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PREFACE to this edition

Notes on Optimizatiowas published in 1971 as part of the Van Nostrand Reinhold Notes on Sys-
tem Sciences, edited by George L. Turin. Our aim was to publish short, accessible treatments of
graduate-level material in inexpensive books (the price of a book in the series was about five dol-
lars). The effort was successful for several years. Van Nostrand Reinhold was then purchased by a
conglomerate which cancelled Notes on System Sciences because it was not sufficiently profitable.
Books have since become expensive. However, the World Wide Web has again made it possible to
publish cheaply.

Notes on Optimizatiomas been out of print for 20 years. However, several people have been
using it as a text or as a reference in a course. They have urged me to re-publish it. The idea of
making it freely available over the Web was attractive because it reaffirmed the original aim. The
only obstacle was to retype the manuscript in LaTex. | thank Kate Klohe for doing just that.

I would appreciate knowing if you find any mistakes in the book, or if you have suggestions for
(small) changes that would improve it.

Berkeley, California P.P. Varaiya
September, 1998
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PREFACE

TheseNoteswere developed for a ten-week course | have taught for the past three years to first-year
graduate students of the University of California at Berkeley. My objective has been to present,
in a compact and unified manner, th&in concepts and techniques of mathematical programming
and optimal control to students having diverse technical backgrounds. A reasonable knowledge of
advanced calculus (up to the Implicit Function Theorem), linear algebra (linear independence, basis,
matrix inverse), and linear differential equations (transition matrix, adjoint solution) is sufficient for
the reader to follow th&lotes

The treatment of the topics presented here is deep. Although the coverage is not encyclopedic,
an understanding of this material should enable the reader to follow much of the recent technical
literature on nonlinear programming, (deterministic) optimal control, and mathematical economics.
The examples and exercises given in the text form an integral part biatesand most readers will
need to attend to them before continuing further. To facilitate the use of Mmssas a textbook,

I have incurred the cost of some repetition in order to make almost all chapters self-contained.
However, Chapter V must be read before Chapter VI, and Chapter VIl before Chapter VIII.

The selection of topics, as well as their presentation, has been influenced by many of my students
and colleagues, who have read and criticized earlier drafts. | would especially like to acknowledge
the help of Professors M. Athans, A. Cohen, C.A. Desoer, J-P. Jacob, E. Polak, and Mr. M. Ripper. |
also want to thank Mrs. Billie Vrtiak for her marvelous typing in spite of starting from a not terribly
legible handwritten manuscript. Finally, | want to thank Professor G.L. Turin for his encouraging
and patient editorship.

Berkeley, California P.P. Varaiya
November, 1971
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Chapter 1

INTRODUCTION

In this chapter, we present our model of the optimal decision-making problem, illustrate decision-
making situations by a few examples, and briefly introduce two more general models which we
cannot discuss further in theBlotes

1.1 The Optimal Decision Problem

TheseNotesshow how to arrive at an optimal decision assuming that complete information is given.
The phraseomplete information is givemeans that the following requirements are met:

1. The set of all permissible decisions is known, and
2. The cost of each decision is known.

When these conditions are satisfied, the decisions can be ranked according to whether they incur
greater or lesser cost. Asptimal decisions then any decision which incurs the least cost among
the set of permissible decisions.

In order to model a decision-making situation in mathematical terms, certain further requirements
must be satisfied, namely,

1. The set of all decisions can be adequately represented as a subset of a vector space with each
vector representing a decision, and

2. The cost corresponding to these decisions is given by a real-valued function.

Some illustrations will help.

Example 1 The Pot Company (Potco) manufacturers a smoking blend called Acapulco Gold.
The blend is made up of tobacco and mary-john leaves. For legal reasons the fraofiomary-
john in the mixture must satisfy < o < % From extensive market research Potco has determined
their expected volume of sales as a functiomaind the selling price. Furthermore, tobacco can
be purchased at a fixed price, whereas the cost of mary-john is a function of the amount purchased.
If Potco wants to maximize its profits, how much mary-john and tobacco should it purchase, and
what pricep should it set?

Example 2 Tough University provides “quality” education to undergraduate and graduate stu-
dents. In an agreement signed with Tough’s undergraduates and graduates (TUGS), “quality” is

1



2 CHAPTER 1. INTRODUCTION

defined as follows: every year, eacHundergraduate) must take eight courses, one of which is a
seminar and the rest of which are lecture courses, whereag ¢gduate) must take two seminars
and five lecture courses. A seminar cannot have more than 20 students and a lecture course cannot
have more than 40 students. The University has a faculty of 1000. The Weary Old Radicals (WORSs)
have a contract with the University which stipulates that every junior faculty member (there are 750
of these) shall be required to teach six lecture courses and two seminars each year, whereas every
senior faculty member (there are 250 of these) shall teach three lecture courses and three seminars
each year. The Regents of Touch rate Tough’s Presidenpatnts peru and 3 points perg “pro-
cessed” by the University. Subject to the agreements with the TUGs and WORs how:imany
g’s should the President admit to maximize his rating?
Example 3 (See Figurel.1) An engineer is asked to construct a road (broken line) connection
point a to point. The current profile of the ground is given by the solid line. The only requirement
is that the final road should not have a slope exceeding 0.001. If it copr $ubic foot to excavate
or fill the ground, how should he design the road to meet the specifications at minimum cost?
Example 4 Mr. Shell is the manager of an economy which produces one output, wine. There
are two factors of production, capital and laborAlft) and L(t) respectively are the capital stock
used and the labor employed at timehen the rate of output of winé/(¢) at time is given by the
production function

As Manager, Mr. Shell allocates some of the output F&tg) to the consumption raté'(¢), and
the remainder (¢) to investment in capital goods. (Obviousl;, C, I, andK are being measured
in a common currency.) Thudl (t) = C(¢t) + I(t) = (1 — s(t))W(t) wheres(t) = I(t)/W(t)

Figure 1.1: Admissable set of example.

€ [0,1] is the fraction of output which is saved and invested. Suppose that the capital stock decays
exponentially with time at a raté > 0, so that the net rate of growth of capital is given by the
following equation:

K(t) = %K(t) (1.1)

= —SK(t) + s(t)W ()
= —OK(t) + s(t)F(K(t), L(t)).

The labor force is growing at a constant birth ratgfaf 0. Hence,
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L(t) = BL(t).
(1.2)

Suppose that the production functidn exhibits constant returns to scales., F(AK,\L) =
AF(K, L) for all A > 0. If we define the relevant variable in terms of per capita of labor=
W/L,c=C/L,k = K/l,and ifweletf (k) = F(k,l), then we see thadt(K,L)—LF(K/L,1) =
Lf(k), whence the consumption per capita of labor becortgs= (I — s(t)) f(k(t)). Using these
definitions and equations (1.1) and (1.2) it is easy to see/tjal satisfies the differential equation
(1.3).

k() = s(OF(k()) - uk(t)
(1.3)

wherep = (§ + (). The first term of the right-hand side in (3) is the increase in the capital-to-labor
ratio due to investment whereas the second terms is the decrease due to depreciation and increase in
the labor force.

Suppose there is a planning horizon tiffieand at timed Mr. Shell starts with capital-to-labor
ratio k,. If “welfare” over the planning perio@, 7’| is identified with total consumptioy”hT c(t)dt,
what should Mr. Shell's savings policy(t), 0 < ¢ < T, be so as to maximize welfare? What
savings policy maximizes welfare subject to the additional restriction that the capital-to-labor ratio
attimeT should be at leagt,y? If future consumption is discounted at rate- 0 and if time horizon
is 0o, the welfare function becomqgOo e~ at c(t)dt. What is the optimum policy corresponding to
this criterion?

These examples illustrate the kinds of decision-making problems which can be formulated math-
ematically so as to be amenable to solutions by the theory presented ilNibtese/Ve must always
remember that a mathematical formulation is inevitably an abstraction and the gain in precision may
have occurred at a great loss of realism. For instance, Example 2 is caricature (see also a faintly re-
lated but more more elaborate formulation in Bruno [1970]), whereas Example 4 is light-years away
from reality. In the latter case, the value of the mathematical exercise is greater the more insensitive
are the optimum savings policies with respect to the simplifying assumptions of the mathematical
model. (In connection with this example and related models see the critique by Koopmans [1967].)

In the examples above, the set of permissible decisions is represented by the set of all points
in some vector space which satisfy certain constraints. Thus, in the first example, a permissible
decision is any two-dimensional vect6d, p) satisfying the constraint8 < o < % and0 <
p. In the second example, any vectar, g) with « > 0, g > 0, constrained by the number
of faculty and the agreements with the TUGs and WORs is a permissible decision. In the last
example, a permissible decision is any real-valued functigh, 0 < t < T, constrained by
0 < s(t) < 1. (Itis of mathematical but not conceptual interest to note that in this case a decision
is represented by a vector in a function space which is infinite-dimensional.) More concisely then,
theseNotesare concerned with optimizing (i.e. maximizing or minimizing) a real-valued function
over a vector space subject to constraints. The constraints themselves are presented in terms of
functional inequalities or equalities.
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At this point, it is important to realize that the distinction between the function which is to be
optimized and the functions which describe the constraints, although convenient for presenting the
mathematical theory, may be quite artificial in practice. For instance, suppose we have to choose
the durations of various traffic lights in a section of a city so as to achieve optimum traffic flow.
Let us suppose that we know the transportation needs of all the people in this section. Before we
can begin to suggest a design, we need a criterion to determine what is meant by “optimum traffic
flow.” More abstractly, we need a criterion by which we can compare different decisions, which in
this case are different patterns of traffic-light durations. One way of doing this is to assign as cost to
each decision the total amount of time taken to make all the trips within this section. An alternative
and equally plausible goal may be to minimize the maximum waiting time (that is the total time
spent at stop lights) in each trip. Now it may happen that these two objective functions may be
inconsistent in the sense that they may give rise to different orderings of the permissible decisions.
Indeed, it may be the case that the optimum decision according to the first criterion may be lead to
very long waiting times for a few trips, so that this decision is far from optimum according to the
second criterion. We can then redefine the problem as minimizing the first cost function (total time
for trips) subject to the constraint that the waiting time for any trip is less than some reasonable
bound (say one minute). In this way, the second goal (minimum waiting time) has been modified
and reintroduced as a constraint. This interchangeability of goal and constraints also appears at a
deeper level in much of the mathematical theory. We will see that in most of the results the objective
function and the functions describing the constraints are treated in the same manner.

1.2 Some Other Models of Decision Problems

Our model of a single decision-maker with complete information can be generalized along two
very important directions. In the first place, the hypothesis of complete information can be relaxed
by allowing that decision-making occurs in an uncertain environment. In the second place, we
can replace the single decision-maker by a group of two or more agents whose collective decision
determines the outcome. Since we cannot study these more general models iNdtess&ve

merely point out here some situations where such models arise naturally and give some references.

1.2.1 Optimization under uncertainty.

A person wants to invest $1,000 in the stock market. He wants to maximize his capital gains, and
at the same time minimize the risk of losing his money. The two objectives are incompatible, since
the stock which is likely to have higher gains is also likely to involve greater risk. The situation
is different from our previous examples in that the outcome (future stock prices) is uncertain. It is
customary to model this uncertainty stochastically. Thus, the investor may assign probability 0.5 to
the event that the price of shares in Glamor company increases by $100, probability 0.25 that the
price is unchanged, and probability 0.25 that it drops by $100. A similar model is made for all the
other stocks that the investor is willing to consider, and a decision problem can be formulated as
follows. How should $1,000 be invested so as to maximizesitpected valuef the capital gains
subject to the constraint that the probability of losing more than $100 is less than 0.1?

As another example, consider the design of a controller for a chemical process where the decision
variable are temperature, input rates of various chemiesds,Usually there are impurities in the
chemicals and disturbances in the heating process which may be regarded as additional inputs of a
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random nature and modeled as stochastic processes. After this, just as in the case of the portfolio-
selection problem, we can formulate a decision problem in such a way as to take into account these
random disturbances.

If the uncertainties are modelled stochastically as in the example above, then in many cases
the technigues presented in thédetescan be usefully applied to the resulting optimal decision
problem. To do justice to these decision-making situations, however, it is necessary to give great
attention to the various ways in which the uncertainties can be modelled mathematically. We also
need to worry about finding equivalent but simpler formulations. For instance, it is of great signif-
icance to know that, given appropriate conditions, an optimal decision problem under uncertainty
is equivalent to another optimal decision problem under complete information. (This result, known
as the Certainty-Equivalence principle in economics has been extended and baptized the Separation
Theorem in the control literature. See Wonham [1968].) Unfortunately, to be able to deal with
these models, we need a good background in Statistics and Probability Theory besides the material
presented in thesgotes We can only refer the reader to the extensive literature on Statistical De-
cision Theory (Savage [1954], Blackwell and Girshick [1954]) and on Stochastic Optimal Control
(Meditch [1969], Kushner [1971]).

1.2.2 The case of more than one decision-maker.

Agent Alpha is chasing agent Beta. The place is a large circular field. Alpha is driving a fast, heavy
car which does not maneuver easily, whereas Beta is riding a motor scooter, slow but with good
maneuverability. What should Alpha do to get as close to Beta as possible? What should Beta
do to stay out of Alpha’s reach? This situation is fundamentally different from those discussed so
far. Here there are two decision-makers with opposing objectives. Each agent does not know what
the other is planning to do, yet the effectiveness of his decision depends crucially upon the other’s
decision, so that optimality cannot be defined as we did earlier. We need a new concept of rational
(optimal) decision-making. Situations such as these have been studied extensively and an elaborate
structure, known as the Theory of Games, exists which describes and prescribes behavior in these
situations. Although the practical impact of this theory is not great, it has proved to be among the
most fruitful sources of unifying analytical concepts in the social sciences, notably economics and
political science. The best single source for Game Theory is still Luce and Raiffa [1957], whereas
the mathematical content of the theory is concisely displayed in Owen [1968]. The control theorist
will probably be most interested in Isaacs [1965], and Blaquigral., [1969].

The difficulty caused by the lack of knowledge of the actions of the other decision-making agents
arises even if all the agents have the same objective, since a particular decision taken by our agent
may be better or worse than another decision depending upon the (unknown) decisions taken by the
other agents. Itis of crucial importance to invent schemes to coordinate the actions of the individual
decision-makers in a consistent manner. Although problems involving many decision-makers are
present in any system of large size, the number of results available is pitifully small. (See Mesarovic,
et al, [1970] and Marschak and Radner [1971].) In the author’s opinion, these problems represent
one of the most important and challenging areas of research in decision theory.



CHAPTER 1. INTRODUCTION



Chapter 2

OPTIMIZATION OVER AN OPEN
SET

In this chapter we study in detail the first example of Chapter 1. We first establish some notation
which will be in force throughout theddotes Then we study our example. This will generalize

to a canonical problem, the properties of whose solution are stated as a theorem. Some additional
properties are mentioned in the last section.

2.1 Notation

211

All vectors arecolumnvectors, with two consistent exceptions mentioned in 2.1.3 and 2.1.5 below
and some other minor and convenient exceptions in the text. Prime denotes transpose so that if
x € R"thena’ is the row vectorr’ = (z1,...,2,), andx = (z1,...,x,)". Vectors are normally
denoted by lower case letters, title component of a vectar € R"™ is denotedr;, and different
vectors denoted by the same symbol are distinguished by superscripts’aaridz*. 0 denotes
both the zero vector and the real number zero, but no confusion will result.

Thus ifx = (x1,...,2,) andy = (y1,...,y,) thenz'y = z1y1 + ... + z,y, as in ordinary
matrix multiplication. Ifz € R" we definglz| = +v/z'z.

2.1.2

If 2 = (z1,...,2,) andy = (y1,...,y,) thenz > y meanse; > y;,i = 1,...,n. In particular if
xz € R", thenz > 0,ifx; >0,i=1,...,n.

2.1.3

Matrices are normally denoted by capital lettersAlfs anm x n matrix, thenAj denotes thgth
column of Aand A, denotes théth row of A Note that4; is arow vector. A/ denotes the entry

of A in theith row and;jth column; this entry is sometimes also denoted by the lower case letter
a;j, and then we also writd = {a;;}. I denotes the identity matrix; its size will be clear from the
context. If confusion is likely, we writd,, to denote they x n identity matrix.

7



8 CHAPTER 2. OPTIMIZATION OVER AN OPEN SET

214

If f: R™ — R™is afunction, itsth component is writterf;,s = 1, ..., m. Note thatf; : R — R.
Sometimes we describe a function by specifying a rule to calcylate for everyx. In this case
we write f : x — f(x). For example, ifA is anm x n matrix, we can write?’ : = — Az to denote
the functionf : R — R™ whose value at a point € R" is Ax.

2.15

If f: R" — Risadifferentiable function, the derivative pfatz is therow vector((0f/0x1)(z), ..., (Of/0xy)(Z)).
This derivative is denoted by f /0x)(z) or f.(Z) or Of /0x|,=z OF fu|.=z, and if the argument

is clear from the context it may be dropped. Td@umnvector(f,(%))’ is also denoted/ . f (),

and is called thegradientof f atz. If f : (z,y) — f(x,y) is a differentiable function from

R™ x R™ into R, the partial derivative of with respect tac at the pointz, ) is then-dimensional

row vector f,.(z,9) = (0f/0z)(z,y) = ((0f/0x1)(Z,1),...,(0f /0x,)(&,7)), and similarly

Fo@,5) = (0F/0y)(&,9) = (OF /0y1)(@,5). ... (OF /Oym)(@,5)). Finally, if f : R* — R™is

a differentiable function with componenfs, ..., f.., then its derivative at is them x n matrix

[ flac(i’)
Ty=ra = |
| fona()
Shz) - Bh(z)
Y@ )

2.1.6

If f: R" — Ristwice differentiable, its second derivativeigis then x n matrix (62 f /0z0z) (&) =
Jux(2) Where(fy,(2))] = (8% f /0x;0x;)(2). Thus, in terms of the notation in Section 2.1.5 above,

7

fea(2) = (0/02)(f2)'(2).

2.2 Example

We consider in detail the first example of Chapter 1. Define the following variables and functions:

= fraction of mary-john in proposed mixture,
sale price per pound of mixture,

SEE S e)
I

total amount of mixture produced,
fla,p) = expected sales volume (as determined by market research) of mixture as a funetigr).of
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Since it is not profitable to produce more than can be sold we must have:

v = f(a,p),
m = amount (in pounds) of mary-john purchased, and
t = amount (in pounds) of tobacco purchased.
Evidently,
m = av,and
t = (I—aw.
Let
Py(m) = purchase price af pounds of mary-john, and
P, = purchase price per pound of tobacco.

Then the total cost as a function @fp is

Cla,p) = Pi(af(a,p)) + Po(1 = a) f(e, p).

The revenue is

R(Oé,p) = pf(a,p),

so that the net profit is

N(Oé,p) = R(avp) - C(avp)'

The set of admissible decisions{¥ where2 = {(a, p)[0 < a < 3,0 < p < co}. Formally, we
have the the following decision problem:

Maximize  N(a,p),
subjectto (a,p) € Q.

Suppose thato*, px) is an optimal decisiori,e.,

(a*,p*) € Q and

N(a*,p*) > N(a,p) forall (a,p) €. (2.1)

We are going to establish some propertiesaf, p*). First of all we note thaf) is anopensubset
of R%. Hence there exits > 0 such that

(o, p) € Q wWhenever |(a,p) — (a*,p*)| <e (2.2)

In turn (2.2) implies that for every vectdr = (hy, h)’ in R? there exists; > 0 (n of course
depends o) such that

((a*,p*) 4+ 6(h1,he)) € Q for 0<06<n (2.3)



10 CHAPTER 2. OPTIMIZATION OVER AN OPEN SET

D=

(a*,p*) 4+ 6(h1, ha)

0 (a*,p)
Sh

/h - D

Figure 2.1: Admissable set of example.

Combining (2.3) with (2.1) we obtain (2.4):
N(a*,p*) > N(a* + 6hy,p* 4+ dhy) for 0<6<n (2.4)

Now we assume that the functidvi is differentiableso that by Taylor’'s theorem

N(Oé*, *)
N(a* + 6hy,p* + 6hy) = +6[S5E (6%, p" ) + G (", p*) o] (2.5)
+o(6),
where
@0 as §—0. (2.6)

Substitution of (2.5) into (2.4) yields
0 > 6[2 (o, p*)hy + L (a*, p*)ha] + 0(0).
Dividing by § > 0 gives
0> [9¥(a*, p*)hn + L (0", p*)ha] + 2. (2.7)
Letting & approach zero in (2.7), and using (2.6) we get
0> [Z8 (%, p*)h1 + G (", p*)ha). (2.8)

Thus, using the facts tha( is differentiable,(a*, p*) is optimal, and) is open, we have concluded
that the inequality (2.9) holds faveryvectorh € R?. Clearly this is possible only if

O (¥, p*) =0, Fr(a®,p*) =0. (2.9)

Before evaluating the usefulness of property (2.8), let us prove a direct generalization.
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2.3 The Main Result and its Consequences

2.3.1 Theorem

11

LetQ) be an open subset &f". Let f: R™ — R be a differentiable function. Let" be an optimal

solution of the following decision-making problem:

Maximize f(z)
subjectto z € Q.

Then

Proof: Sincez* € ) and2 is open, there exists > 0 such that

x € Q wheneverjz — z*| < e.

