s) etc.

o See the paper of K&G for further improvements.

* The hinge loss can also be used in other applications.

o It does not require probability scores. It only cares to
distinguish the scores of good and bad instances by a margin.

o E.g., it does not try to make the probability of a gold tree
become 1. It suffices if its score already exceeds the scores of

(the best) other candidate trees by a margin m. .

Chomsky’s hierarchy of grammars

* Type 3 (regular grammars, right linear or left linear):
— Rules of the form 4 = x and 4 = x B (for right linear).
— Rules of the form 4 = x ko1 A4 = B x (for left linear).
— X: (possibly empty) sequence of terminal symbols.
— A, B: single non terminal symbols.

— Example of right linear regular grammar:
NP - the Nominal NP -=> a Nominal
Nominal-> large Nominal Nominal-> nice Nominal
Nominal-=> easy to drive Nominal

Nominal 2 N N =2 person N => car
* Type 2 (context-free grammars):
— Rules of the form 4 2 a.
— A: single non terminal symbol.
— a: (possibly empty) sequence of terminals and non terminals.

— E.g., we can now have the rule: NP = Det Nominal.
33

Chomsky’s grammar hierarchy — cont.

 Type 1 (context-sensitive grammars):
— Rules of the form aAf 2> ayp.

— a, B, y: sequences of terminals and non terminals (y must not
be empty, whereas a, f can be empty).

— E.g., (Date) =2 (Day / Month / Year)

— The rule S = ¢ is also allowed, where S is the initial symbol and € the
empty string, provided that S is not used on the right-hand side of any rule.

— Alternative definition: rules a@ =2 f, with 0 < |a| < |f)|.

— The length of sequence a must me smaller or equal to that of sequence p.
We can define the same languages, as with the first definition of Type 1
grammars, with the exception of languages that include €.

 Type 0 (recursively enumerable grammars):
— Rules of the form a = f§ (a not empty, f may be empty).
— a, f: sequences of terminals and non terminals.

34

Generative power of grammars

languages(7): The set of languages that can be defined with
grammars of type 7.

languages(type 3) C languages(type 2)

— E.g., regular grammars cannot define languages of the form
a"b" (language containing ab, aabb, aaabbb etc.),

— whereas context-free grammars can (S = ab and S = aSb).

languages(type 2) C languages(type 1)
— E.g., context-free grammars cannot define languages of the
form a"b"c",
— whereas context-sensitive grammars can (S = abc,
S = aSBc, ¢cB = Bc, bB = bb, type 1 by the 2" definition).

languages(type 1) C languages(type 0)

35

Generative power of grammars

type 1 (context-sensitive)

type 2 (context-free)

type 3
(regular)

36

Finite state automata (FSAs)

For the language a”b”, with m, n > 0.

. Initial state | Regular grammar:
errssssssssans " N S 9 aA
@ 2 =\A A—->B
B—2>bB
€ B—2>b
b

37

Grammars and automata

* Regular grammars are equivalent to finite state
automata (FSAs).

— For each regular grammar, we can define an FSA to
produce or admit the same language and vice versa.

* To check if a sequence of terminals belongs to the
language, we feed the sequence to the FSA.

— The FSA “reads” (consumes) the symbols of the sequence
one by one, changing state (or remaining at the same state)
after each symbol, if there 1s a corresponding (allowed)
transition in 1its graph.

— If there 1s no corresponding transition, the FSA gets stuck.

— The sequence of terminals is part of the language 1f there
1s a sequence of transitions of the FSA that allows it to

consume the entire sequence of terminals, leaving the FSA
at a final state.

38

Grammars and automata

* Context-free grammars are equivalent to non
deterministic pushdown automata (PDAs).

— The automaton also has a stack, which has to be empty at the
final states.

— In a”b" languages, we need the stack to know how many b
symbols we need after the a symbols. Each time we encounter
an a, we push a symbol to the stack. Each time we encounter a
b, we pop a symbol from the stack.