(2.10)

(2.11)

(2.12)

In turn, (2.12) implies that for every vectarc R there exits; > 0 (n depending ork) such that

(xz* + 6h) € Q whenever 0 < § <.
Sincez* is optimal, we must then have
f(z*) > f(z* +dh) whenever 0 <4 <.
Sincef is differentiable, by Taylor’s theorem we have
F(@* +6h) = f(*) + L (a*)dh + o(d),
where
) 0 as §—0
Substitution of (2.15) into (2.14) yields
0> 6% (2*)h + o(5)
and dividing byd > 0 gives
0> 9 (z)h + 242
Letting § approach zero in (2.17) and taking (2.16) into account, we see that
0> gl(@)n,
Since the inequality (2.18) must hold for evérye R™, we must have
0= gl(a"),

and the theorem is proved.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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Table 2.1
Does there exist At how many points
an optimal deci- inQis2.2.2 Further
Case| sion for2.2.17? satisfied? Consequences
1 Yes Exactly one point, x* is the
sayz* unique optimal
2 Yes More than one point
3 No None
4 No Exactly one point
5 No More than one point

2.3.2 Consequences.

Let us evaluate the usefulness of (2.11) and its special case (2.18). Equation (2.11) gives us

equations which must be satisfied at any optimal decisios (x7,...,x})’.
These are
f (% Of (% d
(@) =0, FL(z*)=0,..., L") =0 (2.19)

Thus, every optimal decision must be a solution of theseanultaneous equations nafvariables, so
that the search for an optimal decision fréhis reduced to searching among the solutions of (2.19).
In practice this may be a very difficult problem since these may be nonlinear equations and it may
be necessary to use a digital computer. However, in thiedeswe shall not be overly concerned
with numerical solution techniques (but see 2.4.6 below).

The theorem may also have conceptual significance. We return to the example and recall the
N = R — C. Suppose thaRk andC are differentiable, in which case (2.18) implies that at every
optimal decision(a*, p*)

o5)

¢ oC IR _ oC
%(CE 7p*) = _a(a*vp*)v a_p(a*ap*) - %(a*ap*)a

or, in the language of economic analysis, marginal revenue = marginal cost. We have obtained an
important economic insight.

2.4 Remarks and Extensions

2.4.1 Awarning.

Equation (2.11) is only aecessargondition forz* to be optimal. There may exist decisians €2
such thatf,(z) = 0 butz is not optimal. More generally, any one of the five cases in Table 2.1 may
occur. The diagrams in Figure 2.1 illustrate these cases. In eacklcase-1,1).

Note that in the last three figures there is no optimal decision since the limit points -1 and +1 are
not in the set of permissible decisiofis= (—1, 1). In summary, the theorem does not give us any
clues concerning thexistenceof an optimal decision, and it does not give sugficientconditions
either.
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NS
p— w

i I
- 1 -
1 Case4 1 Case5

-1 Casel

Figure 2.2: lllustration of 4.1.

2.4.2 Existence.

If the set of permissible decisiori$ is a closed and bounded subset/8f, and if f is continuous,
then it follows by the Weierstrass Theorem that there exists an optimal decision. (Big dosed

we cannot assert that the derivativefofanishes at the optimum. Indeed, in the third figure above,
if @ =[—1,1], then +1 is the optimal decision but the derivative is positive at that point.

2.4.3 Local optimum.

We say thatt* € ) is a locally optimal decision if there exists> 0 such thatf(z*) > f(x)
wheneverr € Q and|z* — z| < e. Itis easy to see that the theorem ho(ds., 2.11)for local
optima also.

2.4.4 Second-order conditions.

Supposef is twice-differentiable and let* € Q2 be optimal or even locally optimal. Thef(z*) =
0, and by Taylor’s theorem

f@* +6h) = f(a*) + 56° fou(2*)h + 0(5%), (2.20)
whereo(;;) — 0asd — 0. Now ford > 0 sufficiently smallf (z* + dh) < f(x*), so that dividing
by 62 > 0 yields

0 2
0> L foo(z*)h + 25

and lettingé approach zero we conclude thétf,..(x*)h < 0 for all h € R™. This means that

fzz(2*) is @ negative semi-definite matrix. Thus, if we have a twice differentiable objective function,
we get an additional necessary condition.

2.4.5 Sufficiency for local optimal.

Suppose at* € Q, f,(z*) = 0 and f,, is strictly negative definite. But then from the expansion
(2.20) we can conclude that is a local optimum.
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2.4.6 A numerical procedure.

At any pointz € 2 the gradient;, f(Z) is a direction along whiclf (z) increasesi.e., f(Z + ¢V x
f(@)) > f(z) for all ¢ > 0 sufficiently small. This observation suggests the following scheme for
finding a pointz* € Q which satisfies 2.11. We can formalize the scheme as an algorithm.

Step 1. Pickz® € Q. Seti = 0. Go to Step 2.

Step 2. Calculateyy, f(z°). If 7. f(z") = 0, stop.
Otherwise lett’*! = 2% + d; 7, f(2*) and go
to Step 3.

Step 3. Seti =i + 1 and return to Step 2.

The step sizel; can be selected in many ways. For instance, one choice is talfakebe an
optimal decision for the following problem:

Max{f(x' +d 7, f(x))|d > 0, (2" + d . f(z')) € Q}.

This requires a one-dimensional search. Another choice is t@; let d; 1 if f(x! + d;i_1 V2
f(xh) > f(a%); otherwise letd; = 1/k d;_; wherek is the smallest positive integer such that
f@+1/kd;i_1 7. f(z%) > f(2%). To start the process we lét; > 0 be arbitrary.

Exercise: Let f be continuous differentiable. Lét/;} be produced by either of these choices and
let
{z;} be the resulting sequence. Then

L f(mipr) > flog) if 2y # 24,0

2. if z* € Qis alimit point of the sequencgr; }, f.(z*) = 0.

For other numerical procedures the reader is referred to Zangwill [1969] or Polak [1971].



Chapter 3

OPTIMIZATION OVER SETS
DEFINED BY EQUALITY
CONSTRAINTS

We first study a simple example and examine the properties of an optimal decision. This will
generalize to a canonical problem, and the properties of its optimal decisions are stated in the form
of a theorem. Additional properties are summarized in Section 3 and a numerical scheme is applied
to determine the optimal design of resistive networks.

3.1 Example
We want to find the rectangle of maximum area inscribed in an ellipse defined by

fl(;p’y) — 2—3 + Zb/—j = Q. (31)

The problem can be formalized as follows (see Figure 3.1):

Maximize  fo(z,y) =4zy
subjectto (z,y) € @ = {(x,y)|f1(z,y) = a}.

The main difference between problem (3.2) and the decisions studied in the last chapter is that
the set of permissible decisiofisis notan open set. Hence, (f:*, y*) is an optimal decision we
cannotassert thayfo(z*, y*) > fo(x,y) for all (x,y) in an open set containing:*, y*). Returning
to problem (3.2), suppoge*, y*) is an optimal decision. Clearly then either # 0 or y* # 0. Let
us suppose™ # 0. Then from figure 3.1 it is evident that there exist (i} 0, (ii) an open sel”
containing(z*, y*), and (iii) a differentiable functiory : (z* — ¢,2* 4+ ¢) — V such that

filz,y) =a and (z,y) eV iff fy=g(x)! (3.3)

In particular this implies thag* = g(z*), and thatf; (x, g(z)) = a wheneverlz — x*| < e. Since

(3.2)

Note thaty* # 0 implies f1,(z*,Y™) # 0, so that this assertion follows from the Implicit Function Theorem. The
assertion is false if* = 0. In the present case l6t< ¢ < a — z* andg(z) = +b[a — (x/a)?]/?.

15
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Tangent plane to

/ Qat(z*, y")

(fiz, f1y)

Figure 3.1: lllustration of example.

(x*,y*) = (z*, g(z*)) is optimum for (3.2), it follows that* is an optimal solution for (3.4):

Maximize fo(z) = fo(x, g(x))
subject to |a(:) — ¥ <05. (3.4)

But the constraint set in (3.4) is an open setfih) and the objective functior, is differentiable,
so that by Theorem 2.3.%¥,,.(=*) = 0, which we can also express as

Jou (@7, %) + foy (™, y")ge(2) = 0 (3.5)
Using the fact thaf; (z, g(z)) = a for | — z*| < ¢, we see that
fra(@®y") + fry(@®,y")g2(2") = 0,
and sincefy, (z*, y*) # 0 we can evaluatg, (z*),
gu(@") = — i} fra(a®,y"),
and substitute in (3.5) to obtain the condition (3.6):
fow = foy 1, fre = 0 at (z*,y%). (3.6)

Thus an optimal decisiofx*, y*) must satisfy the two equatiornfs(z*, y*) = o and (3.6). Solving
these yields

= (a/2) %yt = Fa/2)2.
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Evidently there are two optimal decisior(s;", y*) = T («/2)'/2(a,b), and the maximum area is
m(a) = 20ab. (3.7)
The condition (3.6) can be interpreted differently. Define
N = fogfi @y (3.8)
Then (3.6) and (3.8) can be rewritten as (3.9):
(fozs foy) = A*(f1a, f1y) at (2%, y") (3.9)
In terms of the gradients gfy, f1, (3.9) is equivalent to
Vol y*) = [V A", y7)]A", (3.10)

which means that at an optimal decision the gradient of the objective fungti@normal to the
plane tangent to the constraint $ket
Finally we note that

A= 9m (3.11)
wherem(«) = maximum area.
3.2 General Case
3.2.1 Theorem.
Letf;: R® — R,i=0,1,...,m (m < n), be continuously differentiable functions andiétbe

an optimal decision of problem (3.12):

Maximize fy(x)

subjectto fi(z) =a;, i=1,...,m. (3.12)
Suppose that at* the derivatives/;,.(z*),i = 1, ..., m, arelinearly independentThen there exists
avector\* = (A],..., \%,) such that
for(@®) = A fra(z™) + ..o+ A, fna (27) (3.13)
Furthermore, let(aq, . . ., a,, ) be the maximum value of (3.12) as a functiomof (o, ..., a5,) .

Let z*(«) be an optimal decision for (3.12). 4f*(«) is adifferentiablefunction ofa thenm(«) is
a differentiable function ofy, and

(A =2z (3.14)

Proof. Sincef;,(z*),i = 1,...,m, are linearly independent, then by re-labeling the coordinates of
x if necessary, we can assume thatithe m matrix [(0f;/0x;)(x*)], 1 < 4,5 < m,is nonsingular.
By the Implicit Function Theorem (see Fleming [1965]) it follows that there exist ) 0, (i) an
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open setl” in R™ containingz*, and (iii) a differentiable functiory : U — R™, whereU =

(Tma1s o)l [Tmae — 25, ol <e,0=1,...,n —m], such that

filzr, ..., xn) =i, 1 <i<m, and (zq1,...,2,) €V
iff

zj = gj(Tms1,--,2Tn), 1 <j<m, and (zpy1,...,2n) €U (3.15)
(see Figure 3.2).
In particular this implies that = gi(wy iqs5xy), 1 < j <m,and

filg(Xma1y ooy Tn), Ty oo ) =, 1=1,...,m. (3.16)

For convenience, let us define = (z1,...,2n), v = (Tme1,.--,xx) andf = (f1,..., fm)-

Then, sincer* = (w*,u*) = (g(u*),u*) is optimal for (3.12), it follows thau.* is an optimal
decision for (3.17):

Maximize fo(u) = fo(g(u), u)
subject to uoe U. ’ (3.17)

But U is an open subset aR"~™ and foAis a differentiable function o/ (since fy and g are
differentiable), so that by Theorem 2.3. %, (u*) = 0, which we can also express using the chain
rule for derivatives as

fou(u*) = fouw(@*)gu(u®) + fou(a®) = 0. (3.18)
Differentiating (3.16) with respect to = (41, - - -, ,)’, We see that
fuw(x*)gu(u®) + fu(z*) =0,
and since then x m matrix f,,(z*) is nonsingular we can evaluagg(u*),

gu(w*) = =[fuw ()] 7! fulz®),

and substitute in (3.18) to obtain the condition

~fowla fu+ fou=0 at a* = (w*,u’). (3.19)
Next, define the m-dimensional column vectdrby
(XY = fowfy' 2™ (3.20)
Then (3.19) and (3.20) can be written as (3.21):
(fow(@™), fou(z™)) = (A) (fu(2"), fulz™)). (3.21)

Sincex = (w, u), this is the same as

Jou (@) = (V) fo(@®) = A fra (@) + -+ A% frna (27),
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Lly---sLm

- 2¢ —»

Figure 3.2: lllustration of theorem.

which is equation (3.13).

To prove (3.14), we varyy in a neighborhood of a fixed value, say We definew*(«) =
(@ (a), ...,z () andu*(a) = (2}, (a),... ,xz‘a))’. By hypothesis,f,, is nonsingular at
x*(a). Sincef(z) andx*(«) are continuously differentiable by hypothesis, it follows tlfigtis
nonsingular at*(«) in a neighborhood of,, say N. We have the equation

flw*(a),u*(a)) = «, (3.22)

~fowfu' fut fou=0 at (w*(a),u*(a)), (3.23)
fora € N. Also,m(a) = fo(z*(«)), so that
mqa = foww}, + fouttl, (3.24)
Differentiating (3.22) with respect ta gives
Jowg, + fuug, =1,
so that

wh + fol fuul, = fot,
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and multiplying on the left byfy,, gives
Jowwl, + fowly ' fuul, = fowfy'.
Using (3.23), this equation can be rewritten as
fowwd, + foutst, = fowfu' (3.25)

In (3.25), if we substitute from (3.20) and (3.24), we obtain (3.14) and the theorem is provéd.

3.2.2 Geometric interpretation.
The equality constraints of the problem in 3.12 define-am dimensional surface
Q={z|fi(x) =a;,i=1,...,m}.

The hypothesis of linear independence{gf,.(z*)|1 < i < m} guarantees that the tangent plane
throughQ) atz* is described by

{hlfin(z*)h=0 , i=1,...,m}, (3.26)
so that the set of (column vectors orthogonal to this tangent surface is
M Ve @) 4 4 A Vo fr(@®) N € Ryi=1,...,m}.
Condition (3.13) is therefore equivalent to saying that at an optimal decigiahe gradient of the
objective functiorns/, fo(z*) is normal to the tangent surface (3.12).
3.2.3 Algebraic interpretation.

Let us again define = (z1,...,2,,) andu = (zy41,...,2,)". Suppose that,(Z) is nonsin-
gular at some point = (w, ) in © which is not necessarily optimal. Then the Implicit Function
Theorem enables us to solve, in a neighborhoat, tiem equationsf (w, u) = «. u can then vary
arbitrarily in a neighborhood ofi. As  varies,w must change according to = g(u) (in order to
maintain f (w, u) = «), and the objective function changes accordingia:) = fo(g(u),u). The
derivative of f, at is

fou(@) = fowgu + fouz = =N fu(@) + fou(@),
where
N = fowfol, (3.27)
Therefore the direction of steepest increase f@fat s
Vufol@) = —fL(@)A + [5,(7) . (3.28)

and if@ is optimal, 7, fo(@) = 0 which, together with (3.27) is equation (3.13). We shall use (3.27)
and (3.28) in the last section.
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3.3 Remarks and Extensions

3.3.1 The condition of linear independence.

The necessary condition (3.13) need not hold if the derivatfygs*), 1 < i < m, are not linearly
independent. This can be checked in the following example

Minimize
subject to sifw? + x3) (3.29)
5t +a3) =1.

3.3.2 An alternative condition.

Keeping the notation of Theorem 3.2.1, define tagrangian functionL : R"*™ — R by L :
(x,A) — folz) — >, Nifi(x). The following is a reformulation of 3.12, and its proof is left as
an exercise.

Let z* be optimal for (3.12), and suppose that(z*),1 < i < m, are linearly independent.
Then there exista* € R such that(z*, \*) is astationary pointof L, i.e., L,(z*, \*) = 0 and
Ly(z*,\*) = 0.

3.3.3 Second-order conditions.

Since we can convert the problem (3.12) into a problem of maximi;fmgver an open set, all
the comments of Section 2.4 will apply to the functifin However, it is useful to translate these
remarks in terms of the original functiofy and f. This is possible because the functigris
uniquely specified by (3.16) in a neighborhood«5f Furthermore, iff is twice differentiable, so

is g (see Fleming [1965]). It follows that if the function$, 0 < ¢ < m, are twice continuously
differentiable, then so i), and a necessary condition fef to be optimal for (3.12) and (3.13) and
the condition that thén — m) x (n — m) matrix fo..(u*) is negative semi-definite. Furthermore,
if this matrix is negative definite them* is a local optimum. the following exercise expresses
I fOW(u*) in terms of derivatives of the functions.

Exercise: Show that

o) = i) | 77 1] { : ] (

where
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3.3.4 A numerical procedure.

We assume that the derivativés.(z),1 < i < m, are linearly independent for all. Then the
following algorithm is a straightforward adaptation of the procedure in Section 2.4.6.

Step 1.Find zq arbitrary so thatf;(z") = a;,1 < i < m. Setk = 0 and go to Step 2.

Step 2.Find a partitionz = (w, u)? of the variables such that, (z*) is nonsingular. Calculaty”

by (\E)' = fow f oy ANAT S (uF) = = (@A + £, (@F). If 7 f§(uF) = 0, stop. Otherwise
go to Step 3.

Step 3.Seti* = v + dj, v fF(u*). Find@" such thatf; (@, @*) = 0,1 < i < m. Set

F 1t = (w* @F), setk = k + 1, and return to Step 2.

RemarksAs before, the step sizels > 0 can be selected various ways. The practical applicability
of the algorithm depends upon two crucial factors: the ease with which we can find a partition
r = (w,u) so thatf,,(z*) is nonsingular, thus enabling us to calculate and the ease with which
we can findi* so thatf (", @) = a. In the next section we apply this algorithm to a practical
problem where these two steps can be carried out without too much difficulty.

3.3.5 Design of resistive networks.

Consider a networkV with n + 1 nodes and branches. We choose one of the nodes as datum
and denote by = (ey,...,e,)" the vector of node-to-datum voltages. Orient the network graph
and letv = (vq,...,v) andj = (ji1,..., ) respectively, denote the vectors of branch voltages
and branch currents. Let be then x b reduced incidence matrix of the network graph. Then the
Kirchhoff current and voltage laws respectively yield the equations

Aj=0 and Ae=wv (3.30)

Next we suppose that each braricbontains a (possibly nonlinear)resistive element with the form
shown in Figure 3.3, so that

Ik — Jsk = gr(vrk) = gr(vk — ver), 1 <k <D, (3.31)

whereuw,, is the voltage across the resistor. Hgre v, are the source current and voltage in the
kth branch, andy is the characteristic of the resistor. Using the obvious vector notatien R,

vs € R for the sourcesy, € R’ for the resistor voltages, and= (g1,...,g)’, we can rewrite
(3.30) as (3.31):

J—1Js :g(v—vs) :g(vr)' (332)

Although (3.30) implies that the currefyj;—j,k) through thekth resistor depends only on the
voltagev,,, = (vp—wvgi) across itself, no essential simplification is achieved. Hence, in (3.31) we
shall assume thaj;, is a function ofv,.. This allows us to include coupled resistors and voltage-
controlled current sources. Furthermore, let us suppose that thefedasegn parameters =
(p1,---,pe) which are under our control, so that (3.31) is replaced by (3.32):

j _j:v = g(vr,p) = g(’u—’us,p). (333)

2This is just a notational convenience. Thevariable may consist of any. components of:.
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jsk
()
o \_/
JE — Jsk
Uyl
Jk . r
+ Ve

Figure 3.3: Thekth branch.

If we combine (3.29) and (3.32) we obtain (3.33):
Ag(A'e —vg,p) = is, (3.34)

where we have defined = A; . The network design problem can then be stated as finding i
so as to minimize some specified functififie, p, vs, is). Formally, we have the optimization prob-
lem (3.34):

Minimize fo(e,p, vs,is)
subjectto Ag(A’e —vs,p) —is = 0. (3.35)
We shall apply the algorithm 3.3.4 to this problem. To do this we make the following assumption.

Assumption{a) f, is differentiable. (b) is differentiable and the x n matrix A(dg/dv)(v,p)A’
is nonsingular for alb € R®,p € R’. (c) The networkN described by (3.33) is determinaite.,
for every value of(p, v, i) there is a unique = E(p, vs, i) satisfying (3.33).

In terms of the notation of 3.3.4, if we let = (e, p, vs, is), then assumption (b) allows us to
identify w = e, andu = (p, vs, is). Also let f(z) = f(e, p,vs,is) = Ag(A’e—v4,p) —is. Now the
crucial part in the algorithm is to obtaixt at some point:*. To this end lett = (¢, 7, s, i5) be a
fixed point. Then the corresponding= ) is given by (see (3.27))

N = fow(@) ' (&) = foe(@)f7H(F). (3.36)
From the definition off we have
fe(j) = AG(T)T,];)A/,

whered, = A'é — o, andG(o,,p) = (dg/dv,) (0., p). Therefore,\ is the solution (unique by
assumption (b)) of the following linear equation:

AG! (T, P)A'X = [ (E). (3.37)

Now (3.36) has the following extremely interesting physical interpretation. If we compare (3.33)
with (3.36) we see immediately thatis the node-to-datum response voltages bifi@ar network
N(,,p) driven by the current sourcef, (z). Furthermore, this network has tsamegraph as
the original network (since they have the same incidence matrix); moreover, its branch admittance
matrix, G’ (9, p), is the transpose of the incremental branch admittance matrix (evaludigda)
of the original networkVN. For this reasonN (o, p) is called theadjoint network(of N) at (v, p).
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Once we have obtainel we can obtainvufo(a) using (3.28). Elementary calculations yield
(3.37):

A fop (@) 52, P A ] fp(®)
Vufo(@) fou, (@) | = CanpA | A+ | @ (3:38)
foi (@) —1 6, (@)

We can now state the algorithm.