— Non-deterministic: the current state and the symbol being
read (and the contents of the stack for PDAs) do not
functionally determine the next state.

— Every non-deterministic FSA (without a stack) can be converted to a
deterministic FSA (with more states), but this does hold for PDAs.

 Type 0 grammars are equivalent to Turing machines.

39

What grammars for natural languages?

* Almost all the syntactic phenomena of natural languages
can be captured using regular grammars.

— Hence we can parse NLs using FSAs, for which there are very
efficient algorithms.

— But often we use CFGs because they are shorter (fewer rules).
— And because their parse trees arec more useful in semantics.

* There are syntactic phenomena that seem to require CFGs:
— The cat likes tuna fish.
— The cat (that) the dog chased likes tuna fish.
— Similarities with a”b” languages (NP”V” tuna fish).

— The intersection (common sentences) of English with the regular language
[NP"V™ tuna fish] is [NP"V" tuna fish], which is non-regular. Hence,
English is not a regular language, because the intersection of regular
languages is a regular language.

— But even people have trouble for n > 2.
— For finite values of n, regular grammars are enough.

40

What grammars for natural languages?

* There are syntactic phenomena in some natural languages
that require context-sensitive grammars.

— Swiss German and Bambara (Mal1 and neighbouring countries).

— In Swiss German there are expressions of the form
wa’'b"xc'd"y.
* But in most natural languages no phenomena of this kind
have been found.

41

Gender agreement with CFGs

S > NP VP | VP
NP = Pron | DetFem PNFem | DetFem NominalFem |
DetMasc PNMasc | DetMasc NominalMasc
NominalFem = NFem | AdjFem NominalFem | NominalFem PP

NominalMasc > NMasc | AdjMasc NominalMasc |

NominalMasc PP
VP 2> V|V NP e PP - Prep NP
Pron 2 gym
DetFem =2 1 | o | tnv e DetMasc =2 o | évav | Tov
PNFem = ®cccarovikn | Ava
NFem = mtnon e NMasc =2 meAdtng | meAdtn
AdjFem = npown | amoysopativy : Tw1ceasmanygender—
V =2 0ého | 0érel] mpotno | mpotd ¢ sensitive rules. Even more
Prep = mpoc | a6 : rule variants for number

and case agreement.

Gender agreement with augmented CFGs

S > NP VP | VP

NP = Pron | Det(G) PN(G) | Det(G) Nominal(G)

Nominal(G) =2 N(G) | Adj(G) Nominal(G) | Nominal(G) PP
VP VIVNP
PP - Prep NP i Similar features for
Pron > &y® number, case:

Det(masc) = o | évav | tov Det(fem, nom, sing) = 0

Det(fem) = n | o | tnv e |
PN(fem) = ®socolovikn | AGiva i Nota CFG any more, but

, : can be converted to a
N(fem) > mnm?) i CFG with more rules,
N(masc) = nehdng | nehdm : provided that the possible :

Adj(fem) = mpow | amoygvpoTvy feature values are finite. :

V =2 0éhom | 0élel| mpoTud | TpoTiud
Prep = mpog | and

43

Parsing with Prolog
* Prolog supports DCGs out of the box.

— Definite Clause Grammars are in effect augmented CFGs,
as 1n the gender agreement slides.

— It converts them to First-Order Logic Horn clauses and treats parsing as
an inferencing problem.

— In effect, 1t parses top-down with depth-first search.

— We will use Prolog only to easily experiment with grammars.

* More elaborate parsing algorithms used in practice.

— E.g., CKY, Earley, possibly modified, to support augmented
CFGs.

— They can also be implemented 1n Prolog (or other
programming languages).

44

DCGs 1n Prolog

* Augmented CFGs written in the form:
nominal(G) =2 adj(G), nominal(G).
det(masc) =2 [évav].
— Terminal symbols written in square brackets.
— Symbols starting with capital letters are variables.

« Limitation due to the built-in DFS parsing:
— We need to avoid rules with left recursion.
— E.g., nominal = nominal, pp.