Step 1.Selectu’ = (p¥,?,:0) arbitrary. Solve (3.33) to obtai = E(p°,,i?). Letk = 0 and

go to Step 2.

Step 2.Calculatev? = A’ek — oF. calculatef],(z*). Calculate the node-to-datum respoh§a)f

the adjoint networkV (v, p*) drlven by the current sourcg, (z*). Calculates,, fo(u*) from

(3.37). If this gradient is zero, stop. Otherwise go to Step 3.

Step 3Letuf ! = (pht1 oh 1 b1y = b — ) 7, fo(u¥), whered,, > 0 is a predetermined

step size? Solve (3.33) to obtaie*+! = (Epk+! vF+1 i*+1) Setk = k + 1 and return to Step 2.
Remark 1 Each iteration from:* to «**! requires one linear network analysis step (the
computation of\* in Step 2), and one nonlinear network analysis step (the computatidit bin
step 3). This latter step may be very complex.

Remark 2.In practice we can control only some of the components; @ndi,, the rest being

fixed. The onIy change this requires in the algorithm is that in Step 3 we set
prtl = dkf(’]p( ®) just as before, where a§"! = vf; — di(9fo/Ovy;)(u*) and

ikl — ik d(Dfo/Bism)(uF) with j andm ranging only over the controllable components and
the rest of the components equal to their specified values.

Remark 3.The interpretation o as the response of the adjoint network has been exploited for
particular functionf in a series of papers (director and Rohrer [1969a], [1969b], [1969c]). Their
derivation of the adjoint network does not appear as transparent as the one given here. Although
we have used the incidence matrdxto obtain our network equation (3.33), one can use a more
general cutset matrix. Similarly, more general representations of the resistive elements may be
employed. In every case the “adjoint” network arises from a network interpretation of (3.27),

[fw( )])‘ wa( )

with the transpose of the matrix giving rise to the adjective “adjoint.”

Exercise: [DC biasing of transistor circuits (see Dowell and Rohrer [1971]).] Ndbe a transistor
circuit, and let (3.33) model the dc behavior of this circuit. Supposeihatfixed,vs; for j € J

are variable, and,; for j ¢ J are fixed. For each choice of;, j € J, we obtain the vectar and

hence the branch voltage vector= A’e. Some of the components, ¢ € T', will correspond to

bias voltages for the transistors in the network, and we wish to chggsg € J, so that, is as

close as possible to a desired bias voltage € T If we choose nonnegative numberg with

relative magnitudes reflecting the importance of the different transistors then we can formulate the
criterion

3Note the minus sign in the expressioh — di, 7. fo (u*). Remember we are minimizingy, which is equivalent to
maximizing(— fo).
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fole) = Z at‘vt_vﬁz'

teT

() Specialize the algorithm above for this particular case.
(i) How do the formulas change if the network equations are written using an arbitrary cutset matrix
instead of the incidence matrix?
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Chapter 4

OPTIMIZATION OVER SETS
DEFINED BY INEQUALITY
CONSTRAINTS: LINEAR
PROGRAMMING

In the first section we study in detail Example 2 of Chapter I, and then we define the general linear
programming problem. In the second section we present the duality theory for linear program-
ming and use it to obtain some sensitivity results. In Section 3 we present the Simplex algorithm
which is the main procedure used to solve linear programming problems. In section 4 we apply
the results of Sections 2 and 3 to study the linear programming theory of competitive economy.
Additional miscellaneous comments are collected in the last section. For a detailed and readily ac-
cessible treatment of the material presented in this chapter see the companion volume in this Series
(Sakarovitch [1971]).

4.1 The Linear Programming Problem

4.1.1 Example.

Recall Example 2 of Chapter I. Letandu respectively be the number of graduate and undergradu-
ate students admitted. Then the number of seminars demanded per%%, iand the number of
lecture courses demanded per yea?ﬁgﬁ‘. On the supply side of our accounting, the faculty can

offer 2(750) + 3(250) = 2250 seminars an@(750) + 3(250) = 5250 lecture courses. Because of
his contractual agreements, the President must satisfy

2958 < 2250 or 2g + u < 45,000
and

Bt < 5250 or 5g + Tu < 210,000 .

27



28 CHAPTER 4. LINEAR PROGRAMMING

Since negativeg or u is meaningless, there are also the constraints0, « > 0. Formally then the
President faces the following decision problem:

Maximize ag + fu

subject to 2g + u < 45,000
5g 4+ Tu < 210,000
g>0,u>0.

(4.1)

Itis convenient to use a more general notation. Se tet(g, u)’, ¢ = (a, 8)’, b = (45000, 210000, 0, 0)’
and letA be the 42 matrix

2 1
N
0 —1
Then (4.1) can be rewritten as (4-2)
Maximize ¢’z

subject toAz < b . (4.2)

Let A;,1 < i < 4, denote theowsof A. Then the sef2 of all vectorsz which satisfy the constraints
in (4.2) is given byQ? = {x| 4,z < b;, 1 <1i <4} and is the polygo® PQR in Figure 4.1.

For each choice, the President receives the paydft. Therefore, the surface of constant payoff
k say, is the hyperplane(k) = {z|dz = k}. These hyperplanes for different valuesiofre
parallel to one another since they have the same natntalrthermore, a% increasesr(k) moves
in the directione. (Obviously we are assuming in this discussion that 0.) Evidently an optimal
decision is any point* €  which lies on a hyperplane(k) which is farthest along the direction
c. We can rephrase this by saying that € 2 is an optimal decision if and only if the plang
throughx™ does not intersect the interior 6f, and futhermore at* the directionc points away
from Q2. From this condition we can immediately draw two very important conclusions: (i) at least
one of the vertices of? is an optimal decision, and (ip* yields a higher payoff than all points
in the coneK ™ consisting of all rays starting at* and passing througf?, since K* lies “below”
«*. The first conclusion is the foundation of the powerful Simplex algorithm which we present in
Section 3. Here we pursue consequences of the second conclusion. For the situation depicted in
Figure 4.1 we can see that = @ is an optimal decision and the coAg" is shown in Figure 4.2.
Now x* satisfiesA,x* = by, Asx™ = by, andAsx™ < by, Asx™ < by, SO thatK™ is given by

Sincedz* > 'y for all y € K* we conclude that
cdh <0 forall h suchthatA;h <0, Ash <0. (4.3)

We pause to formulate the generalization of (4.3) as an exercise.

IRecall the notation introduced in 1.1.2, so that y meanse; < y; for all i.
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T2

\w(k) = {z|dz =k}
T direction of

< / increasing
payoff k

Ay L PQ | ) )
\ (2] Asz = by}
‘ /

{x@lx = b1}

Ay

Figure 4.1:2 = OPQR.

Exercise 1:Let A4;, 1 <1 < k, ben-dimensionakow vectors. Let € R", and lety;, 1 < i < k,
be real numbers. Consider the problem

Maximize 'z
subjecttod;z <b;, 1 <i<k.

For anyz satisfying the constraints, Ié{x) C {1,...,n} be suchthatl;(xz) = b;,i € I(x), Ajx <
bi,i ¢ I(x). Supposer* satisfies the constraints. Show thétis optimal if an only if

dh < 0forall h such thatd;h <0, i € I(z*).

Returning to our problem, it is clear that (4.3) is satisfied as longl&es betweend; and A,.
Mathematically this means that (4.3) is satisfied if and only if there exXist 0, A5 > 0 such that
2

¢ =N, Ar + A s, (4.4)

As c varies, the optimal decision will change. We can see from our analysis that the situation is as
follows (see Figure 4.1):

2Although this statement is intuitively obvious, its generalization timensions is a deep theorem known as Farkas’
lemma (see Section 2).



30 CHAPTER 4. LINEAR PROGRAMMING
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Figure 4.2: K* is the cone generated byat x*.

1. z* = Q is optimal iff ¢ lies betweemd; and A, iff ¢ = \j Ay + A} As for somer] > 0, A5 >
0,

2. x* € QP is optimal iff ¢ lies alongAs iff ¢ = A5 A, for some); > 0,

3. z* = P is optimal iff ¢ lies betweemds and A, iff ¢ = A5 As + A\5A3 for some; > 0, A5 >
0, etc.

These statements can be made in a more elegant way as follows:

x* € Q) is optimal iff there exists\¥ > 0, 1 <7 < 4, such that
4 .
@ ¢ => Xa;, (b) if Aja* <b' then); =0. (4.5)
=1

For purposes of application it is useful to separate those constraints which are of the; forii
from the rest, and to reformulate (4.5) accordingly We leave this as an exercise.

Exercise 2:Show that (4.5) is equivalent to (4.6), below. (Hete= (a;1,a;2).) * € Q is optimal
iff there existA] > 0, A5 > 0 such that

(a) c < X{ah‘ + )\§a2i, ;= 1, 2,
(b) if (Zjl‘T)f + aj2x§ < bj thenx;f =0,7=1,2. (46)
(c) if ¢; < AJ; + Adag; thenz? = 0,7 =1,2.



4.1. THE LINEAR PROGRAMMING PROBLEM 31

4.1.2 Problem formulation.

A linear programming problem (or LP in brief) is any decision problem of the form 4.7.

Maximize ciz1 + coxo + ... + crhn
subject to
a;1T1 + a;ox2 + ...+ AinTy

and

z; >0 , p+H1<j<q (4.7)
xj arbitary, ¢ +1<j<n,

where thec;, a;;, b; are fixed real numbers.
There are two important special cases:
Case I:(4.7) is of the form (4.8):

n
Maximize Z cjTj

j=1
- : 4.8
subjectto ~ ajm; <b;, 1<i<m, *.8)
j=1
z; >0 , 1<7<n
Case IlI:(4.7) is of the form (4.9):
n
Maximize Z CiT;
j=1
. - . (4.9)
subjectto ~ ajm; =b;, 1<i<m,
j=1
x>0 , 1<j7<n.

Although (4.7) appears to be more general than (4.8) and (4.9), such is not the case.

Proposition: Every LP of the form (4.7) can be transformed into an equivalent LP of the form (4.8).
Proof.

Step 1:Replace each inequality constrainia;;xz; > b; by > (—a;j)x; < (=b;).

Step 2:Replace each equality constrajnta;;jz; = b; by two inequality constraints:

> airy < by, Do(—aij)z; < (=b;).

Step 3:Replace each variable; which is constrained; < 0 by a variabley; = —z; constrained

y; > 0 and then replace;;x; by (—a;)y; for everyi andc;jz; by (—c;)y;.
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Step 4:Replace each variable; which is not constrained in sign by a pair of variables

yj—zj = x; constrained;; > 0, z; > 0 and then replace;;z; by a;;y; + (—a;;)z; for everyi and
cjxj by ¢jy; + (—c¢;)z;. Evidently the resulting LP has the form (4.8) and is equivalent to the
original one. &
Proposition: Every LP of the form (4.7) can be transformed into an equivalent LP of the from (4.9)
Proof.

Step 1:Replace each inequality constrania;;x; < b; by the equality constraint

> aijxj +y; = b wherey; is an additional variable constrainggd> 0.

Step 2:Replace each inequality constrainia;;x; > b; by the equality constraint

> aijxj —y; = by wherey; is an additional variable constrained fy> 0. (The new variables
added in these steps are caltddckvariables.)

Step 3, Step 4Repeat these steps from the previous proposition. Evidently the new LP has the
form (4.9) and is equivalent to the original one. &

4.2 Qualitative Theory of Linear Programming

4.2.1 Main results.

We begin by quoting a fundamental result. For a proof the reader is referred to (Mangasarian
[1969)).

Farkas' Lemmalet 4;, 1 < i < k, ben-dimensionakow vectors. Letc € R™ be a column vector.

The following statements are equivalent:

() forall z € R™, A;z < 0for1 <i < kimpliescz <0,

K
(ii) there exists\; > 0,..., )\, > 0 such that/ = Z NA;.
1

An algebraic version of this result is sometimles more convenient.
Farkas’ Lemma (algebraic versionlet A be ak x n matrix. Letc € R™. The following statements
are equivalent.
(i) forall z € R, Az < 0impliesc’z <0,
(ii) there exists\ > 0, A € R*, such thatd’\ = c.
Using this result it is possible to derive the main results following the intuitive reasoning of (4.1).
We leave this development as two exercises and follow a more elegant but less intuitive approach.

Exercise 1:With the same hypothesis and notation of Exercise 1 in 4.1, use the first version of
Farka$lemma to show that there exisf > 0 for i € I(2*) such that Z MA=C .

1€l (z*)
Exercise 2:Let x* satisfy the constraints for problem (4.17). Use the previous exercise to show
thatz* is optimal iff there exish} > 0,..., Ay, > 0 such that

m
@ ¢ <> Nag, 1<j<n
=1
n m
(b) if > aija; <bitheni =0, 1<i<m(c) if Y Nay>cithenz; =0, 1<j<m.
j=1 i=1

In the remaining discussior, € R",b " are fixed vectors, and = {a;;} is a fixedm x n
matrix, whereag: € R™ and\ € R™ will be variable. Consider the pair of LPs (4.10) and (4.11)
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below. (4.10) is called thprimal problem and (4.11) is called tltial problem.

Maximize cix1+ ...+ cpan
subject to a1+ .o Fainxy, < b, 1<i<m
r; 20, 1<j<n.

(4.10)

Maximize Aiby + ...+ Apbm
subject to Aa;+ .o+ Adpamp > ¢, 1<5<n
AN>0, 1<i<m.

(4.11)

Definition: LetQ, = {z € R"|Az < b,z > 0} be the set of all points satisfying the constraints
of the primal problem. Similarly le2; = {\ € R™|NA > ¢/, A > 0}. Apointz € Q,(\ € Q) is
said to be deasible solutioror feasible decisioffior the primal (dual).

The next result is trivial.

Lemma 1:(Weak duality) Letr € 2,,, A € Q4. Then

dx < NAx < Nb. (4.12)

Proof: z > 0 and\N' A — ¢ > 0 implies (N A—c)x > 0 giving the first inequalityb— Az > 0 and
A > 0implies\' (b—Az) > 0 giving the second inequality. O
Corollary 1: If z* € Q and\* € Qg such that/z* = (\*)'b, thenz* is optimal for (4.10) and\* is
optimal for (4.11).

Theorem 1:(Strong duality) Supposg, # ¢ andQ); # ¢. Then there exists* which is optimum
for (4.10) and\* which is optimum for (4.11). Furthermoréz* = (A*)'b.

Proof: Because of the Corollary 1 it is enough to prove the last statermentye must show that
there existr > 0,\ > 0, such thatdz < b, A’\ > candb’\—cxz < 0. By introducing slack
variablesy € R™, u € R™,r € R, this is equivalent to the existencemof> 0,y > 0,A > 0, u <
0,7 < 0 such that

X
A |1, Ty b
Al -1, AN|l=1|c
—c b 1 i 0
o

By the algebraic version of Farkas’ Lemma, this is possible only if

AE—c <0 ,£<0,
Aw =00 <0 , —w <0, (4.13)
0<0

implies

Ve + dw <0, (4.14)
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Case (i): Supposegw, ¢, 6) satisfies (4.13) and < 0. Then(£/6) € Qq, (w/—0) € €, so that by
Lemma 1dw/(—0) < ¥'¢/6, which is equivalent to (4.14) singe< 0.

Case (ii): Supposdw, &, 0) satisfies (4.13) ané = 0, so that—A’¢ > 0, —¢ > 0, Aw < 0, w > 0.
By hypothesis, there existe Q,, A € Q4. Hence,~V'¢ = b/ (=€) > (Az)'(—¢) = 2/ (- A’€) > 0,
anddw < (A'\)w = N(Aw) < 0. So thatt'¢ + dw < 0. O

The existence part of the above result can be strengthened.

Theorem 2(i) Suppos€,, # ¢. Then there exists an optimum decision for the primal LP iff

Qq # ¢.

(i) Suppose&?; # ¢. Then there exists an optimum decision for the dual LRjff£ ¢.

Proof Because of the symmetry of the primal and dual it is enough to prove only (i). The
sufficiency part of (i) follows from Theorem 1, so that only the necessity remains. Suppose, in
contradiction, thaf2; = ¢. We will show that sud d'z|z € Q,} = +oo. Now, Q; = ¢ means
there does not exist > 0 such thatd’\ > ¢. Equivalently, there does not exist> 0, x4 < 0 such

that
2] i

"

By Farkas’ Lemma there exists € R" such thatdw < 0, —w < 0, andc’'w > 0. By hypothesis,
Q, # ¢, so there existe > 0 such thatdz < b. but then for anyy > 0, A(z + 0w) < b,
(x 4+ fw) > 0, so that(z + fw) € Q,. Also, d(z + fw) = 'z + 0cw. Evidently then, sup
{dz|x € Q,} = +oo so that there is no optimal decision for the primal. &

Remark:In Theorem 2(i), the hypothesis thaf, # ¢ is essential. Consider the following exercise.
Exercise 3: Exhibit a pair of primal and dual problems such thattherhas a feasible solution.
Theorem 3(Optimality condition)z* € €2, is optimal if and only if there exist&* € {25 such that

Z aijaz} < b implies A} =0,
j=1
and (4.15)

D Naij < c; impliesa} = 0.
=1
((4.15) is known as the condition abmplementary slackne¥s
Proof: First of all we note that for™ € €2,, \* € 4, (4.15) is equivalent to (4.16):

(\Y (Az* — b) = 0, and (A'\* — ¢)/z* =0 . (4.16)

NecessitySupposer* € 2, is optimal. Then from Theorem 2, # ¢, so that by Theorem 1
there exists\* € ; such that/z* = (\*)’b. By Lemma 1 we always have

dx* < (N) Az* < (N\*)'b so that we must havéz* = (\*) Az* = (A\*)'b. But (4.16) is just an
equivalent rearrangement of these two equalities.

SufficiencySuppose (4.16) holds for some € ,,, \* € Q4. The first equality in (4.16) yields
(A)'b = (A\*) Ax* = (A'X*)'z*, while the second yielded’\*) z* = /x*, so that/z* = (\*)'b.
By Corollary 1, z* is optimal. &
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The conditionse™ € Q,, z* € 4 in Theorem 3 can be replaced by the weaker> 0, \* > 0
provided we strengthen (4.15) as in the following result, whose proof is left as an exercise.

Theorem 4y(Saddle pointy* > 0 is optimal for the primal if and only if there exists’ > 0 such
that

L(z,\*) < L(z*,\*) < L(z*, A) forall z > 0, and all > 0, (4.17)
wherelL: R"zR" — R is defined by
L(z,\) =dx— N(Azx —b) (4.18)

Exercise 4:Prove Theorem 4.
Remark.The functionL is called theLagrangian A pair (z*, \*) satisfying (4.17) is said to form
asaddle-poinf L over the se{xz|x € R",z > 0} x {A\|A € R™, X\ > 0}.

4.2.2 Results for problem (4.9).

Itis possible to derive analogous results for LPs of the form (4.9). We state these results as exercises,
indicating how to use the results already obtained. We begin with a pair of LPs:

Maximize cxr1+ ...+ cpxn
subjectto a;xi+...+apar,=5b;, 1<i<m, (4.19)

r; 20, 1<j<n.

Minimize Aib1 + ...+ Apbim

subject to )\1(11]- + ...+ )‘mamj > ¢, 1<j<n (4.20)

Note that in (4.20) the\; are unrestricted in sign. Again (4.19) is called the primal and (4.20) the
dual. We let(2,,, 2; denote the set of all, A satisfying the constraints of (4.19), (4.20) respectively.

Exercise 5:Prove Theorems 1 and 2 wifh, and(2, interpreted as above. (Hint. Replace (4.19)
by the equivalent LP: maximiz€z, subject toAz < b, (—A)z < (=b), x > 0. This is now of the
form (4.10). Apply Theorems 1 and 2.)

Exercise 6:Show thatz* € 2, is optimal iff there exists\* € (2,4 such that

m
% > 0implies >~ Aai; =¢; .
i=1
Exercise 7:2* > 0 is optimal iff there exists\* € R™ such that
L(z,\*) < L(z*,\*) < L(z*,\) forallz > 0, A€ R™.

whereL is defined in (4.18). (Note that, unlike (4.1A)js not restricted in sign.)
Exercise 8:Formulate a dual for (4.7), and obtain the result analogous to Exercise 5.
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4.2.3 Sensitivity analysis.