— More generally rules allowing productions of the form:

A2A.

45

Example of DCG

S -->np, Vp.
S --=> VD.
np --> pron.

np --> det(G), pn(G).
np --> det(G), nominal(G).

nominal(QG) --> n(G).

nominal(G) --> adj(G), nominal(G).

% Avoiding left recursion:
% nominal(G) --> nominal(G), pp.
nominal(G) --> n(G), manypp.

manypp --> pp.
manypp --> pp, manypp.

vp --> V.
vp --> Vv, np.

pp --= prep, np.
pron --> [gyw].

det(masc) --> [o].
det(masc) --> [évav].

(Consult the course’s
documents for many more
examples.)

46

Experimenting with DCGs

* You will need a Prolog interpreter.
— Recommended: SWI-Prolog (http://www.swi-prolog.org/).

* Loading the grammar file (plain text):
— consult(...) at the Prolog prompt.
— For Windows: double-click on the .pl grammar file.
— Many examples of DCGs 1n the course’s documents.

* Parsing, once the grammar 1s loaded:
— phrase(s, [0¢ho, ma, TTNon, amxo, TV, aONval).
— phrase(nominal(masc), [rerdTnG, amo, TNV, 0ONva]).

— A yes/no response by Prolog means a parse tree (with the
specified root) was found or not.

47

Experimenting with DCG — cont.

* Queries to the parser:
— phrase(nominal(G), [rerdTng, amo, TV, 0ONval).
— Response: G = masc.
— Typing «;» requests another solution (here there 1sn’t).

e Returning the parse tree:

— We can extend the grammars (see below), to make Prolog
also report the parse tree:

— phrase(nominal(G, T), [rerdTnC, amo, TV, 0.ONval).
— Response: G = masc and:
— T = nominal(n(mehaTng),
manypp(pp(prep(omo),
np(det(tnyv),
pn(a6nva)))))

48

Nodes with subtree representations

nominal (fem, nominal(adj(mpwivr)), nominal(n(ntnon))))

i At each internal node :
: of the parse tree we now :
: have an extra feature :
: representing the subtree :

b elowthat node ; nominal(fem, nominal(n(mtrion)))

adj(fem, adj(mpown)) n(fem, n(rton))

TPWIVN TTNOoN "

New form of the DCG rules

adj(fem, adj(mpwivn)) --> [Tpwvn].

n(fem, n(mtnon)) --> [rton].

n(masc, n(weAatnc)) --> [merdng].

nominal(G, nominal(T)) --> n(G, T).

nominal(G, nominal(T1, T2)) -y adj(G, T1), nominal(G, T2).

If you ﬁnd and adJ ective of gender G and subtree T1,
: followed by a nominal of gender G and subtree T2, then :
i you have found a (larger) nominal of gender G with parse :
: tree nominal(T1, T2). :

See file tree structure.pl in the documents of the course.

50

Chunking

e Sentence chunking into non-overlapping segments.
o Usually (non-recursive) NPs, VPs etc.
[wp The morning flight] [pp from Athens] [has landed].
e Flat structure produced instead of deeper trees.

 We can train sequence labeling algorithms (e.g., with sliding
windows, RNNs, CNNs, Transformers).
o B-NP: initial word of NP.
I-NP: inside word of NP.

B-VP: initial word of VP.

O: word outside any other segment

51

Head children

* In rules with only one right-hand side symbol, that symbol
(child) 1s the head child.

o E.g., Nominal 2> N

* In rules with multiple right-hand side symbols, we can
define which symbol 1s the head child.

o E.g.,S> NP VP and VP > V NP

o Usually the (main) verb 1s considered the head child of a verb
phrase, the verb phrase is considered the head child of a
sentence, the (main) noun 1s considered the head child of a noun
phrase etc.

o Or we may have separate rules to traverse the parse tree and
mark the head child of each non-terminal node.