We investigate how the maximum value of (4.10) or (4.19) changes as the vieetods change.
The matrixA will remain fixed. Let2, and(2, be the sets of feasible solutions for the pair (4.10) and
(4.11)or for the pair (4.19) and (4.20). We wrife,(b) andS2,(c) to denote the explicit dependence
onb andc respectively. LeB = {b € R"|Q,(b) # ¢} andC = {c € R"|Qq4(c) # ¢}, and for
(b,c) € B x C define

M(b,c) = max{dz|x € Qu(b)} = min {Nb|\ € Qqu(c)} . (4.21)
Forl <i<m,e € R,be R™denote
b(i,E) - (b17 b27 cee 7bi717 bZ + &, bi+17 o 7bm), 3

and forl < j <n,e € R,c € R"denote

C(j, E) = (61,62, sy Cj—1,Cf T E,Cjy1, - - ,Cn)/ .
We define in the usual way the right and left hand partial derivativéd ett a point(B, ¢)eBxC
as follows:

DI (b,e) = lim  L{M(b(i,e), &) — M(b,¢)}
c—0
e>0

B(be)= tim  L{M(b,e— M(b,é(j,—e))} |
c—0
e>0

Let é, (cf‘ denote the interiors aB, C respectively.

TheorAemAS:At each(B, ¢) efz X 5 the partial derivatives given above exist. Furthermore, if
€ Qp(b), A € Qq(¢) are optimal, then

P (b,e) <hi < -(be), 1<i<m, (4.22)
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B (b,6) > ;> 5 (b,8), 1<j<n, (4.23)

Proof: We first show (4.22), (4.23) assuming that the partial derivatives exist. By strong duality
M (b, ¢) = N'b, and by weak dualitp (b(i, ¢), ¢) < N'b(i,e), so that

LM (b,e) — M(b(i,—2),8)} >

Taking limits ass — 0, ¢ > 0, gives (4.22).

On the other hand/ (b, ¢) = &z, andM (b, ¢(j,¢)) > (¢(j, ))&, so that

g{J\{(z},e(j, £)) — M(b,&)} > He(j,e) — &Y'd = @5, fore > 0,
LM (b, &) — M(b,e(j, )} < H{e - (G, —e)Y'i = i, fore > 0,

which give (4.23) as — 0,e > 0.

Finally, the existence of the right and left partial derivatives follows from Exercises 8, 9 bélow.

We recall some fundamental definitions from convex analysis.

Definition: X C R" is said to beconvexf 2,y € X and0 < § < 1implies(fz+ (1—0)y) € X.

Definition: Let X € R™andf : X — R. (i) f is said to beconvexf X is convex, and:,y € X,
0<6<1limpliesf(fx+ (1—0)y) <Of(x)+ (1—0)f(y). (i) fIis said to beconcavef —f is
convex,i.e, z,y € X,0 <60 < limpliesf(fz+ (1 —0)y) > 0f(x)+ (1 —0)f(y).

% { (iv{) — b}, fO[ e >0,
LN (b — b(i, —e)} = Ay, for e > 0.

Exercise 8:(a) Show thatl,, (24, and the set®& C R™, C C R" defined above are convex sets.
(b) Show that for fixed: € C, M (-, ¢) : B — Ris concave and for fixeblle B, M (b,-) : C — R

iS convex.

Exercise 9:Let X C R",andf : X — R be convex. Show that at each poihin the interior of

X, the left and right hand partial derivatives pexist. (Hint: First show that for

€2 > €1 > 0> 01 > 02,(1/e2){f (2(i, e2)) — f(2)} = (/e ){f(&(i,e1)) — f(2))} =
(L/o){f(z(i,01)) — f(2)} = (1/62){f(2(7,02)) — f(&)}. Then the result follows immediately.)
Remark 1:Clearly if (M /0b;)(b) exists, then we have equality in (4.22), and then this result
compares with 3.14).

Remark 2:We can also show without difficulty that/ (-, ¢) and M (b, -) are piecewise linear (more
accurately, linear plus constant) functions®randC respectively. This is useful in some
computational problems.

Remark 3:The variables of the dual problem are called Lagrange variables or dual variables or
shadow-prices. The reason behind the last name will be clear in Section 4.

4.3 The Simplex Algorithm

4.3.1 Preliminaries

We now present the celebrated Simplex algorithm for finding an optimum solution to any LP of the
form (4.24):

Maximize ari+ ...+ e,
subjectto ayri+ ...+ apmrn =5, 1<i<m (4.24)
zj >0, 1<j<n.
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As mentioned in 4.1 the algorithm rests upon the observations that if an optimal exists, then at least
one vertex of the feasible s@4, is an optimal solution. Sinc@,, has only finitely many vertices (see
Corollary 1 below), we only have to investigate a finite set. The practicability of this investigation
depends on the ease with which we can characterize the verti€gs his is done in Lemma 1.

In the following we let4’ denote théth columnof 4, i.e, 47 = (ay;,. .., am;)’. We begin with
a precise definition of a vertex.

Definition: = € (2, is said to be aertexof 2, if z = Ay + (1 — )z, withy, z in ©,, and

0 <A<, implieser =y =z

Definition: Forz € Q,, letI(x) = {j|z; > 0}.

Lemma liLetx € Q,. Thenz is a vertex of2, iff {A7]j € I(x)} is a linearly independent set.

Exercise 1:Prove Lemma 17%1
!
Corollary 1: €, has at mos) ﬁ vertices.
n—7J):
=1
Lemma 2:Letz* be an optimal decision of (4.24). Then there is a vetteaf (2, which is optimal.
Proof: If {A7]j € I(x*)} is linearly independent, let* = z* and we are done. Hence suppose

{475 € I(z*)} is linearly dependent so that there exist not all zero, such that

Z ’YjAjZO.

JEI(z*)

Forf € R definez(0) € R" by

Az(0) = Z zj(0)AT = Z a:j-Aj—l—H Z ;A

JEI(z*) JEI(z*) JEI(z*)
—b+0-0=b.

Sincez > 0 for j € I(z”), it follows thatz(¢) > 0 when
18] < min { ‘:—J‘ | jeI(z¥) } = 0* say.
J
Hencez(0) € 2, wheneverf| < #*. Sincez* is optimal we must have

do* > dz(0) =dz* + 6 Z cjyj for =0 <0 < 6*.
Jjel(z*)

Sincef can take on positive and negative values, the inequality above can hold Eif cjj =
Jel(z*)

0, and thendz* = ¢z(#), so thatz(0) is also an optimal solution foi¢| < 6*. But from the

definition ofz () itis easy to see that we can piékwith [0y| = 6* such that; (6p) = z7+6p7; =0

for at least ong = jp in I(x*). Then,

1(2(60)) < I(z*) = {jo} -
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Again, if {47]j € I(2(6p))} is linearly independent, then we let = 2(,) and we are done.
Otherwise we repeat the procedure above wiify). Clearly, in a finite number of steps we will
find an optimal decisior* which is also vertex. &

At this point we abandon the geometric term “vertex” and how to established LP terminology.

Definition: (i) z is said to be dasic feasible solutioif z € Q,, and{A7|j € I(z)} is linearly
independent. The séft(z) is then called théasis at zandz;, j € I(z), are called théasic
variables at zx;, j ¢ I(z) are called theon-basic variables at z

Definition: A basic feasible solution is said to benon-degeneratéd 7(z) hasm elements.

Notation: Let z be a non-degenerate basic feasible solution, angilet j» < ... < jmn
constitute/(z). Let D(z) denote then x m non-singular matrixD(z) = [A71:A472:...:A/], let
c(z) denote then-dimensional column vectar(z) = (¢j,,...,cj, )" and define\(z) by N (z) =
d(2)[D(2)]~!. We call\(z) the shadow-price vectoat .

Lemma 3:Let z be a non-degenerate basic feasible solution. Bhieroptimal if and only if

N(2)A >¢; forall ,j & 1(z) . (4.25)
Proof: By Exercise 6 of Section 2.2,is optimal iff there exists\ such that

NA =¢; for,jel(z), (4.26)

NAT > ¢; for,j ¢ I(2), (4.27)

But sincez is non-degenerate, (4.26) holdsiff= \(z) and then (4.27) is the same as (4.25)$

4.3.2 The Simplex Algorithm.

The algorithm is divided into two parts: In Phase | we determirg,ifs empty or not, and if not,
we obtain a basic feasible solution. Phase Il starts with a basic feasible solution and determines if
it is optimal or not, and if not obtains another basic feasible solution with a higher value. Iterating
on this procedure, in a finite number of steps, either we obtain an optimum solution or we discover
that no optimum exists,e., sup{c'z|z € Q,} = 4+o00. We shall discuss Phase Il first.

We make the following simplifying assumption. We will comment on it later.

Assumption of non-degenerad&very basic feasible solution is non-degenerate.

Phase II:

Step 1.Let 2° be a basic feasible solution obtained from Phase | or by any other mearis=Set
and go to Step 2.

Step 2.Calculate[D(z*)]~1,¢(2*), and the shadow-price vectaf(z*) = ¢/ (2*)[D(z*)]~'. For
eachj ¢ I(z*) calculatec; — X' (%) A7 If all these numbers are 0, stop, because” is optimal
by Lemma 3. Otherwise pick any¢ I(z*) such that; — N(z¥)A7 > 0 and go to Step 3.
Step 3.Let I(2*) consist ofj; < j» < ... < j,,. Compute the vector

V=0, ) = [D(z%)]"149. If 4% < 0, stop, because by Lemma 4 below, there is no
finite optimum. Otherwise go to Step 4.

Step 4.Computed = min {(zf~¥)|j € i(z),7} > 0}. Evidently0 < < oco. Definez**! by
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R

Z}CH {9 , =7 (4.28)

k k :
{ j_e’)’j ) JE{(Z)
k=0 , j#J andj € I(z) .

R

By Lemma 5 belowz**! is a basic feasible solution withz**! > ¢/ 2%, Setk = k + 1 and return
to Step 2.

Lemma 41f 4% < 0, sup{c/z|z € Q,} = co.

Proof: Definez(0) by

0 , J=17 (4.29)

{zjev;f . JEI()
=0 , j¢I(z) andj+#j.

First of all, sincey* < 0 it follows thatz(0) > 0 for 6 > 0. Next, Az(0) = Az — 6 Z fyfAj +
A jel(z)
0A’ = Az by definition of~*. Hencez(0) € Q, for > 0. Finally,

d2(0) = Az — 0 ()Y + Oc; )
=dz+ H{Cj — (M) [D(F)) 1 AT} (4.30)
=dz+0{c; - X(zk)Aj'}i .

But from step 2{¢j — X'(z%) A7} > 0, so thatc’ 2(6) — oo asf — oo. &

Lemma 5:,z~’“rl is a basic feasible solution artt**+1 > ¢ 2*.
Proof: Let j € I(z*) be such thaty]l“ >0 andzf = 97]5. Then from (4.28) we see thaéf*1 =0,
hence

Iz € (1(2) = {7H UL} (4.31)

so that it is enough to prove thatt is independent of A7|j € I(z), j # j}. Butif this is not the
case, we must havg® = 0, giving a contradiction. Finally if we compare (4.28) and (4.29), we see
from (4.30) that

appr =z = 0{c; — ¥ (M)A}
which is positive from Step 2. &

Corollary 2: In a finite number of steps Phase Il will obtain an optimal solution or will determine
that sugcdz|z € Q,} = oo.

Corollary 3: Suppose Phase Il terminates at an optimal basic feasible solitidmen~(z*) is an
optimal solution of the dual of (4.24).

Exercise 2:Prove Corollaries 2 and 3.

Remark 1:By the non-degeneracy assumptid;**!) hasm elements, so that in (4.31) we must
have equality. We see then that z**+1) is obtained fromD(z*) by replacing the columnt/ by
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permutes the columns d(=*+1) such thatl? = D(z5+1)P. Next, if A7 = > v, A itis easy
=1
to check thatz—! = M[D(2*)]~! where

_ — _
1 1 v

ith column

Then[D(zF*1)]=1 = PM[D(2*)]~!, so that these inverses can be easily computed.

Remark 2:The similarity between Step 2 of Phase Il and Step 2 of the algorithm in 3.3.4 is
striking. The basic variables at correspond to the variables® and non-basic variables
correspond ta:*. For eachj ¢ I(z*) we can interpret the numbey — X' (2*) 4; to be the net
increase in the objective value per unit increase irjttheomponent of*. This net increase is due
to the direct increase; minus the indirect decreas}é(z’“)Aj due to the compensating changes in
the basic variables necessary to maintain feasibility. The analogous quantity in 3.3.4 is
(0fo/0uz)(2*) — (\FY (O us) (a®).

Remark 3:By eliminating any dependent equations in (4.24) we can guarantee that the rhatrix
has rankn. Hence at any degenerate basic feasible solutiome can always find (z*) > I(z*)
such that/ (2*) hasm elements and A;|j € I(z*)} is a linearly independent set. We can apply
Phase Il using (z*) instead off (2*). But then in Step 4 it may turn out thét= 0 so that

21 = 2*. The reason for this is thdi 2*) is not unique, so that we have to try various
alternatives forl (z*) until we find one for whict¥ > 0. In this way the non-degeneracy
assumption can be eliminated. For details see (Caetal, [1970]).

We now describe how to obtain an initial basic feasible solution.

Phase I:
Step l.by multiplying some of the equality constraints in (4.24)-bY if necessary, we can assume
thatb > 0. Replace the LP (4.24) by the LP (4.32) involving the variablesdy:

m
Maximize —» y;
=1

subjectto ayx1 + ...+ amrn +yi=b;, 1 <i<m,
;20,9 20,1<j<n,1<i<m.

(4.32)
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Go to step 2.

Step 2.Note that(2°,4°) = (0, b) is a basic feasible solution of (4.32). Apply phase Il to (4.32)
starting with this solution. Phase Il must terminate in an optimum based feasible sqlitiari)

since the value of the objective function in (4.32) lies betweeE b; and0. Go to Step 3.
i=1
Step 3.If y* = 0, z* is a basic feasible solution for (4.24).yf # 0, by Exercise 3 below, (4.24)
has no feasible solution.
Exercise 3:Show that (4.24) has a feasible solutionjff= 0.

4.4 LP Theory of a Firm in a Competitive Economy

4.4.1 Activity analysis of the firm.

We think of a firm as a system which transforms input into outputs. Therewdtimds of inputs

andk kinds of outputs. Inputs are usually classified into raw materials such as iron ore, crude oil,
or raw cotton; intermediate products such as steel, chemicals, or textiles; capital®gmorsas
machines of various kinds, or factory buildings, office equipment, or computers; finally various
kinds of labor services. The firm’s outputs themselves may be raw materials (if it is a mining
company) or intermediate products (if it is a steel mill) or capital goods (if it manufactures lathes)
or finished goods (if it makes shirts or bakes cookies) which go directly to the consumer. Labor is
not usually considered an output since slavery is not practiced; however, it may be considered an
output in a “closed,” dynamic Malthusian framework where the increase in labor is a function of the
output. (See the von Neumann model in (Nikaido [1968]), p. 141.)

Within the firm, this transformation can be conducted in different wags,different combina-
tions of inputs can be used to produce the same combination of outputs, since human labor can
do the same job as some machines and machines can replace other kinds of mathiridss
substitutability among inputs a fundamental concept in economics. We formalize it by specifying
which transformation possibilities are available to the firm.

By aninput vectorwe mean anyn-dimensional vector = (rq,...,r,,)" with » > 0, and by an
output vectowe mean any:-dimensional vectoy = (y1, ..., yx) with y > 0. We now make three
basic assumptions about the firm.

() The transformation of inputs into outputs is organized into a finite number, saf/processes
or activities

(i) Each activity combines thé inputs infixed proportions into then outputs infixed propor-
tions. Furthermore, each activity can be conducted at any non-negative intenttebrPre-

cisely, thejth activity is characterized completely by two vectots = (a1, a2j,...,am;)" and
BI = (b, ...,by;) sothatif it is conducted at a level;, > 0, then it combines (transforms) the
input vector(ay;zj,. .., amjz;) = x;A7 into the output vectotbyjz;, . .., byx;) = x;B7. Let

A be them x n matrix [A':...:A"] and B be thek x n matrix B = [B':...:B"].

%It is more accurate to think of the services of capital goods rather than these goods themselves as inputs. It is these
services which are consumed in the transformation into outputs.
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(iii) If the firm conducts all the activities simultaneously with ftieactivity atlevelr; > 0,1 < j <
n, then it transforms the input vectog A' +. . . + z,, A" into the output vectog, B! +. ..+ z,, B".

With these assumptions we know all the transformations technically possible as soon as we spec-
ify the matrices4 and B. Which of these possible transformations will actually take place depends
upon their relative profitability and availability of inputs. We study this next.

4.4.2 Short-term behavior.

In the short-term, the firm cannot change the amount available to it of some of the inputs such as
capital equipment, certain kinds of labor, and perhaps some raw materials. Let us suppose that these
inputs arel, 2,. ..,/ and they are available in the amounts. .., r;, whereas the supply of the
remaining inputs can be varied. We assume that the firm is operating in a competitive economy
which means that the unit prices= (p1,...,px)" of the outputs, and = (q1,...,qn)" of the

inputs is fixed. Then the manager of the firm, if he is maximizing the firm’s profits, faces the
following decision problem:

m
Maximize p'y — Z qr;
j=t+1
subjecttoy = Bz, (4.33)
a1+ . g, <rf, 1< <L
a1+ ...+ apr, <7, L+1<i<m,
;j>0,1<j<n;r>0,04+1<i<m.

The decision variables are the activity levels.. . ., z,,, and the short-term input supplies. 1, . . . , 7.
The coefficients of3 and A are the fixedechnical coefficientsf the firm, ther; are the fixed short-
term supplies, whereas the, ¢; are prices determined by the whole economy, which the firm ac-
cepts as given. Under realistic conditions (4.33) has an optimal solutiom;jsay, , 7, 7, ;- -, 77,

m*

4.4.3 Long-term equilibrium behavior.

In the long run the supplies of the firstinputs are also variable and the firm can change these
supplies fromry, ..., r; by buying or selling these inputs at the market piee. . ., g.. Whether
the firm will actually change these inputs will depend upon whether it is profitable to do so, and in
turn this depends upon the prices;. We say that the price®*, ¢*) and a set of input supplies
r* = (r},...,r},) are in (long-term)equilibrium if the firm has no profit incentive to changé
under the price$p*, ¢*).
Theorem 1p*, ¢*, r* are in equilibrium if and only if;* is an optimal solution of (4.34):
Minimize (r*)'q
subject tod’q > B'p* (4.34)
q=>0.

Proof: Let ¢ = B’p*. By definition, p*, ¢*,7* are in equilibrium iff for all fixedA € R™,
M(A) < M(0) whereM (A) is the maximum value of the LP (4.35):

Maximize 'z — (¢*)'A
subject toAz < r* + A | (4.35)
x>0.
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ForA = 0, (4.34) becomes the dual of (4.35) so that by the strong duality theddi, = (r*)’q*.
Hencep*, ¢*, r* are in equilibrium iff

dz—(q*)A < M(0) = (r")q", (4.36)

wheneverz is feasible for (4.35). By weak duality if is feasible for (4.35) and is feasible for
(4.34),

de — (¢*)A<Jd(r*=A)—(¢*)A, (4.37)
and, in particular, foy = ¢*,
dr—(¢*)A < (") (r" + A) = (¢")'A = (¢")r* ¢

Remark 1: We have shown thatp*, ¢*,r* are in long-term equilibrium iff* is an optimum
solution to the dual (namely (4.34)) of (4.38):

Maximize ¢’z
subject todx < r* (4.38)
z>0.

This relation betweep*, ¢*, r* has a very nice economic interpretation. Recall that B'p*, i.e.,

c; = pibij 4+ piboj + ...+ pibr;. Nowb;; is the amount of théh output produced by operating the
jth activity at a unit level:; = 1. Hence; is the revenue per unit level operation of ftieactivity
so thatc’z is the revenue when theactivities are operated at levets On the other hand if thigh
activity is operated at level; = 1, it uses an amount;; of theith input. If theith input is valued at

m
ay, then the input cost of operatingaf = 1, is Z giai;, SO that the input cost of operating the

i=1
activities at levels: is (A'¢*)" = (¢*)' Az. Thus, ifz* is the optimum activity levels for (4.38) then
the output revenue isz* and the input cost i&;*)' Az*. But from (4.16),(¢*)'(Az* — r*) = 0 so
that

da* = (¢*)r*, (4.39)

i.e., at the optimum activity levels, in equilibrium, total revenues = total cost of input supplies. In
fact, we can say even more. From (4.15) we see thatifst; > 0 then

m
— * ..
G = E q; Qij
i=1

i.e., atthe optimum, the revenue of an activity operated at a positive level = input cost of that activity.
Also if

m
*
Cj< E q; A5,
=1

thenx;f = 0, i.e, if the revenue of an activity is less than its input cost, then at the optimum it is
operated at zero level. Finally, again from (4.15), if an equilibrium the optintimmput supplyr;
is greater than the optimum demand for itieinput,
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n
* o
ry > E a;jx;,
J=1

theng; = 0, i.e,, the equilibrium price of an input which is in excess supply must be zero, in other
words it must be a free good.