52

S (TpoTum)

T~

, VP (rpotipd) with the head children
NP ’(‘C’Y(’D) marked, along with the
NP (mttion) words passed up from
the head children.
Nominal (mtr)on)
Nominal (mwtr)om) PP (npoc)
Nominal :
(xthon) NP (AOnva)
1 d N Det PN
P { V Det () A e
I’OIEI (gvm)(np(??m@) e)(np(mjvn) (mncm) Frep (np 0c) (r:nv) (A?Tﬁ/oc)
ey npoﬁuo’o ma npoo.wﬁ TTACT TPOC tﬁv Aeﬁva 53

Phrase structure tree

Phrase structure trees to dependency trees

subj nporu,w)

EYD mncm
det %
M powvT| TPog
(w&ﬁva

™mv
* Producing dependency trees from phrase structure trees:

o Create a node for each word.

o For each node of the phrase structure tree that has more than one
children, add dependencies from the word of the head child to the

words of each one of the other children.

o Usually separate rules produce the labels of the arcs.

* See also slides for parsing algorithms that produce directly
dependency trees.

54

Finding phrase structure trees via depth-first search

We usually extend the
leftmost non terminal
we can, using the
topmost rule of the
grammar that applies.

Det Nominal

55

Problems with left recursion

* We search top-down with DFS and backtracking.

« The input sequence does not agree with the grammar:
— «ua amd v ABnvoy

» We have produced the tree: . Ehle first two rules for Nominal
ail:
X _ Nominal > N
/\ L7 “ Nominal > Adj Nominal
NP VP el « We try the third rule:
/\ -7 Nominal > Nominal PP
-7 Infinite loop without consuming
Det Nominal words of the input.

 If the third rule 1s above the

. other two, we get an infinite

Nominal PP loop even if the input agrees
with the grammar.

nit Nominal PP s

Problems with left recursion

* The problem is caused by rules of the form:

— A2 A q (A; non-terminal, a; sequences of terminals
— A, 2 Ay, and non-terminals)
— An 9 Al a,

* The problem can often be solved by modifying the
grammar, to avoid left recursion.

* Similar problems with other generic search algorithms
when applied to parsing.
— E.g., if there 1s left recursion in the grammar, best-first

search finds the parse tree 1f there is one, but never stops if
there is no parse tree, because the search space 1s infinite.

57

Reparsing the same subtrees

NP
e Top-down with DFS
Nominal and backtracking.

_ -+ Wrong rule selected.

 Forced to backtrack.

NP

A\

Det . N Prep Det pN 72 2 7

uiow ITNnon oo Tﬁv AOva mpog to Xovid

Nominal _---"" PP ¢ Uncovered words left.

-
”

58

Reparsing the same subtrees
NP

Nominal

Nominal PP

Det

Hiw mTTnon antd v AOgvo mpoc T Xavid 59

Reparsing the same subtrees

..... We had rediscovered these :
""""" i before. Waste of time.

: Similar problems in i
i bottom up parsing
: with generic search
: algorithms. :

" B
i :
y |
I
. l)P\
y |
y |
I
D:et ;T | i Prep Det PN
S B ! L
o '] |
I . I : .
wa [mojon {ans_my AOfval mpos T Xawik

Probabilistic CFGs (PCFGs)

* Like plain CFGs, but now each rule has a probability.

S > NP VP [0.7] <----_. The total probability of all the §
S > VP[03] ¢ i rules for S must be 1. i
NP - Det Nominal [0.6] <. The total probability of all the |
NP> Det PN [0.4] €=~~~ | rules for NP must be 1. :
V > 0600 [0.03] <-—___! The total probability of all the |
V > emboud [0.02] yRagh rules for V must be 1. !

* The probability of each rule shows how likely it 1s for the
left-hand side non-terminal to have the form of the right-
hand side.

o The scores are conditional probabilities, like P(NP VP | S).

61

Probability of a parse tree

* We take the probability of each parse tree S
to be the product of the probabilities of the | 03
rules that were used to construct it.

VP
o Hence, we assume that rule applications are 0.65
independent... /\
S > NP VP [0.7] V. NP

S > VP [0.3] 003 | I\O6

0é\w Det Nominal
VP = V NP [0.65] i 'I

NP - Det Nominal [0.6] P(1) =0.3-0.65 - i

l 0.03-06-.. 1 pla N

V = 0600 [0.03]

e If we get multiple parse trees for a mTion
sentence, we prefer the most probable one.

62

Probabilistic CKY

* For probabilistic CFGs in Chomsky Normal Form (CNF).

* Only rules of the form 4 = B C [p] and A = w |p], where
A, B, C non-terminals, w terminal, p probability.

S > VNP [0.7]

V =2 gmboum [0.01]
V =2 0éhw [0.03]

Det =2 o [0.2]
Adj =2 mpown [0.01]

NP - Det Nominal [0.8]

Nominal 2 Adj N [0.4]
Nominal = nwtion [0.01]

N = nmon [0.02]
Adj =2 amoyevpativy [...]

63

Probabilistic CKY
@ VIV @ uio @ TPWOIVN @ TN oM @

V [0.03]
(0,1) I

Det [0.2]
(1,2)

Adj [0.01]
(2,3)

N [0.02]
Nominal [0.01]
3,4)

64

Probabilistic CKY
@ VIV @ uio @ TPWOIVN @ TN oM @

V [0.03]
0,2 o mmmmm e
Ol ©-2 | Probability of !_
| the rule (O 4). i
Det [0.2] e ————- \--__l
(1,2) (1,3) \\
<
Nominal [0.4 -
Adj [0.01] 0.01 - 0.02]
(2,3) 2, 4)l
N [0.02]

(3.4)

Nominal [0.01]

65

How do we learn the rules and probabilities?

* The most common way 1s to use a treebank.

o Corpus with sentences annotated (usually manually) with
their parse trees.

o The rules follow from the parse trees.
o We usually exclude very rare rules.

o Probabilities of the remaining rules: How frequently does o |
|

become f in the corpus? !
count(a — f) rmmn ZOIIIIIIIIIIIIIIIIIIIIE

How frequent 1s the non-
terminal a 1n the corpus?

-
-
-
-
(s

la=f)= count(or) €--="-- g

* If we only have plain texts, without manually annotated trees,
we can use a form of Expectation Maximization (EM).

o “Inside-outside” algorithm. See J&M.

66

Problems with PCFGs

e They assume that rule S
applications are /{I
1nd]§pen}c:ent. e NP VP .

o b.g., that applying the rule 0.6 :
NP = Det Nominal is \ | /\
equally probable Det Nominal V 0.6
regardless of whether the | 0.03 I\—
father of the NP 1s S or VP.

0éier Det Nominal
o But if the father of the NP © N

1s an S, the probability of
NP - Det Nominal may be TEMGTNG uia N
lower, perhaps because NP
—> Pron is more likely.

TTnon
o Perhaps more likely to

encounter a pronoun as a

subject, than as an object. .

Splitting non-terminals
* We can distinguish NP"'S

(NP with S father) from >
NP VP (NP with VP father). M
S = NP”S VP [0.3] NP”S VP
: 0.4 0.65
NP”S = Det Nominal [0.4] _
VP = V NP*VP [0.65] Det Nominal V NPAVP
NPAVP - Det Nominal [0.6] s | 0.3 &—6

 Wenow have two variants , N = 0éet Det Nominal
of NP - Det Nominal, each ‘
ith a different probability. :
W P Ly TEAQTNC po N

o One for subject NP, one for
object NP.

o We can split other non-
terminals too.