Remark 2:Returning to the short-term decision problem (4.33), suppose that

(Als o AL ATy g5+ -+ Ay IS @n optimum solution of the dual of (4.33). Suppose that the market
prices of inputdl, ..., ¢ areqi, ..., q. Letus denote b/ (Aq,...,A,) the optimum value of

(4.33) when the amounts of the inputs in fixed supplyrgre- Aq,...,r; + Ay Then if
(OM/OA;)|a=o exists, we can see from (4.22) that it is always profitable to increasnhtimput

by buying some additional amount at prigaf A7 > ¢;, and conversely it is profitable to sell some
of theith input at priceg; if A} < ¢;. ThusA? can be interpreted as the firm’s internal valuation of
theith input or the firm'simputed or shadow pricef theith input. This interpretation has wide
applicability, which we mention briefly. Often engineering design problems can be formulated as
LPs of the form (4.10) or (4.19), where some of the coefficiéptge design parameters. The
design procedure is to fix these parameters at some nominalbjalaed carry out the

optimization problem. Suppose the resulting optimal dual variables’arten we see (assuming
differentiability) that it is worth increasing; if the unit cost of increasing this parameter is less
than\?, and it is worth decreasing this parameter if the reduction in total cost per unit decrease is
greater than\;.

4.4.4 Long-term equilibrium of a competitive, capitalist economy.

The profit-maximizing behavior of the firm presented above is one of the two fundamental building
blocks in the equilibrium theory of a competitive, capitalist economy. Unfortunately we cannot
present the details here. We shall limit ourselves to a rough sketch. We think of the economy as
a feedback process involving firms and consumers. Let us suppose that there are ahtotahef
modities in the economy including raw materials, intermediate and capital goods, labor, and finished
products. By adding zero rows to the matri¢els B) characterizing a firm we can suppose that all
the h commodities are possible inputs and all theommodities are possible outputs. Of course,

for an individual firm most of the inputs and most of the outputs will be zero. the sole purpose for
making this change is that we no longer need to distinguish between prices of inputs and prices of
outputs. We observe the economy starting at tifneAt this time there exists within the economy

an inventory of the various commaodities which we can represent by a vectofw, . ..,wy) > 0.

w is that portion of the outputs produced priorffavhich have not been consumed uglitoWe are
assuming that this is a capitalist economy, which means that the ownersbis dfivided among

the various consumeys= 1,...,J. More precisely, thigh consumer owns the vector of commodi-

J
tiesw(j) > 0, andz w(j) = w. We are including inv(j) the amount of his labor services which
j=1

consumeyj is WiIIin]g to sell. Now suppose that at tinf¥éthe prevailing prices of the commodities
ared = (A\,...,A\y) > 0. Next, suppose that the managers of the various firms assume that the
prices\ are not going to change for a long period of time. Then, from our previous analysis we
know that the manager of thith firm will plan to buy input supplies:(i) > 0, r(i) € R", such
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that(\, 7(¢)) is in long term equilibrium, and he will plan to produce an optimum amounty&gy
Herei = 1,2,...,I, wherel is the total number of firms. We know thati) andy(i) depend on
A, so that we explicitly write-(i, A), y(i, A). We also recall that (see (4.38))

Nr(i,\) = Ny(i,\), 1<i<T. (4.40)

Now theith manager can buy(:) from only two sources: outputs from other firms, and the con-
sumers who collectively owa. Similarly, theith manager can sell his planned outp(t) either as

input supplies to other firms or to the consumers. Thus, the net supply offered for sale to consumers
is S(\), where

1 7

SO =Y w(i) + Yy A) - Zr(i, A) . (4.41)

j=1 i=1 i=1

We note two important facts. First of all, from (4.40), (4.41) we immediately conclude that
J
NS =) Nuw(j), (4.42)
j=1

that is the value of the supply offered to consumers is equal to the value of the commodities (and
labor) which they own. The second point is that there is no reason to expe&(that 0.

Now we come to the second building block of equilibrium theory. The value gtftttmnsumer’s
possessions i8’w(j). The theory assumes that he will plan to buy a set of commodifigs =
(d1(j),--.,dn(3)) > 0so as to maximize his satisfaction subject to the constpéiiij) = \Nw(j).

Here alsod(j) will depend on), so we writed(j, \). If we add up the buying plans of all the
consumers we obtain the total demand

D(N) =) d(j,\) >0, (4.43)
j=1
which also satisfies
J
ND(\) =D Nw(j) . (4.44)
j=1

The most basic question of equilibrium theory is to determine conditions under which there exists a
price vector\g such that the economy is in equilibriuie., S(Ag) = D(Ag), because if such an
equilibrium price\g exists, then at that price the production plans of all the firms and the buying
plan of all the consumers can be realized. Unfortunately we must stop at this point since we cannot
proceed further without introducing some more convex analysis and the fixed point theorem. For
a simple treatment the reader is referred to (Dorfman, Samuelson, and Solow [1958], Chapter 13).
For a much more general mathematical treatment see (Nikaido [1968], Chapter V).

4.5 Miscellaneous Comments



4.5. MISCELLANEOUS COMMENTS 47

45.1 Some mathematical tricks.

It is often the case in practical decision problems that the objective is not well-defined. There may
be a number of plausible objective functions. In our LP framewaork this situation can be formulated
as follows. The constraints are given as usualty < b, = > 0. However, there are, say,
objective functiong(c!)z, ..., (c¥)'z. It is reasonable then to define a single objective function
fo(z) by fo(z) = minimum{(c')z, (c*)'z,...,(c*)z}, so that we have the decision problem,

Maximize fo(z)

subject todz < b, >0 . (4.45)

This isnota LP sincef; is not linear. However, the following exercise shows how to transform
(4.45) into an equivalent LP.

Exercise 1:Show that (4.45) is equivalent to (4.46) below, in the senseathé optimal for (4.45)
iff (z*,y*) = (z*, fo(z*)) is optimal for (4.46).

Maximize y
subject toAz < b, x <0 (4.46)
y<(r,1<i<k.

Exercise 1 will also indicate how to do Exercise 2.
Exercise 2: Obtain an equivalent LP for (4.47):

Maximize ) " ¢;(x;)
j=1
subject toAz < b, £ <0,

(4.47)

wherec; : R — R are concave, piecewise-linear functions of the kind shown in Figure 4.3.

The above-given assumption of the concavity of ¢hes crucial. In the next exercise, the inter-
pretation of “equivalent” is purposely left ambiguous.

Exercise 3:Construct an example of the kind (4.47), wheredhare piecewise linear (but not
concave), and such that there is no equivalent LP.

It turns out however, that even if tigare not concave, an elementary modification of the Simplex
algorithm can be given to obtain a “local” optimal decision. See (Miller [1963]).

4.5.2 Scope of linear programming.

LP is today the single most important optimization technique. This is because many decision prob-
lems can be adequately formulated as LPs, and, given the capabilities of modern computers, the
Simplex method (together with its variants) is an extremely powerful technique for solving LPs in-
volving thousands of variables. To obtain a feeling for the scope of LP we refer the reader to the
book by one of the originators of LP (Dantzig [1963]).
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ci(w;)

Figure 4.3: A function of the form used in Exercise 2.



Chapter 5

OPTIMIZATION OVER SETS
DEFINED BY INEQUALITY
CONSTRAINTS: NONLINEAR
PROGRAMMING

In many decision-making situations the assumption of linearity of the constraint inequalities in LP
is quite restrictive. The linearity of the objective function is not restrictive as shown in the first
exercise below. In Section 1 we present the general nonlinear programming problem (NP) and
prove the Kuhn-Tucker theorem. Section 2 deals with Duality theory for the case where appropriate
convexity conditions are satisfied. Two applications are given. Section 3 is devoted to the important
special case of quadratic programming. The last section is devoted to computational considerations.

5.1 Qualitative Theory of Nonlinear Programming

5.1.1 The problem and elementary results.

The general NP is a decision problem of the form:

Maximize fo(z) (5.1)
subjectto(z) <0, i=1,...,m, '
wherex € R", f; : R — R, i = 0,1,...,m, are differentiable functions. As in Chapter 4,

x € R™is said to be deasible solutiorif it satisfies the constraints of (5.1), aflC R" is the
subset of all feasible solutions;* € () is said to be aroptimal decisionor optimal solutionif

fo(x*) > fo(z) for x € Q. From the discussion in 4.1.2 it is clear that equality constraints and sign
constraints on some of the componentscafan all be transformed into the form (5.1). The next
exercise shows that we could restrict ourselves to objective functions which are linear; however, we
will not do this.

Exercise 1:Show that (5.2), with variables € R,z € R", is equivalent to (5.1):

49
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Maximizey (5.2)
subject tof;(z) <0, 1 <i<m, andy — fo(z) <O0. '
Returning to problem (5.1), we are interested in obtaining conditions which any optimal decision
must satisfy. The argument parallels very closely that developed in Exercise 1 of 4.1 and Exercise 1

of 4.2. The basic idea is to linearize the functighsn a neighborhood of an optimal decisiof.

Definition: Let z be a feasible solution, and 1&tx) C {1,...,m} be such thaf;(x) = 0 for

1€ I(x), fi(x) <0fori ¢ I(x). (The set/(z) is called the set adictiveconstraints at x.)
Definition: (i) Let x € Q). A vectorh € R" is said to be amadmissible direction fof? at xif there
exists a sequence®, k= 1,2,...,in Q and a sequence of numbers k= 1,...,withe* > 0
for all k£ such that

lim
k—o0

. L(
lim &~
k—oo

ok — ) =

(i) Let C(£2, z) = {h|h is an admissible direction fd2 atz}. C(€,x) is called thetangent cone
of Qatx Let K(Q,z) = {z + h|lh € C(,z)}. (See Figures 5.1 and 5.2 and compare them with
Figures 4.1 and 4.2.)

If we takex* = z ands* = 1 for all k, we see tha € C(, z) so that the tangent cone is always
nonempty. Two more properties are stated below.

Exercise 2:(i) Show thatC' (2, z) is acone, i.e.,if h € C(2,z) andf > 0, thenbh € C(Q, ).
(i) Show thatC' (2, x) is a closed subset @t”. (Hint for (ii): Form = 1,2,..., leth™ and
{amk emk > 0}, be such that™ — z and(1/e™)(z™* — z) — h™ ask — oo. Suppose
thath™ — h asm — oo. Show that there exist subsequen¢e&”*m cmkm 1% | such that
x™m g and(1/emkm ) (z™Fm — 1) — h asm — 00.)

In the definition ofC'(2, z) we made no use of the particular functional descriptio20fThe

following elementary result is more interesting in this light and should be compared with (2.18) in
Chapter 2 and Exercise 1 of 4.1.

Lemma 1:Supposer* € 2 is an optimum decision for (5.1).
Then
fox(z*)h < Oforall h € C(Q,z*) . (5.3)

Proof: Letz* € Q, ¥ >0, k=1,2,3,..., be such that
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direction of
increasing

{z|fs(x) = 0} \_ 7 payof
{ NN

\

telfale {al i (@) = 0}

Figure 5.1:Q2 = PQR

lim ot =a" lim e%(xk —at)=h.
k—o0 k—oo
Note that in particular (5.4) implies
lim ¢ |7" =2 = |hl .
k—oo

Sincef is differentiable, by Taylor's theorem we have

fola®) = fola™ + (@ — ) = fola*) + foula*)(a* — 2%) + ofja* — a]).

Sincez* € Q, andz* is optimal, we havg“o(x’“) < fo(z*), so that

ak—x* o(|zk—a*
0> foule) 52 4 ool

€

Taking limits ask — oo, using (5.4) and (5.5), we can see that

. y (% —a*) ) o(|z*—a*|) . |z —z*
0= jim Jou(z¥) ok T lim o] lim ek
k—o0 k—o0 k—o0

Joa(@*)h. &

. 7(k)= -
M {z[fo(z) = k}

(5.4)

(5.5)

(5.6)
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Figure 5.2:C(2, z*) is the tangent cone &t atz*.
The basic problem that remains is to characterize th€'68t «*) in terms of the derivatives of the
functions f;. Then we can apply Farkas’ Lemma just as in Exercise 1 of 4.2.
Lemma 2:Letz* € Q. Then
C(Q,z*) C {h|fiz(xz*)h <0foralli e I(z*)} . (5.7)

Proof: Leth € R* andz* € Q, ¥ >0, k =1,2,..., satisfy (5.4). Sincg; is differentiable, by
Taylor's theorem we have

fi(a®) = fi(a") + fio(@*)(@® — @) + o(|2* —2*]) .

Sincez* € Q, fi(z*) < 0,andifi € I(z*), f;(x*) = 0, so thatf;(z*) < f;(z*). Following the
proof of Lemma 1 we can conclude that f;,(x*)h. &

Lemma 2 gives us a partial characterizatiorCgf2, z*). Unfortunately, in general the inclusion
sign in (5.7) cannot be reversed. The main reason for this is that th¢;sét*)|i € I(z*)} is not
in general linearly independent.

Exercise 3:Letx ¢ Rz, fl(a:l,xg) = (xl — 1)3 + x9, andfg(xl,xg) = —x9. Let

(x7,25) = (1,0). ThenI(z*) = {1,2}. Show that
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O, 2%) # {h| fin(z)h <0 , i=1,2,}.

(Note that{ f1,(z*), fo(z*)} is not a linearly independent set; see Lemma 4 below.)

5.1.2 Kuhn-Tucker Theorem.
Definition: Let z* € Q2. We say that theonstraint qualification(CQ) is satisfied at* if
C(Q,z) ={h|fiz(x*)h < 0foralli € I(z*)},

and we say that CQ is satisfied if CQ is satisfied atradl 2. (Note that by Lemma Z'((2, z) is
always a subset of the right-hand side.)
Compare the next result with Exercise 2 of 4.2.

Theorem 1(Kuhn and Tucker [1951]) Let* be an optimum solution of (5.1), and suppose that
CQ is satisfied at*. Then there exisk} > 0, for ; € I(z*), such that

for(x) = D X fia(a”) (5.8)

el (z*)

Proof: By Lemma 1 and the definition of CQ it follows th#s,. (z*)h < 0 wheneverf;,(z*)h < 0
for all i € I(z*). By the Farkas’ Lemma of 4.2.1 it follows that there eXist> 0 for i € I(z*)
such that (5.8) holds. &

In the original formulation of the decision problem we often have equality constraints of the form
rj(x) = 0, which get replaced by;(xz) < 0, —r;(z) < 0 to give the form (5.1). It is convenient in
application to separate the equality constraints from the rest. Theorem 1 can then be expressed as
Theorem 2.

Theorem 2:Consider the problem (5.9).

Maximize fo(z)
subject tof;(z) <0, i=1,...,m, (5.9
ri(x)=0,j=1,....k .

Letz* be an optimum decision and suppose that CQ is satisfiet dthen there exisk} > 0, i =
L,...,m,andy;, j =1,...,ksuch that

m k
for (@) =D N fiala®) + > pirja(a®) (5.10)
i=1 j=1
and
A = 0 wheneverf;(z*) < 0. (5.11)

Exercise 4:Prove Theorem 2.
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An alternative form of Theorem 1 will prove useful for computational purposes (see Section 4).
Theorem 3:Consider (5.9), and suppose that CQ is satisfied at an optimal solttiomefine
v: R — Rby

and consider the decision problem

Minimize ¢ (h)
subject to—v(h) — for(x*)

—P(h) + filz") + fi(x
—1<h;<1,i

h <0,
h<0. 1<i<m (5.12)
=1

RN
Thenh = 0 is an optimal solution of (5.12).

Exercise 5:Prove Theorem 3. (Note that by Exercise 1 of 4.5, (5.12) can be transformed into a
LP.)
Remark:For problem (5.9) define theagrangian function’:

k
(T ey Ty Ay e ey Ay o1y - -y k) — ol Z)\fz Z,ujrj(x)
j=1

Then Theorem 2 is equivalent to the following statementZdJ is satisfied and:* is optimal, then
there exist\* > 0 andp* such thatl, (z*, \*, u*) = 0 and L(z*, \*, u*) < L(z*, A, p) for all
A >0, u.

There is a very important special case when the necessary conditions of Theorem 1 are also
sufficient. But first we need some elementary properties of convex functions which are stated as an
exercise. Some additional properties which we will use later are also collected here.

Recall the definition of convex and concave functions in 4.2.3.

Exercise 6:Let X C R™ be convex. Let : X — R be a differentiable function. Then

(i) hisconvexiffh(y) > h(z) + hy(z)(y — ) forall z,y, in X,

(i) his concave iffh(y) < h(z) + hy(x)(y — ) forall z,y in X,

(i) his concave and convex iff is affine, i.e.h(z) = a + b’z for some

fixeda € R, b e R™.

Suppose that is twice differentiable. Then

(iv) h is convex iffh,,(x) is positive semidefinite for alt in X,

(v) his concave iffh,,(x) is negative semidefinite for all in X,

(vi) his convex and concave iff,,(z) = 0.

Theorem 4:(Sufficient condition) In (5.1) suppose thitis concave and; is convex for
i=1,...,m. Then

(i) Qis aconvex subset g, and

(ii) if there existz™ € Q, A\f > 0, i € I(z*), satisfying (5.8), ther* is an optimal solution of
(5.2).

Proof:

(i) Lety,zbeinQ sothatf;(y) <0, fi(z) <0fori=1,...,m.Let0 <6 < 1. Sincef; is
convex we have
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filby+ (1 —0)2) <0fi(y) +(1—0)fi(z) <0, 1<i<m,
so that(fy + (1 — 6)z) € 2, hence&? is convex.
(i) Let z € Q be arbitrary. Sincg is concave, by Exercise 6 we have

fo(x) < fo(z™) + foo(z*)(x — 27)
so that by (5.8)

fol@) < fo(x*) + Y A fula®) (@ —a") . (5.13)

el (z*)
Next, f; is convex so that again by Exercise 6,
fiz) = fi(z") + fio(z™) (@ —2¥) ;
but f;(z) < 0, andf;(z*) = 0 fori € I(z*), so that

fiz(x*)(x —2*) <0 for i€ I(z*). (5.14)
Combining (5.14) with the fact that’ > 0, we conclude from (5.13) tha(z) < fo(z*), so that
x* is optimal. o

Exercise 7:Under the hypothesis of Theorem 4, show that the subsef (2, consisting of all the
optimal solutions of (5.1), is a convex set.

Exercise 8: A functionh : X — R defined on a convex s&f C R™ is said to bestrictly convex if
h(Oy + (1 —0)z) < Oh(y) + (1 — O)h(z) wheneveO < 6§ < 1 andy, z are inX with y # 2. his
said to be strictly concave i h is strictly convex. Under the hypothesis of Theorem 4, show that
an optimal solution to (5.1) is unique (if it exists) if eithgyis strictly concave or if the

fi, 1 <1 < m, are strictly convex. (Hint: Show that in (5.13) we have strict inequality # x*.)

5.1.3 Sufficient conditions for CQ.

As stated, it is usually impractical to verify if CQ is satisfied for a particular problem. In this
subsection we give two conditions which guarantee CQ. These conditions can often be verified in
practice. Recall that a function: R™ — R is said to beaffineif g(z) = a + b’z for some fixed
a € Randb € R™.

We adopt the formulation (5.1) so that

Q={z e R"fi(x) <0, 1<i<m} .
Lemma 3:Supposer* € 2 and suppose there exist§ € R™ such that for each € I(z*), either
fiz(x*)h* <0, or fi.(z*)h* = 0 and f; is affine. Then CQ is satisfied at.
Proof: Let h € R" be such thaff;,(z*)h < 0 fori € I(z*). Letd > 0. We will first show that
(h+6h*) € C(,z*). Tothisend let* >0, k =1,2,..., bea sequence convergingt@nd set
o = 2% 4+ ¥ (h + 5h*). Clearlyz* converges ta:* and(l/s )(z¥ — x*) converges t@h + 6h*).
Also fori € I(z*), if fi(z*)h <0, then

fi(a®) = fi(a*) + ¥ fiz(x*) (R + 0h*) + o(eF|h + Sh*])
< 8eF fin ()W + o(e¥|h + Sh*|)
< 0 for sufficiently largek ,

whereas foi € I(z*), if f; is affine, then
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fz(xk) = fz(x*) + €kfm(x*)(h + (5h*) < Oforall k.

Finally, fori ¢ I(x*) we havef;(z*) < 0, so thatf;(z*) < 0 for sufficiently largek. Thus we
have also shown that” ¢  for sufficiently largek, and so by definitior{h + §h*) € C(, z*).
Sinced > 0 can be arbitrarily small, and sin€&((2, z*) is a closed set by Exercise 2, it follows that
h e C(Q,z*). &

Exercise 9:Suppose:* € 2 and suppose there exists= R" such that for each e I(z*), either
fi(x*) < 0 andf; is convex, orf;(&) < 0 andf; is affine. Then CQ is satisfied at. (Hint: Show
thath* = & — x* satisfies the hypothesis of Lemma 3.)

Lemma 4:Suppose:* € 2 and suppose there exigts € R™ such thatf;, (z*)h* < 0 for

i€ I(x*), and{ fi.(z*)|i € I(z*), fiz(z*)h* =0} is alinearly independent set. Then CQ is
satisfied at:*.

Proof: Leth € R™ be such thaf;,(z*)h < 0forall i € I(z*). Letd > 0. We will show that
(h+6h*) € C(Q,z*). LetJs = {i|i € I(z*), fiz(z*)(h+ dh*) = 0}, consist ofp elements.
Clearly Js C J = {i|i € I(z*), fix(z*)h* = 0}, so that{ f;,(z*,u*)|i € Js} is linearly
independent. By the Implicit Function Theorem, there exist 0, an open seV’ ¢ R"™ containing
x* = (w*,u*), and a differentiable functiop: U — RP, whereU = {u € R"P||u — u*| < p},
such that

filw,u) =0, i € Js,and(w,u) € V

ue U, andw = g(u) .