TTnon

68

Problems with PCFGs

S S e,
| | i Let py be the probability of 1
VP VP ! the rest of the tree. :
N
V NP
|
gidope Det Nominal gidape Det Nominal Prep NP
T~ | |
70 Nominal PP 0 N HE Det Nominal
| |
N Prep NP OTiTL TIO N
A —
omtt pe Det Nominal TCAKL [Py]
Fmm e / pneot
Let p, be the Tlo Ill HEOH [Pico

| probability of the & |
1 rest of the tree. | [Pu;] / nesimn [pugc]

“We saw the house with the fireplace/broker.” 69

Problems with PCFGs

Eidape 1o [omitt pe to taKt). Pa ' P&
Eidaype [to oniti] [pe to tloKt]. pg %

Eidape 7o [oniti pe 10 peoim]. pa - Pzo
Eidape [to onit] [pe To peoit]. pg - %(,

If pq > pg, we prefer the left tree in both sentences.
If pq < pg, we prefer the right tree in both sentences.

We want to prefer the left tree in the first sentence (with
tCaxk, fireplace) and the right tree in the second sentence
(with puecitn, broker).

70

Lexicalized PCFGs
S(etoape)

YP(ebope) | We mark the head children and |
V(eldape) NP(omiti)

1
I
1
I the words passed up. (For |
! simplicity, we assume here that the head |
I I

1

, child of a PP is the NP.)
cloOLE Dlet(TO) Nominal(omitt) ~=7"77TTTTTTTTTTTTTTTTITTTTTT
o —
TO Nominal(onitt) PP(t{dk1/pecitn)

N(omitt) Prep(ue) NP(tlaxi/pecitn)
|

OTiTL ue Det(to) Nominal(tlaxi/pecitn)

* p,is now different per sentence, to N(tCaxvpecitn)

because different Nominal rules , ,
with different p, > p, are involved. TCaKt [py] / peotm [Pyl

Nominal(omitt) = Nominal(onit) PP(tldx1) [p,]
Nominal(oriti) =2 Nominal(onitt) PP(necit) [p,] 71

[exicalized PCFGs

lS(si&xua)

VP(eloape)
V(eioape) NP(omitt) PP(t{dx1/pesim)
eidape Det(to) Nominal(omitt) Prep(pe) NP(tlaxv/pecitm)
TO (omitl) IJE Det(to) Nominal(t(dxi/pecitn)

oTiTL 10 N(tlakl/peoit)

Tcd]q :prC] / HEG{W [pusc]

* pg1s now also different per sentence, again because
different Nominal rules with different p; < p, are involved.

VP(etdape) =2 V(eidaue) NP(onit) PP(tldk1) [p;]
VP(eidape) =2 V(eidaue) NP(ornit) PP(uecit) [p,4] 7

Lexicalized PCFGs and CPCFGs

Improved results compared to non-lexicalized PCFGs.

Much larger number of rules, more difficult to estimate
their probabilities.

o Many rules will have been used rarely in the treebank.
o Special probability smoothing techniques employed.

o E.g., replacing the words in brackets by their POS tags (esp.
if the tags also indicate gender, number, case etc.) or with
semantic classes (e.g., person, location).

o See J&M for more information.
In Conditional PCFGs (CPCFGs), whenever a rule is
applied, 1t may have a different probability.

o The probability is generated by a model (nowadays, possibly
an MLP) that considers features of the rules and the parts of
the input text its symbols correspond to.

73

Recommended reading

Y. Goldberg, Neural Network Models for Natural Language
Processing, Morgan & Claypool Publishers, 2017.

o Mostly sections 7.7, 8.6, 16.2.3.
Jurafsky & Martin (2" ed.): chapters 12, 13, 14, 16.

o Check also the 3" edition (in preparation):
http://web.stanford.edu/~jurafsky/slp3/ .

For probabilistic parsing you may optionally want to
consult chapters 11 and 12 of Manning & Schiitze.

For more background on dependency parsing, consult
the book Dependency Parsing by S. Kubler, R.
McDonald, and J. Nivre, Morgan & Claypool, 2009.

The Universal Dependencies Project provides treebanks
for many languages (including English, Greek).

o http://universaldependencies.org/

Ry bicDuntt
............

74

http://web.stanford.edu/~jurafsky/slp3/
http://universaldependencies.org/