Next we partitionh, h* ash = (£, ), h* = (£*,n*) corresponding to the partition of= (w,u).
Lete® > 0,k =1,2..., be any sequence convergingitoand set* = u* + £F(n + dn*), w iz
g(u*), and finallyxk = (sk uk).

We note that:* converges ta/*, sow* = g(u*) converges tav* = g( *). Thus,z* converges
to2*. Now (1/e#)(a* — 2%) = (1/e¥) (wk — w*, uk — u*) = (1/¥)(g(u¥) — (), =H(n+ 1)),
Sincey is differentiable, it follows that1/*) (¥ — x*) converges tdg, (u*)(n + dn*),n + on*).
But for i € Js we have

0= fiz(@*)(h + 0h*) = fin(x*)(§ + 6E) + fiu(z™)(n + dn*) . (5.15)
Also, fori € Js, 0 = fi(g(u),u) foru € U so that0 = f;,,(x*)gu(u*) + fiu(x*), and hence
0= fiw(2")gu(u®)(n +00") + fiu(z*)(n + 0n") . (5.16)

If we compare (5.15) and (5.16) and recall tma‘,;w( )i € Js} is a basis inkP we can conclude
that (£ + 6¢*) = g (u*)(n + 6n*) so that(1/e*)(x* — 2*) converges t@h + héh*).

It remains to show that* ¢ Q for sufficiently largek. First of all, fori € Js, fi(z*) =
fi(g(uF), u*) = 0, whereas foi ¢ Js, i € I(z*),

fila®) = fia*) + fio(a*)(@" — 2%) + o(|2F — 2*])
fi(z*) + ¥ fin(z )(h+5h*)+0( B+ o(|zk — z¥)),
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and sincef;(z*) = 0 whereasf;,(z*)(h + 6h*) < 0, we can conclude that;(z*) < 0 for suffi-
ciently largek. Thus,z* € Q for sufficiently largek. Hence,(h + 0h*) € C (2, z*).

To finish the proof we note that > 0 can be made arbitrarily small, addi (2, z*) is closed by
Exercise 2, so thdt € C(2, z*). O

The next lemma applies to the formulation (5.9). Its proof is left as an exercise since it is very
similar to the proof of Lemma 4.
Lemma 5: Supposez* is feasible for (5.9) and suppose there existse R™ such that the set
{fiz(x*)|i € I(2"), fiz(x*)h* = 0} U{rjz(a*)|j = 1,...,k}islinearly independent, angl, (z*)h* <
0foric I(xz*), rjz(x*)h* = 0for1 < j < k. Then CQ is satisfied at*.

Exercise 10:Prove Lemma 5

5.2 Duality Theory

Duality theory is perhaps the most beautiful part of nonlinear programming. It has resulted in many
applications within nonlinear programming, in terms of suggesting important computational algo-
rithms, and it has provided many unifying conceptual insights into economics and management
science. We can only present some of the basic results here, and even so some of the proofs are
relegated to the Appendix at the end of this Chapter since they depend on advanced material. How-
ever, we will give some geometric insight. In 2.3 we give some application of duality theory and in
2.2 we refer to some of the important generalizations. The results in 2.1 should be compared with
Theorems 1 and 4 of 4.2.1 and the results in 4.2.3.

It may be useful to note in the following discussion that most of the results do not require differ-
entiability of the various functions.

5.2.1 Basic results.

Consider problem (5.17) which we call theémal problem:

Maximize fo(z)
subject tof;(z) < b; , 1<i<m (5.17)
re X ,

wherex € R, f; : R" — R, 1 < i < m, are givenconvexfunctions f, : R"™ — Ris a
given concavefunction, X is a givenconvexsubset ofR™ andb = (by,...,b,,)" is a given vector.
For convenience, lef = (f1,...,fm) : R™ — R™. We wish to examine the behavior of the
maximum value of (5.17) asvaries. So we define

Q) = {z[z € X, f(z) < b}, B={b|Qb) # ¢},
and
M : B — R|J{+oo} by M(b) = sup{fo(z)|x € X, f(z) < b}
= sup{fo(z)|lz € 2(b)} ,

~

so that in particular ifc* is an optimal solution of (5.17) theM (b) = fo(z). We need to consider
the following problem also. Lex € R™, X\ > 0, be fixed.

Maximize fo(z) — N (f(z) — b)

subjecttozr € X | (5.18)
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and define

m(\) = sub{ fo(z) — X (f(z) = b)|lz € X} .
Problem (5.19) is called theual problem:

Minimize m

(A)
subjecttoA >0 . (5.19)

Letm* =inf {m(\)|\ > 0}.

Remark 1:The setX in (5.17) is usually equal td&2"™ and then, of course, there is no reason to
separate it out. However, it is sometimes possible to include some of the constralhis isuch

a way that the calculation ofi(\) by (5.18) and the solution of the dual problem (5.19) become
simple. For example see the problems discussed in Sections 2.3.1 and 2.3.2 below.

Remark 2:It is sometimes useful to know that Lemmas 1 and 2 below haldoutany convexity
conditions onfy, f, X. Lemma 1 shows that the cost function of the dual problem is convex which
is useful information since there are computation techniques which apply to convex cost functions
but not to arbitrary nonlinear cost functions. Lemma 2 shows that the optimum value of the dual
problem is always an upper bound for the optimum value of the primal.

Lemmalm: R} — R[J{+oo} is aconvex function. (Her&} = {\ € R"|\ > 0}.)

Exercise 1:Prove Lemma 1.
Lemma 2:(Weak duality) Ifz is feasible for (5.17)i.e.,z € Q(l}), and if A > 0, then

folz) < M(b) <m* <m()) . (5.20)
Proof: Sincef(z) — b < 0, and\ > 0, we haveX' (f(z) — b) < 0. So,

folz) < fo(x) = N (f(z) = b), forz € Q(b), A >0 .

Hence

folw) < sup{fo(x)|z € Q(b)} = M(b) )
sup{fo(z) — N(f(z) — b)|z € Q(b)} and since(b) C X
) —

sup{ fo(x) = N'(f(x) —b)lz € X} =m(}) .

IA A

Thus, we have
fo(x) < M (D) < m(X\) forz e Q(b), A>0 ,

and sincel (b) is independent of, if we take the infimum with respect to> 0 in the right-hand
inequality we get (5.20). &

The basic problem of Duality Theory is to determine conditions under WMG{PS) = m*in
(5.20). We first give a simple sufficiency condition.

Definition: A pair (z, f\) with & € X, and\ < 0 is said to satisfy theptimality conditionsf



5.2. DUALITY THEORY 59

& is optimal solution of (5.18) with\ = X, (5.21)
i is feasible for (5.17)i.e., fi(&) < b fori=1,...,m , (5.22)
A\i = 0 when f;(#) < b;, equivalently X (f(z) — b) = 0. (5.23)

A > 0is said to be amptimal price vectoif there isz € X such that(z, 5\) satisfy the optimality
condition. Note that in this casec Q(B) by virtue of (5.22).

The next result is equivalent to Theorem 4(ii) of Section Xit= R"™, andf;, 0 < i < m, are
differentiable.
Theorem 1(Sufficiency) If(z, f\) satisfy the optimality conditions, thehis an optimal solution to
the primal,\ is an optimal solution to the dual, add (b) = m*.

Proof: Letz € Q(b), so that\'(f(z) — b) < 0. Then

fo(@) < fo(z) = XN(f(z) —b)
< sup{fo(z) — N(f(z) — b)|z € X}
= fo(2) = N'(f (%) — b) by (5.21)
= fo() by (5.23)

so thati is optimal for the primal, and hence by definitigin() = M (b). Also

so that from Weak Duality\ is optimal for the dual. &
We now proceed to a much more detailed investigation.

Lemma 3:B is a convex subset d¥, andM : B — R|J{+oc} is a concave function.

Proof: Let b, b belong toB, letz € Q(b), Z € Q(b), let0 < 0 < 1. Then(fz + (1 — )Z) € X

sinceX is convex, and

fi(r+ (1 —0)x) <0fi(x) + (1 —0)fi(2)

sincef; is convex, so that

fil0z+ (1 —0)7) <0b+ (1—0)b , (5.24)
hence
(0x + (1 —0)Z) € Q(Ob+ (1 — 0)b)

and thereforep is convex.
Also, sincef is concave,

fo(0z + (1 —0)x) > 0fo(x) + (1 —0)fo(Z) .
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Since (5.24) holds for alt € Q(b) andz € Q(b) it follows that

M(0b+ (1 —0)b) > sup{fo(fz + (1 —0)F)|z € Qb), & € Q(b)} )
sup{fo(z)|z € Q(b)} + (1 —0) sup{fo(z)|z € Q(b)}
OM(b) + (1 — 0)M(b). o

Definition: Let X € R™ and letg : X — R|J{oco, —o0}. Avector\ € R" is said to be a
supergradient (subgradientf g atz € X if

v

g(x) < g(@)+ N(xz—1z)forz e X.
(9(x) > g(z) + N(z — 2) forz € X.)

(See Figure 5-3.)

M (b) M(b)
M) |-
bd B b ! b
M is not stable ab M is stable ab
M{(b) M)+ X D)
/
/
Y . b

)\ is a supergradient at

Figure 5.3: lllustration of supergradient of stability.

Definition: The function)M : B — R|J{oc} is said to bestable ath € B if there exists a real
numberK such that

M(b) < M(b)+ K|b—b|forbe B.

(In words, M is stable ab if M does not increase infinitely steeply in a neighborhood. cBee

Figure 5.3.)
A more geometric way of thinking about subgradients is the following. Define the sdbset

R1+m by
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A={(r,b)|b € B,andr < M (b)} .

Thus A is the set lying "below” the graph af/. We call A the hypograph of M. SinceM is
concave it follows immediately that is convex (in fact these are equivalent statements).

Definition: A vector (Ag, A1,. .., A\ ) is said to be the normal toteyperplane supporting A at a
point(7, b) if

Aof + ) Ny > Xor + > Aib; forall (r,b) € A . (5.25)
=1 =1

(Inwords, A lies below the hyperplang = {(r, b)|Aor+>_ A\ib; = N7+ >_ A;b; }.) The supporting
hyperplane is said to b@on-verticalif A\g # 0. See Figure 5.4.

Exercise 2:Show that ifb € B, b > b, and7 < M (b), thenb € B, M (b), and(7,b) € A.
Exercise 3: Assume thab € B, and M (b) < oo. Show that (i) ifA = (A1,..., \,) isa
supergradient o/ atb then\ > 0, and(1,—\,...,—\,,) defines a non-vertical hyperplane
supportingA at (M(B), 8), (i) if (Mg, —A1,...,—\y) defines a hyperplane supportirgat

(M (b),b) thenxy > 0, A; > 0for 1 < i < m; futhermore, if the hyperplane is non-vertical then
((A1/Xo, - - (Am/Xo))' is a supergradient o¥/ atb.

We will prove only one part of the next crucial result. The reader who is familiar with the
Separation Theorem of convex sets should be able to construct a proof for the second part based
on Figure 5.4, or see the Appendix at the end of this Chapter.

Lemma 4:(Gale [1967])M is stable abiff M has a supergradient latProof: (Sufficiency only)
Let A be a supergradient atthen

M(b) < M(b) 4+ X (b—b)
< M)+ [M|b— 0] . O

The next two results give important alternative interpretations of supergradients.

Lemma 5: Suppose that is opti[nal for (5.17). Then is a supergradient af/ atbh iff \ is an
optimal price vector, and the(t:, \) satisfy the optimality conditions.

Proof: By hypothesisf (i) = M(b), & € X, andf(#) < b. Let \ be a supergradient of/ atb.
By Exercise 2(M (b), f(z)) € A and by Exercise 3\ > 0 and

M(b) = Nb > M(b) - Nf(#)

so that\'(f(2) — b) > 0. But then\ (b — f(&)) = 0, giving (5.23). Nextletz € X. Then
(fo(z), f(z)) € A, hence again by Exercise 3

M(b) = Nb > folx) = Nf(z) .

Sincefo(#) = M(b), and N (f(2) — b) = 0, we can rewrite the inequality above as

1From the Greek “hypo” meaning below or under. This neologism contrasts witkpiljeaphof a function which is
the set lying above the graph of the function.
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M (b)
- A
M) -y :
b b
No non-vertical hyperplane supportiagat (M (b), b)
M (b)
T
(A07
b

# is a non-vertical hyperplane supportidgat (M (b), b)
Figure 5.4: Hypograph and supporting hyperplane.

fo(@) + N(f(@) = b) > fola) = N(f(x) —b)
so that (5.21) holds. It follows that, )\) satisfy the optimality conditions.
Conversely, suppose € X, A > 0 satisfy (5.21), (5.22), and (5.23). Let € Q(b), i.e,
x e X, f(x) <b ThenXN(f(z) —b) <0 so that

fo@) < folx) N(f@)—b)
= folz) = N(f(x) = b) + V(b — b)
< fol#) = N(f(&) ~b) + N(b—b) by (5.21)
= fo(@) + N(b—b) by (5.23)
= M(b) + N (b—10)
Hence
M(b) = sup{fo(z)|z € Qb)} < M(b)+ N (b —b) ,
so that\’ is a supergradient off ath. ) RS
Lemma 6:Suppose that € B, andM(b)A < oco. ThenA is a supergradient of/ atb iff A is an
optimal solution of the dual (5.19) and(\) = M (b).

Proof: Let A be a supergradient dff atb. Letz € X. By Exercises 2 and 3
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or

so that

M(b) = supl fo(x) — N(f(z) = B)le € X} = m(}) .

m(\) and\ is optimal for (5.19).
Then for anyr € X

By weak duality (Lemma 2) it follows thaM(l}
Conversely supposk > 0, andm(\) = M (b).

M(b) > fo(z) = N(f(z) =) ,
and if moreoverf (z) < b, thenX'(f(z) — b) < 0, so that

\_/\_/

M) 2 fo(w) = X(f(2) =)+ X(f(@) - )
= folz) = Nb+ Nb for z € Q(b) .
Hence,
M(b) = sup{fo(z)|z € Qb)} < M(b) + V(b —b)
so that) is a supergradient. &

We can now summarize our results as follows.
Theorem 2{Duality) Supposé c B, M (b) < co, andM is stable ab. Then
(i) there exists an optimal solutiohfor the dual, andn(/\) M (b),
(i) \is optimal for the dual iff is a supergradient of/ atb,
(iii) if ) is anyoptimal solution for the dual, thef is optimal for the primal iff(z, 5\) satisfy the
optimality conditions of (5.21), (5.22), and (5.23).

Proof: (i) follows from Lemmas 4,6. (i) is implied by Lemma 6. The “if” part of (iii) follows from
Theorem 1, whereas the “only if” part of (iii) follows from Lemma 5. &
Corollary 1: Under the hypothesis of Theorem 2 )ifs an optimal solution to the dual then

(DM /0b;)(b) < \i < (OM~ /0b;) ().

Exercise 4:Prove Corollary 1. (Hint: See Theorem 5 of 4.2.3.)

5.2.2 Interpretation and extensions.

It is easy to see using convexity properties thaf{i= R™ and f;, 0 < ¢ < m, are differentiable,

then the optimality conditions (5.21), (5.22), and (5.23) are equivalent to the Kuhn-Tucker condition
(5.8). Thus the condition of stability a¥/ atb plays a similar role to the constraint qualification.
However, by Lemmas 4, 6 stability éqguivalentto the existence of optimal dual variables, whereas
CQ is only asufficientcondition. In other words if CQ holds atthen/ is stable ab. In particular,

if X = R™ and thef; are differentiable, the various conditions of Section 1.3 imply stability. Here
we give one sufficient condition which implies stability for the general case.

Lemma 7:If b is in the interior of B, in particular if there exists: € X such thatf;(z) < b; for

1 < i < m, thenM is stable ab.
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The proof rests on the Separation Theorem for convex sets, and only depends on the fect that
is concave,M(B) < oo without loss of generality, andlis the interior of B. For details see the
Appendix.

Much of duality theory can be given an economic interpretation similar to that in Section 4.4.
Thus, we can think of as the vector of: activity levels, fy(x) the corresponding revenud, as
constraints due to physical or long-term limitatiomsas the vector of current resource supplies,
and finally f(x) the amount of these resources used up at activity levelEhe various convexity
conditions are generalizations of the economic hypothesis of non-increasing returns-to-scale. The
primal problem (5.17) is the short-term decision problem faced by the firm. Next, if the current
resources can be bought or sold at priges (\i,..., ), the firm faces the decision problem
(5.18). If for a price systeni, an optimal solution of (5.17) also is an optimal solution for (5.18),
then we can interprei as a system oéquilibrium prices just as in 4.2. Assuming the realistic
conditionb € B, M(b) < oo we can see from Theorem 2 and its Corollary 1 that there exists
an equilibrium price system iffo M+ /9b;)(b) < oo, 1 < i < m; if we interpret(dM* /0b;)(b)
as the marginal revenue of tlith resource, we can say that equilibrium prices exist iff marginal
productivities of every (variable) resource is finite. These ideas are developed in (Gale [1967]).

M (b)

A J—

-

b
Figure 5.5: IfM is not concave there may be no supporting hyperplari@/b), b).

Referring to Figure 5.3 or Figure 5.4, and comparing with Figure 5.5 it is evident thatsfnot
concave or, equivalently, if its hypographis not convex, there may v hyperplane supporting
at (M (8), 13). This is the reason why duality theory requires the often restrictive convexity hypoth-
esis onX and f;. It is possible to obtain the duality theorem under conditions slightly weaker than
convexity but since these conditions are not easily verifiable we do not pursue this direction any fur-
ther (see Luenberger [1968]). A much more promising development has recently taken place. The
basic idea involved is to consider supportiAgt (M(E), B) by (non-vertical) surfaces more gen-
eral than hyperplanes; see Figure 5.6. Instead of (5.18) we would then have more general problem

of the form (5.26):

Maximize fo(z) — F(f(z) — b)

subjecttor € X | (5.26)
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whereF : R™ — R is chosen so that (in Figure 5.6) is the graph of the functién— M(b) —
F(b—10). Usually F' is chosen from a class of functiogigparameterized by = (1, ..., ux) > 0.
Then for each fixegh > 0 we have (5.27) instead of (5.26):

Maximize fo(z) — ¢(u; f(x) —b)
subjecttor € X . (5.27)

Figure 5.6: The surfacg supportsA at (M (b), b).

If we let

() =sup{ fo(x) — (; f(x) —b)lw € X} .
then the dual problem is

Minimize ()
subject toy >0 ,

in analogy with (5.19).

The economic interpretation of (5.27) would be that if the prevailing (non-uniform) price system
is ¢(y; -) then the resource$(x) — b can be bought (or sold) for the amoutty; f(x) — b). For
such an interpretation to make sense we should héveb) > 0 for b > 0, and@(u; b) > é(y; b)
wheneverb > b. A relatively unnoticed, but quite interesting development along these lines is
presented in (Frank [1969]). Also see (Arrow and Hurwicz [1960]).

For non-economic applications, of course, no such limitatior @& necessary. The following
references are pertinent: (Gould [1969]), (Greenberg and Pierskalla [1970]), (Banerjee [1971]). For
more details concerning the topics of 2.1 see (Geoffrion [1970a]) and for a mathematically more
elegant treatment see (Rockafellar [1970]).

5.2.3 Applications.

Decentralized resource allocation.

Parts (i) and (iii) of Theorem 2 make duality theory attraqtive for computation purposes. In particular
from Theorem 2 (iii), if we have an optimal dual solutiérthen the optimal primal solutions are
those optimal solutions of (5.18) for = A which also satisfy the feasibility condition (5.22) and
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the “complementary slackness” condition (5.23). This is useful because generally speaking (5.18)
is easier to solve than (5.17) since (5.18) has fewer constraints.

Consider a decision problem in a large systesrg.(a multi-divisional firm). The system is
made up ofk sub-systems (divisions), and the decision variable ofitthgub-system is a vector
' € R™, 1 < i < k. The sub-system has individual constraints of the fafne X’ wherez! is
a convex set. Furthermore, the sub-systems share some resources in common and this limitation is
expressed ag' (2') + ... + f¥(2*) < bwheref’: R" — R™ are convex functions arfde R
is the vector of available common resources. Suppose that the objective function of the large system
is additive,i.e. it is the form £} (') + ... + f¥(z*) wherefi : R" — R are concave functions.
Thus we have the decision problem (5.28):

K
Maximize > fi (")
=1

subject tox’ € X*, 1 < i<k, (5.28)
k
> fiah)<b .
=1

ForA € R™, X\ > 0, the problem corresponding to (5.19) is

k
Maximize f§(z') — X fi(z®) = N(O_ fi(a') — b)
=1
subjecttor’ € X', 1<i<k ,

which decomposes intb separate problems:

Maximize f§(z') — X fi(x?)

subjecttor’ € X; , 1 <i<k . (5.29)

K
If we letm?(\) = sup{ fi(a?) — X fi(2") |2 € X}, andm()) = Y _m’(A) + X'b, then the dual
i=1
problem is

Minimize m(\)

subjectto\ > 0 . (5.30)

Note that (5.29) may be much easier to solve than (5.28) because, first of all, (5.29) involves fewer
constraints, but perhaps more importantly the decision problems in (5.29) are decentralized whereas
in (5.28) all the decision variables', . .., 2* are coupled together; in fact, ifis very large it may

be practically impossible to solve (5.28) whereas (5.29) may be trivial if the dimensiorisaoé

small.

Assuming that (5.28) has an optimal solution and the stability condition is satisfied, we need to
find an optimal dual solution so that we can use Theorem 2(iii). For simplicity suppose that the
f§, 1 <i < k, are strictly concave, and also suppose that (5.29) has an optimal solution for every
A > 0. Then by Exercise 8 of Section 1, for eakh> 0 there is a unique optimal solution of (5.29),
sayz’(\). Consider the following algorithm.
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Step 1.Select\” > 0 arbitrary. Sep = 0, and go to Step 2.
Step 2. Solve (5.29) forA = AP and obtain the optimal solution? = (z!(\P),...,z*(\P)).
k

Computee? = Z iz (\P)) — b. If e? > 0, P is feasible for (5.28) and can easily be seen to be
i=1

optimal.

Step 3.Set\’=! according to

)\p+1 _ )\ELL7 if Czp Z 0
@ N —dpel’ if e <0

wheredP > 0 is chosera priori. Setp = p + 1 and return to Step 3.

It can be shown that if the step sizé% are chosen properly;? will converge to the optimum
solution of (5.28). For more detail see (Arrow and Hurwicz [1960]), and for other decentralization
schemes for solving (5.28) see (Geoffrion [1970b]).

Control of water quality in a stream.

The discussion in this section is mainly based on (Kendetk)., [1971]). For an informal discus-
sion of schemes of pollution control which derive their effectiveness from duality theory see (Solow
[1971]). See (Dorfman and Jacoby [1970].)

Figure 5.7 is a schematic diagram of a part of a stream into whislources (industries and
municipalities) discharge polluting effluents. The pollutants consist of various materials, but for
simplicity of exposition we assume that their impact on the quality of the stream is measured in
terms of a single quantity, namely the biochemical oxygen demand (BOD) which they place on the
dissolved oxygen (DO) in the stream. Since the DO in the stream is used to breakdown chemically
the pollutants into harmless substances, the quality of the stream improves with the amount of
DO and decreases with increasing BOD. It is a well-advertized fact that if the DO drops below a
certain concentration, then life in the stream is seriously threatened; indeed, the stream can “die.”
Therefore, it is important to treat the effluents before they enter the stream in order to reduce the
BOD to concentration levels which can be safely absorbed by the DO in the stream. In this example
we are concerned with finding the optimal balance between costs of waste treatment and costs of
high BOD in the stream.

We first derive the equations which govern the evolution in time of BOD and DO in treas
of the streams. The fluctuations of BOD and DO will be cyclical with a period of 24 hours. Hence,
it is enough to study the problem over a 24-hour period. We divide this periodlinitdervals,
t=1,...,T. During intervalt and in ared let
zi(t) = concentration of BOD measured in mgl/liter,
qi(t) = concentration of DO measured in mg/liter,

s;(t) = concentration of BOD of effluent discharge in mg/liter, and
m;(t) = amount of effluent discharge in liters.
The principle of conservation of mass gives us equations (5.31) and (5.32):

Zi(t+1) — 2(t) = —ouzi(t) + ¢i—1»::.—1(t) _ wiii.(t) + Si(t)yi(t) ’ (5.31)

ai(t+1) —q(t) = Bilg] —a(t)) + wi*l(f}ifl(t) - wigi(t) (5.32)
+aizi(t) —m;, t=1,...,Tandi=1,...,N. '
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direction of flow
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Figure 5.7: Schematic of stream with effluent discharges.

Here,v; = volume of water in area measured in litersy; = volume of water which flows from
area to arei + 1 in each period measured in liteks; is the rate of decay of BOD per interval. This
decay occurs by combination of BOD and D@).is the rate of generation of DO. The increase in
DO is due to various natural oxygen-producing biochemical reactions in the stream and the increase
is proportional to(¢® — ¢;) whereg® is the saturation level of DO in the stream. Finaly,is the
DO requirement in the bottom sludge. Thg;, «;,n;, ¢° are parameters of the stream and are
assumed known. They may vary with the time interzal\lso z(t), go(t) which are the concen-
trations immediately upstream from area 1 are assumed known. Finally, the initial concentrations
zi(1),q:(1), i =1,..., N are assumed known.

Now suppose that the waste treatment facility in areemoves in intervat a fractionm;(t) of
the concentratios;(¢) of BOD. Then (5.31) is replaced by

gt +1) = 2i(t) = —quz(t) + La=t - w20 QomsOnd) (5.33)

(3 (%

We now turn to the costs associated with waste treatment and pollution. The cost of waste treat-
ment can be readily identified. In periedheith facility treatsm;(t) liters of effluent with a BOD
concentratiors; (¢) mg/liter of which the facility removes a fractiar(¢). Hence, the cost in period
t will be f;(m;(t), si(t), mi(t)) where the function must be monotonically increasing in all of its
arguments. We further assume tlfas convex.

The costs associated with increased amounts of BOD and reduced amounts of DO are much
more difficult to quantify since the stream is used by many institutions for a variety of purposes
(e.g., agricultural, industrial, municipal, recreational), and the disutility caused by a decrease in
the water quality varies with the user. Therefore, instead of attempting to quantify these costs let
us suppose that some minimum water quality standards are sej.beethe minimum acceptable
DO concentration and let be the maximum permissible BOD concentration. Then we face the
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following NP:

N T
Maximize — Y > " fi(mi(t), si(t), mi(t))

=1 t=1
subject to (5.32), (5.33), and (5.34)
—qi(t)<—q,i=1,...,N; t=1,....T,

wt)<z,i=1,...,N:it=1,....T,
0<m(t)y<1l,i=1,....,N;t=1,...,T.

Suppose that all the treatment facilities are in the control of a single public agency. Then assuming
that the agency is required to maintain the standé&yds) and it does this at a minimum cost it will
solve the NP (5.34) and arrive at an optimal solution. Let the minimum cost(gez). But if
there is no such centralized agency, then the individual polluters may not (and usually do not) have
any incentive to cooperate among themselves to achieve these standards. Furthermore, it does not
make sense to enforce legally a minimum standgft) > ¢, z;(¢) < z on every polluter since the
pollution levels in théth area depend upon the pollution levels on all the other areas lying upstream.
On the other hand, it may be economically and politically acceptable to tax individual polluters in
proportion to the amount of pollutants discharged by the individual. The question we now pose
is whether there exist tax rates such that if each individual polluter minimizes its own total cost
(i.e., cost of waste treatment + tax on remaining pollutants), then the resulting water quality will be
acceptable and, furthermore, the resulting amount of waste treatment is carried out at the minimum
expenditure of resourcesd., will be an optimal solution of (5.34)).

It should be clear from the duality theory that the answer is in the affirmative. To see this let
wi(t) = (2zi(t), —qi(t)), letw(t) = (wy(t),...,wn(t)), and letw = (w(1),...,w(t)). Then we
can solve (5.32) and (5.33) far and obtain

w=>b+ Ar , (5.35)

where the matrixA and the vectob depend upon the known parameters and initial conditions, and
r is the NT-dimensional vector with componertts— 7;(t))s;(t)m;(t). Note that the coefficients
of the matrix must be non-negative because an increase in any compomesarofot decrease the
BOD levels and cannot increase the DO levels. Using (5.35) we can rewrite (5.34) as follows:

Maximize — > > fi(mi(t), si(t), mi(t))

subjecttob + Ar < w ,
0<mt)<1,i=1,....N;t=1,...,T,

(5.36)

where the2 N'T-dimensional vectors has its components equal tg; or z in the obvious manner.
By the duality theorem there exists2& T-dimensional vecton* > 0, and an optimal solution
mi(t), i=1,...,N, t=1,...,T, of the problem:

Maximize — Y > fi(mi(t), si(t), mi(t)) — A7 (b+ Ar — w)

subjecttod < m;(t) <1,i=1,...,N; t=1,...,T,

(5.37)

such thaf = (¢)} is also an optimal solution of (5.36) and, furthermore, the optimal values of (5.36)
and (5.37) are equal. If we lgt = A’A\* > 0, and we write the components of asp; (t) to match
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with the componentsl — m;(t))s; (t)m;(t) of » we can see that (5.37) is equivalent to the seVaf
problems:

Maximize — fi(mi(t), si(t), mi(t)) — pi (£)(1 — mi(t))si(t)m;(t)
0<m(t)<1, (5.38)
i=1,... Nit=1,....T.

Thus,p;(t) is optimum tax per mg of BOD in areeduring periodt.

Before we leave this example let us note that the optimum dual variable or shadow\price
plays an important role in a larger framework. We noted earlier that the quality staqdand
was somewhat arbitrary. Now suppose it is proposed to change the standardtinahea during
periodt to g+ Ag;(t) andz + Az;(¢). If the corresponding componentsfareA?” () andA7* (),
then the change in the minimum cost necessary to achieve the new standard will be approximately
A () Agi(t) + MF*(t)Az(t). This estimate can now serve as a basis in making a benefits/cost
analysis of the proposed new standard.

5.3 Quadratic Programming

An important special case of NP is the quadratic programming (QP) problem:

Maximize c'z — %x’Pm

subject toAzx < b, >0, (5.39)

wherez € R" is the decision variablec, € R™, b € R™ are fixed,A is a fixedm x n matrix and
P = P'is afixed positive semi-definite matrix.
Theorem 1A vectorz* € R™ is optimal for (5.39) iff there exisk* € R™, u* € R"™, such that

Az* <b, z* >0
c—Px*=AN—p*, \X*>0, u* >0, (5.40)
A (Az* —b) =0, (u*)z*=0.

Proof: By Lemma 3 of 1.3, CQ is satisfied, hence the necessity of these conditions follows from
Theorem 2 of 1.2. On the other hand, sinéds positive semi-definite it follows from Exercise 6
of Section 1.2 thaf, : = — ¢z — 1/2 2/ Pz is a concave function, so that the sufficiency of these
conditions follows from Theorem 4 of 1.2. &

From (5.40) we can see that is optimal for (5.39) iff there is a solutiofw™, y*, \*, u*) to
(5.41), (5.42), and (5.43):

Az + 1Y =b

—Px— AN+ Lju=—c, (5.41)
r>0y>0,A>0, p>0, (5.42)
wr=0,Ny=0. (5.43)

Suppose we try to solve (5.41) and (5.42) by Phase | of the Simplex algorithm (see 4.3.2). Then we
must apply Phase Il to the LP:

m n
Maximize — » "z — ) "¢;
i=1 j=1
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subject to
Ax""Imy + z =b
—Px —AX+ILipn +E&=-—c
x>0,y 20, A>0, u=>0,2>0,8§>0,

(5.44)

starting with a basic feasible solutian= b, ¢ = —c. (We have assumed, without loss of generality,
thatb > 0 and—c > 0.) If (5.41) and (5.42) have a solution then the maximum value in (5.44) is 0.
We have the following result.

Lemma 1:f (5.41), (5.42), and (5.43) have a solution, then there is an optimal basic feasible solution
of (5.44) which is also a solution f (5.41), (5.42), and (5.43).

Proof: Let #, 9, \, i be a solution of (5.41), (5.42), and (5.43). Thenj, \, 4,2 = 0,€ = 0 is

an optimal solution of (5.44). Furthermore, from (5.42) and (5.43) we see that at(mesin)
components ofz, ¢, A, f1) are non-zero. But then a repetition of the proof of Lemma 1 of 4.3.1 will

also prove this lemma. &
This lemma suggests that we can apply the Simplex algorithm of 4.3.2 to solve (5.44), starting
with the basic feasible solution= b, £ = —c, in order to obtain a solution of (5.41), (5.42), and

(5.43). However, Step 2 of the Simplex algorithm must be modified as follows to satisfy (5.43):

If a variablex; is currently in the basis, do not consideras a candidate for entry into the basis;
if a variabley; is currently in the basis, do not considgras a candidate for entry into the basis. If
it not possible to remove thg and¢; from the basis, stop.

The above algorithm is due to Wolfe [1959]. The behavior of the algorithm is summarized below.
Theorem 2:SupposeP is positive definite. The algorithm will stop in a finite number of steps at an
optimal basic feasible solutiofE:, 7, A, /i, 2, €) of (5.44). If 2 = 0 and¢ = 0 then(z, i, A, /i) solve
(5.41), (5.42), and (5.43) aridis an optimal solution of (5.39). i 0 or £ # 0, then there is no
solution to (5.41), (5.42), (5.43), and there is no feasible solution of (5.39).

For a proof of this result as well as for a generalization of the algorithm which permits positive
semidefinite P see (Cannon, Cullum, and Polak [1970], p. 159 ff).

5.4 Computational Method

We return to the general NP (5.45),

Maximize fo(z)

subject tof;(z) <0, i=1,...,m, (5.45)

wherexz € R", f; : R"™ — R, 0 < i < m, are differentiable. Lef) C R"™ denote the set of
feasible solutions. Fai € 2 define the function)(z) : R™ — R by

¢(9ﬁ)(h) - max{_fOx(j)hv fl (j) + flac(f)ha s vfm(f) + fmx(j)h}
Consider the problem:

Minimize ¢ (z)(h)
subject to —

()(h) = fox(2)h <0,
—(&)(h) + fi(2) fih <0, (5.46)
1<i<m,—-1<h;<1,1<j<n
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\

Voo (z) = Fo(z*) > fo(a®) . Jo(m) = fo(z*)
v N '

VAR

Figure 5.8:h(z*) is a feasible direction.

Call h(z) an optimum solution of (5.46) and léy(z) = ¥ (z)(h(z)) be the minimum value at-
tained. (Note that by Exercise 1 of 4.5.1 (5.46) can be solved as an LP.)

The following algorithm is due to Topkis and Veinott [1967].
Step 1L.Findz° € , setk = 0, and go to Step 2.
Step 2.Solve (5.46) fori = 2* and obtaing(z*), h(z*). If ho(z*) = 0, stop, otherwise go to Step
3.
Step 3.Compute an optimum solutign(z*) to the one-dimensional problem,

Maximize fo(z* + ph(z*)) |
subject to(z* + ph(zF)) € Q, p >0 ,

and go to Step 4.

Step 4.SetxF ! = 2k + pu(2*)h(2*), setk = k + 1 and return to Step 2.
The performance of the algorithm is summarized below.

Theorem 1:Suppose that the set

Q%) = {2z € Q, fo(z) > fo(a")}

is compact, and has a non-empty interior, which is dense(irf'). Let z* be any limit point of
the sequence?, z!,..., 2", ..., generated by the algorithm. Then the Kuhn-Tucker conditions are
satisfied atr*.

For a proof of this result and for more efficient algorithms the reader is referred to (Polak [1971]).
Remark:If ho(z*) < 0in Step 2, then the direction(z") satisfiesfy, (z*)h(z*) > 0, andf;(z*)+
fiz(@®)h(2¥) < 0, 1 < i < m. For this reasom(z*) is called a (desirablefeasible direction
(See Figure 5.8.)
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5.5 Appendix

The proofs of Lemmas 4,7 of Section 2 are based on the following extremely important theorem
(see Rockafeller [1970]).

Separation theorem for convex sdiet F', G be convex subsets @i such that the relative interiors

of F, G are disjoint. Then there existse R™, X # 0, andf € R such that

Ng<éforall ge G
Nf>6forall feF.

Proof of Lemma 4SincelM is stable ab there existgk” such that
M) — M) < K|b—b|forallbe B . (5.47)
In R1t™ consider the sets

F={(rbbeR™ r>Kb-b},
G={(r,b)lbe B, r<M(b)— M(b)}.

It is easy to check that’, G are convex, and (5.47) implies thA&tN G = ¢. Hence, there exist
(Mo, - -+ Am) # 0, andé such that

Aor+ > Aiby <6 for (r,b) € G,
i=1 (5.48)

Aor+ > Aibi > 6 for (r,b) € F
i=1

From the definition oft", and the fact that), . . . )2 Am) # 0, it can be verified that (5 49) can hold

only if Ay > 0. Also from (5.49) we can see thg M\ib; > 0, whereas from (5. 482 by < 6,
=1 i=1

so thaty ~ \;b; = 0. But then from (5.48) we get
i—1

M(B) = M(B) < 5516 = Y Aibi = 3 (~3)(bi — D). o

Proof of Lemma 7Sinceb is in the interior of B, there exists > 0 such that
b € B whenevelb —b| < ¢ . (5.49)

In R1*™ consider the sets

F={(r,b)|r > M(b}
G={(r,b)lbe B, r < M(b)}.

Evidently, ', G are convex and” N G = ¢, so that there exigt\, . .., \,,) # 0, andd such that

Aor+ Y Nib = 0, forr > M(b) (5.50)
=1
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Aor+ Y by <0, for (r,b) € G (5.51)
=1

From (5.49), and the fact théh,, ..., \,,) # 0 we can see that (5.50) and (5.51) imply > 0.
From (5.50),(5.51) we get

Ao M(b) + > Nbi =0,
i=1

so that (5.52) implies

m

M(b) < (b)+ > (=55 (b — by) o

i=1



Chapter 6

SEQUENTIAL DECISION PROBLEMS:
DISCRETE-TIME OPTIMAL
CONTROL

In this chapter we apply the results of the last two chapters to situations where decisions have to be
made sequentially over time. A very important class of problems where such situations arise is in
the control of dynamical systems. In the first section we give two examples, and in Section 2 we
derive the main result.

6.1 Examples

The trajectory of a vertical sounding rocket is controlled by adjusting the rate of fuel ejection which
generates the thrust force. Specifically suppose that the equations of motion are given by (6.1).

.
[\
—~

~
~—

I

— B (@ (t)23(t) — g+ SHyu(t) (6.1)
ig(t) = —u(t) )

wherex(t) is the height of the rocket from the ground at timexs(t) is the (vertical) speed at

time ¢, x3(t) is the weight of the rocket (= weight of remaining fuel) at timeThe “dot” denotes
differentiation with respect t6. These equations can be derived from the force equations under the
assumption that there are four forces acting on the rocket, namely: inerfjg;== x3i5; drag

force= Cpp(x1)z3 whereCp is constantp(z1) is a friction coefficient depending on atmospheric
density which is a function af; gravitational force= gx3 with g assumed constant; and thrust
force Cri3, assumed proportional to rate of fuel ejection. See Figure 6.1. The decision variable at
timetisu(t), the rate of fuel ejection. At time we assume thdtr;(0), z2(0), z3(0)) = (0,0, M);

that is, the rocket is on the ground, at rest, with initial fuel of weigiht At a prescribed final time

ty, it is desired that the rocket be at a position as high above the ground as possible. Thus, the

75
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decision problem can be formalized as (6.2).

Maximize z1(t5)

subject toi:(t) = f(x(t),u(t)), 0 <t <tf
x(0) = (0,0, M)

u(t) >0, z3(t) >0, 0 <t <ty ,

(6.2)

wherexr = (z1,29,73)", f: R*™' — R3isthe right-hand side of (6.1). The constraint inequalities
u(t) > 0 andzs(t) > 0 are obvious physical constraints.

T

x3%1 = inertia

\awumﬁzmw

gx3 = gravitational force

|

Cris = thrust

Figure 6.1: Forces acting on the rocket.

The decision problem (6.2) differs from those considered so far in that the decision variables,
which are functions: : [0,t;] — R, cannotbe represented as vectors irfimite-dimensional
space. We shall treat such problems in great generality in the succeeding chapters. For the moment
we assume that for computational or practical reasons it is necessary to approximate or restrict
the permissible function(-) to be constant over the intervdls ¢, ), [t1,t2),...,[tn—1,tf), Where
t1,ta,...,ty—1 are fixeda priori. But then if we letu(7) be the constant value of-) over([t;, t;11),
we can reformulate (6.2) as (6.3):

Maximize z1(tn)(ty = ty)
subject tox(t;11) = g(i,z(t;),u(i)), i =0,1,...,N —1
z(to) = x(0) = (0,0, M)

0 (6.3)
’LL(Z) ZO, .Tg(ti) 20, ’i:O,l,...,N .

In (6.3) g(7,xz(t1),u(i)) is the state of the rocket at tinte,; when it is in statec(¢;) at timet; and
u(t) = u(z) fort; <t < tit1.

As another example consider a simple inventory problem where time enters discretely in a natural
fashion. The Squeezme Toothpaste Company wants to plan its production and inventory schedule
for the coming month. It is assumed that the demand oritthday, 0 < i < 30, is d; (i) for
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their orange brand and (i) for their green brand. To meet unexpected demand it is necessary that
the inventory stock of either brand should not fall belsws 0. If we let s(i) = (s1(7), s2(i))’
denote the stock at the beginning of fitle day, andm (i) = (mq(i), m2(4))" denote the amounts
manufactured on thigh day, then clearly

s(i+ 1) + s(i) + m(i) — d(i)

whered(i) = (di(i),d2(7))’. Suppose that the initial stock $s and the cost of storing inventory
for one day is:(s) whereas the cost of manufacturing amouinis b(m). The the cost-minimization
decision problem can be formalized as (6.4):

30

Maximize Z ) +b(m(7)))
G s(i) +m(i) —d(i), 0 <i <29 (6.4)

Before we formulate the general problem let us note that (6.3) and (6.4) are in the form of non-
linear programming problems. The reason for treating these problems separately is because of their
practical importance, and because the conditions of optimality take on a special form.

6.2 Main Result

The general problem we consider is of the form (6.5).

N-1
Maximize > fo(i, z(i), u(i))
=0
subject to
dynamics: z(i + 1) — x(i) = f(i,2(¢),u(i)), i=0,...,N =1, (6.5)
initial condition: go(z(0) <0, go(x(0)) =0,
final condition: gn(z(N)) < 0,g9n(z(N)) =0,
state-space constrainty; (x (¢ )) <0, i=1,...,N—1,
control constraint: h;(u(i)) < 0, i=0,...,N—1

Herez(i) € R", u(i) € RP, fo(i,-,-) : R — R, f(i,-,-) : R""? - R" ¢ : R" —
R™, g;: R" — R% h;: RP — R% are given differentiable functions. We follow the control
theory terminology, and refer to(i) as thestateof the system at timé, andu(i) as thecontrol or
input at times.

We use the formulation mentioned in the Remark following Theorem 3 of V.1.2, and construct
the Lagrangian functioi. by

L(x(()),...,x(N);u(O),...],Vu(N 1); p(l
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N-1 N-1
ZZfo(i,x(i),U(i))—{Z( (i+ 1) (2(i + 1) — (i) — f(i,2(i), u(i)))+

=0 i—0
N-1

> (A gi(2(4)) + (&) go((0)) + (a™)'g )+ }
=0 z:O

Suppose that'Q is satisfied for (6.5), and*(0), ..., z*(V); u*(0),...,u*(IN — 1), is an optimal
solution. Then by Theorem 2 of 5.1.2, there existi) in R" for 1 < i < N, \* > 0in R™ for
0<i<N, oinR%fori=0,N,andy* > 0in R% for0 < i < N — 1, such that
(A) the derivative ofL evaluated at these points vanishes,
and
(B) Mg (z*(i)) = 0for0 < i < N, v h;(u*(i)) =0for0<i < N —1.
We explore condition (A) by taking various partial derivatives.
Differentiating L with respect taz(0) gives

foe (0,27(0), u*(0)) — {=(p*(1))" = (p*(1))'[£2(0, 2"(0), u* (0))]
+(A% ) g0z (2 (0))] + (@) [g02 (2*(0))]} = 0,

or

p(0) =5 (1) = [0, (0),w" (@) p" (1) ©.6)
+lfoe 0.2 (0). O] = [ane(w (0)F A" |

where we have defined
p*(0) = [goa(z*(2)) % . (6.7)
Differentiating L with respect tac(i), 1 < i < N — 1, and re-arranging terms gives

pr(i) = p (i + 1) = [fuli, 2" (i), u" (i
[fo:c(’é (i), u* (i)' — [gia (2" (i

Differentiating L with respect toc(V) gives,
PH(N) = —lgna(@* (V)" a™ — [qna(2*(N)) AN .

It is convenient to replace™¥ by —aN* so that the equation above becomes (6.9)

P*(N) = [gne (@ (N)) o™ — gz (z* (N))) AN- . (6.9)
Differentiating L with respect ta.(i), 0 <i < N — 1 gives
[fou(, 2*(0), w* (D)) + [fuli, 2 (1), w*(0)]'p* (i + 1) — [hiw(u* ()7 = 0. (6.10)
We summarize our results in a convenient form in

Table 6.1

Remark 1: Considerable elegance and mnemonic simplification is achieved if we define the
Hamiltonian function H by



Supposer*(0),...,x*(N);

%*(9),...,10 (N 1) maximizes

Zfomc

to the constraints below

)) subject

then there exisp*(IV); A%, . ..
A0, ..., yN~1 such that

‘T'99l1qeL

dynamics:ii =0,...,N —1
x(i+1)—z() = f(i,2(i),u(i))

initial condition:

qo(2*(0)) <0, g0(x*(0)) =0
final conditions:

gn(z*(N)) < 0,gn(2"(N)) =0
state space constraint:
i1=1,...,N—1

gi(z*(i)) <0

control constraint:
1=0,...,N—1

hi(u*(i)) <0

adjoint equationsi = 0,..., N —
pr() —p (i+1) = [fx(z,:v*(Z),u*(
+[f0x(i,w*(z) ") = [qin (2"
transversality conditions:
p*(0) = [gox(2*(0))] ™

P*(N) = [gna (@ (V)] o™ — [gna (o

[fOu(i ( )7 U*(Z»]
p*(in) = [hiu(u* (7)) "

, AN, ao*,aN*?

1TNS3A NIVIN 29

Qiz(T

6.
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H(Za xz, uvp) = fO(ia z, U) +p/f(2a xz, ’U,) .
The dynamic equations then become

v i+ 1) = 2*(i) = [Hp(i, 2 (i), w (i), p* (i + 1)), (6.11)

(i) = p*(i + 1) = [Hy (i, 27 (), u (1), u (i), p (i + 1)) — [qia (2" (D)) N,
0<i<N-1,
whereas (6.10) becomes
[hiw (u* (D)7 = [Hy (i, 2%(3),u* (1), p* (i + 1)), 0<i<N—1. (6.12)

Remark 2:If we linearize the dynamic equations about the optimal solution we obtain

6x(i +1) = 0x(i) = [fo (i, 2*(2), w(2))]02(d) + [fuli, 2™ (2, 2%, (4), u* (i))]0u(i) ,
whose homogeneous part is

2(i+1) = 2(0) = [fo (i, 27(0), u"(0))]2(2) ,

which has for it adjoint the system
r(i) —r(i+ 1) = [fo(i,2* (@), u*(@)]r(E + 1) . (6.13)

Since the homogeneous part of the linear difference equations (6.6), (6.8) is (6.13), we call (6.6),
(6.8) theadjoint equations, and thg" (i) are calledadjoint variables

Remark 3:If the fy(i,-,-) are concave and the remaining function in (6.5) are linear, h@ris
satisfied, and the necessary conditions of Table 6.1 are also sufficient. Furthermore, in this case we
see from (6.13) thai* (i) is an optimal solution of

Maximize H (i, x* (i), u,p*(i + 1)),
subject toh;(u) <0 .

For this reason the result is sometimes callednidimum principle

Remark 4:The conditions (6.7), (6.9) are callé@nsversalityconditions for the following reason.
Supposeyy = 0, gy = 0, so that the initial and final conditions regg(z(0)) = 0, gn(xz(N)) = 0,

which describe surfaces . Conditions (6.7), (6.9) become respectively0) = [go.(z*(0))]'a%, p*(N) =
[gnz(z(N))])a™* which means thap*(0) andp*(N) are respectively orthogonal or transversal to

the initial and final surfaces. Furthermore, we note that in this case the initial and final conditions
specify(¢y +¢,,) conditions whereas the transversality conditions spéeify ¢y) + (n — ¢,,) condi-

tions. Thus, we have a total h boundary conditions for then-dimensional system of difference
equations (6.5), (6.12); but note that th@seboundary conditions armixed, i.e. some of them

refer to the initial timed and the rest refer to the final time.
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Exercise 1:For the regulator problem,

N—1 | N1
Maximize 3 x(1)' Qx (i) + 3 w(i)' Pu(i)
=0 1=0
subjecttoz(i + 1) — z(i) = Az(i) + Bu(i), 0 <i < N —1

wherez (i) € R, A andB are constant matrice$(0) is fixed, Q@ = Q' is positive semi-definite,
and P = P’ is positive definite, show that the optimal solution is unique and can be obtained by
solving a2n-dimensional linear difference equation with mixed boundary conditions.

Exercise 2: Show that the minimal fuel problem,

M|n|m|zez Z\ ,
=0 =

subject tax (i + 1) x(i) = Az(i) + Bu(i), 0<i < N —1

2(0) = £(0), x(N) = 2(N)
u(i) € RP, u(i));] <1, 1<j<p, 0<i<N-1

can be transformed into a linear programming problem. Héo¢, &(N) are fixed,A and B are as
in Exercise 1.
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Chapter 7

SEQUENTIAL DECISION PROBLEMS:
CONTINUOUS-TIME OPTIMAL
CONTROL OF LINEAR SYSTEMS

We will investigate decision problems similar to those studied in the last chapter with one (math-
ematically) crucial difference. A choice of control has to be made at each instant of tiiere

t varies continuously over a finite interval. The evolution in time of the state of the systems to be
controlled is governed by a differential equation of the form:

w(t) = ft,x(t),u®)) ,

wherex(t) € R™ andu(t) € RP are respectively the state and control of the system attime

To understand the main ideas and techniques of analysis it will prove profitable to study the linear
case first. The general nonlinear case is deferred to the next chapter. In Section 1 we present the
general linear problem and study the case where the initial and final conditions are particularly
simple. In Section 2 we study more general boundary conditions.

7.1 The Linear Optimal Control Problem

We consider a dynamical system governed by the linear differential equation (7.1):
z(t) = A(t)x(t) + B(t)u(t), t > to . (7.1)

Here A(-) andB(-) aren x n- andn x p-matrix valued functions of time; we assume that they are
piecewise continuous functions. The contidl) is constrained to take values in a fixed Qet. R?,

and to be piecewise continuous.

Definition: A piecewise continuous functiom : [ty, c0) — € will be called anadmissible control

U denotes the set of all admissible controls.

Letc € R, 2° € R" be fixed and let; > t, be a fixed time. We are concerned with the

83
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decision problem (7.2).

Maximize ¢’z (ty),
subject to
dynamics:z(t) = A(t)x(t ) B(t)u(t) , to <t <ty
initial condition: x(ty) =
final condition:x(ty) €
u(-) €

control constraint:
Definition: (i) For any piecewise continuous functieft-) : [to,ts] — RP, for anyz € R", and
anytg <t; <ty < tf let

(7.2)

H

¢(t27 tla Z, ’U,)

denote the state of (7.1) at timg if a timet; it is in statez, and the control.(-) is applied.
(i) Let

K(thtlvz) - {¢(t27t1727u)‘u S Z/[} :

Thus, K (t2,t1, 2) is the set of states reachable at timestarting at timef; in statez and using
admissible controls. We call’ the reachableset.

Definition: Let (¢, 7), to < 7 < t < ty, be thetransition-matrixfunction of the homogeneous
part of (7.1),.e., ® satisfies the differential equation

G (t,7) = A@)D(t, 7).,
and the boundary condition
O(t,t) =1, .
The next result is well-known. (See Desoer [1970].)
Lemma Lig(ta, 1, 2, u) = B(ta, t1)= + / * Bty 1) B()u(r)dr.

t1
Exercise 1:(i) Assuming that is convex, show thdl is a convex set. (i) Assuming thatis
convex show thaf((tq, t1, z) is a convex set. (It is a deep result thétt,, ¢1, z) is convex even if
Q is not convex (see Neustadt [1963]), provided we includg Bny measurable function
u: [tg,00) — .)

Definition: Let K C R™, and letz* € K. We say that is the outward normal to a hyperplane
supporting K atz* if ¢ # 0, and

dx* >z forall z € K.

The next result gives a geometric characterization of the optimal solutions of (2).
Lemma 2:Suppose: # 0. Letu*(:) € U and letz*(t) = ¢(t,to, 2%, u*). Thenu* is an optimal
solution of (2) iff
(i) z*(ts)is on the boundary ok = K(t¢,,2°), and
(i) cis the outward normal to a hyperplane supportiigit z*. (See Figure 7.1.)

Proof: Clearly (i) is implied by (ii) because if*(¢y) is in the interior of K" there isé > 0 such
that(z*(tf) + dc) € K; but then
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T3

x1

Figure 7.1:c is the outward normal te™* supportingK atz*(t )

d(x*(tg) + 6c) = da*(ty) + 0lc|* > a*(ty) .

Finally, from the definition of it follows immediately that:* is optimal iff ¢ z*(t;) > ¢/« for all
re K. %
The result above characterizes the optimal contfoh terms of the final state*(¢ ;). The beauty
and utility of the theory lies in the following result which translates this characterization directly in

terms ofu*.
Theorem liLetu*(-) € U and letz*(t) = ¢(t,to, 2%, u*), to <t < ty. Letp*(t) be the solution
of (7.3) and (7.4):

adjoint equation;p*(t) = —A'(t)p*(t) , to <t < ty. (7.3)

final condition:p*(t5) = c . (7.4)
Thenw*(-) is optimal iff
(p* (1)) B(t)u*(t) = supf(p" (1))’ B(t)v|v € Q} (7.5)
forallt € [tg,tf], except possibly for a finite set.
Proof: u*(-) is optimal iff for everyu(-) € U
(P (t5))[®(t5,t0)2° + [ ®(t5,7)B(r)u*(7)d7]
> (p*(t7)) [@(t5, t0)2° + [i7 B(t7,7) B(r)u(r)dr]
which is equivalent to (7.6).

Ji 0" (1)) 0(1. ) B (7)dr -,
> [ (p*(ty)) (ty, ) B(r)u(r)dr
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Now by properties of the adjoint equation we know thatt))” = (p*(tf)) ®(ty,t) so that (7.6) is
equivalent to (7.7),

S (0" (1)) B(r)u ()dr = [, (p* (7)) B(7)u(r)dr, (7.7)

to

and the sufficiency of (7.5) is immediate.

To prove the necessity Ié? be the finite set of points where the functi®t-) or v*(-) is discon-
tinuous. We shall show that if*(-) is optimal then (7.5) is satisfied forZ D. Indeed if this is not
the case, then there existsc [to,t], t* ¢ D, andv € € such that

(P (7)) B(t")u™(t7) < (p*(t))' B(t")v
and since* is a point of continuity ofB(-) andu*(-), it follows that there exist§ > 0 such that
(p*(t)) B(t)u*(t) < (p*(t))'B(t)v, for [t —t*| <4 . (7.8)
Defineu(-) € U by

N |t —t*| <6, t € [to, ty]
wt) = { u*(t) otherwise.

Then (7.8) implies that
W (07 () B(tya(t)dt > [,7 (0" (1) B(t)u* (t)dt .

But then from (7.7) we see that (-) cannot be optimal, giving a contradiction. &

Corollary 1: Fortg <t <ty < ty,
(p*(tz)).r*(tg) > (p*(tg))’x forall z € K(tg,tl,.r*(tl)). (79)

Exercise 2:Prove Corollary 1.

Remark 1:The geometric meaning of (7.9) is the following. Takihg= t, in (7.9), we see that if
u*(-) is optimal,i.e, if ¢ = p*(¢;) is the outward normal to a hyperplane supportiif 7, to, 2°)
atz*(ty), thenz*(t) is on the boundary ok (¢, to, %) andp*(¢) is the normal to a hyperplane
supportingK (t, to, z°) atz*(t). This normal is obtained by transporting backwards in time, via
the adjoint differential equation, the outward norma(t ;) at timet ;. The situation is illustrated
in Figure 7.2.

Remark 2:If we define theHamiltonianfunction H by

H(t,z,u,p) = p'(A(t)x + B(t)u) ,
and we definé\/ by
M(t,z,p) = sup{H (t,z,u,p)lu € Q},
then (7.5) can be rewritten as
H(t,z*(t),u"(t),p*(t)) = M(t,z*(t),p"(t)) . (7.10)

This condition is known as th@aximum principle
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Exercise 3:(i) Show thatm(t) = M (t,z*(t), p*(t)) is a Lipschitz function of. (ii) If A(t), B(t)
are constant, show that(t) is constant. (Hint: Show thatim /dt) = 0.)

The next two exercises show how we can obtain important qualitative properties of an optimal
control.

Exercise 4: Suppose tha® is bounded and closed. Show that there exists an optimal carftfol
such that.*(¢) belongs to the boundary 6f for all ¢.

Exercise 5:Suppos€? = [a, (], so thatB(t) is ann x 1 matrix. Suppose that(t) = A and
B(t) = B are constant matrices antdhasn real eigenvalues. Show that there is an optimal
controlu*(-) andty <t <ty < ... <t, <tysuchthaw*(t) = aorgonlt,tiy1),0<i<n.
(Hint: first show that(p*(t))'B = 1 exp(01t) + ... + 7 exp(d,(t)) for somey;, d; in R.)
Exercise 6: Assume thats (¢, to, z°) is convex (see remark in Exercise 1 above). Let

fo: R™ — R be adifferentiable function and suppose that the objective function in (7.2) is
fo(x(ty)) instead of’z(t¢). Suppose.*(-) is an optimal control. Show that'(-) satisfies the
maximum principle (7.10) wherg*(-) is the solution of the adjoint equation (7.3) with the final
condition

p*(ty) = folz*(ty)) .

Also show that this condition is sufficient for optimality fif is concave. (Hint: Use Lemma 1 of
5.1.1 to show that ifi*(-) is optimal, thenfo, (z*(t)(xz*(tf) — z) < forall z € K(ts,to,2°).)

7.2 More General Boundary Conditions
We consider the following generalization of (7.2). The notion of the previous section is retained.

Maximize ¢z (t )

subject to
dynamics:i(t) = A(t)x(t) + B(t)u(t), to <t <ty
initial condition: Gz (tg) = v° , (7.11)

final condition: G’z (t;) = b/,
control constraint: u(-) € U, i.e, M: [, U] — ® and
u(-)piecewise continuous

In (7.11) G and G/ are fixed matrices of dimensior8xn and ¢/ x n respectively, while® €
R% bl € R's are fixed vectors.

We will analyze the problem in the same way as before. That is, we first characterize optimality
in terms of the state at the final time, and then translate these conditions in terms of the control. For
convenience let

T = {2z € R"|G"z =%},
T/ ={zc R"|G/2 =0/} .

Definition: Letp € R™ . Letz* € T°. We say thap is orthogonal to7” at z* and we write
p L TO(z%) if



88

CHAPTER 7. CONTINUOUS-TIME LINEAR OPTIMAL CONTROL

to

ty

to

Figure 7.2: lllustration of (7.9) fot; = to.
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p(z—2)=0 forall €T .
Similarly if z* € T/, p L T/(2*) if
p(z—2)=0 foral zeT/ .
Definition: Let X (t7) = {®(ts,t0)z + w|z € TO, w € K(ts,t0,0)}.
Exercise 1: X (t7) = {®(ty, to, z,u)|z € T°, u(-) € U}.
Lemma 1:Let z*(tg) € T andu*(-) € U. Letx*(t) = ¢(¢t,to, 2*(to),u*), and suppose that
z*(ty) € TY.

(i) Suppose thé& is convex. Ifu*(-) is optimal, there exispy € R,py > 0 andp € R™, not both
zero, such that

(poc+p)'z*(tf) > (Poc + p)'z forall z € X(tf), (7.12)
p LT (¥ (ty)) (7.13)
[@(tg,t0)] (Poc + p) L TO(x*(to)) - (7.14)

(if) Conversely if there exispy > 0, andp such that (7.12) and (7.13) are satisfied, thé@) is
optimal and (7.14) is also satisfied.
Proof: Clearlyw*(-) is optimal iff

da*(ty) > forall z € X(t;)NT/. (7.15)

(i) Suppose that*(-) is optimal. InR*™ define setsst, S? by
St={(r,z)|r > da*(ty),z € T'}, (7.16)
S?2={(r,z)lr=Cz, xz e X(ty)}. (7.17)

First of all S* N S? = ¢ because otherwise there existe X (t/) N T/ such that'z > /z*(t¢)
contradicting optimality of.*(-) by (7.15).

Secondly,S! is convex sincd'/ is convex. Sincé€ is convex by hypothesis it follows by Exercise
1 of Section 1 that? is convex.

But then by the separation theorem for convex sets (see 5.5) theregxist®R, p € R™, not
both zero, such that

port + p'at > por? + p'z? forall (rf 2') € S, i=1,2. (7.18)
In particular (7.18) implies that
por +p'x*(ty) > pocdx +p'x forall x € X(ty),r > da*(ty). (7.19)

Letting » — oo we conclude that (7.19) can hold onlyzi§ > 0. On the other hand letting —
dx*(ty) we see that (7.19) can hold only if

poc'z*(ty) + pa*(ty) > podx +p'x forall z e X(ty), (7.20)
which is the same as (7.12). Also from (7.18) we get
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por + plx > pocx*(ty) + pla*(ty) forallr > da*(ty),z € TV,
which can hold only if
prca*(ty) + p'e > pocdx*(ty) + pla*(ty) forallz € T/,
or
Pz —a*(ty)) > 0forallz € T/ (7.21)
But {z — z*(tf)|z € T/} = {2|G'z = 0} is a subspace ak", so that (7.21) can hold only if
P (x—a*(ty)) =0forallz € TV,

which is the same as (7.13). Finally (7.12) always implies (7.14), because by the definiign:of
and Exercise {®(ts,to)(z — 2*(to)) + 2*(ty)} € X(ts) forall z € TY, so that from (7.12) we
get

0> (poc+ p) @ (ts,to)(z — z*(to)) forall z € T,

which can hold only if (7.14) holds.
(if) Now suppose thaf, > 0 andp are such that (7.12), (7.13) are satisfied. Let X (tf) N 7T/.
Then from (7.13) we conclude that

plat(ty) =T
so that from (7.12) we get
poc'z*(tg) = poc'T ;
but then by (7.15)*(+) is optimal. &

Remark 1:If it is possible to choosg, > 0 thenpy = 1, p = (p/po) will also satisfy (7.12),
(7.13), and (7.14). In particular, in part (ii) of the Lemma we may assfyne 1.

Remark 2:it would be natural to conjecture that in partgi) may be chosen- 0. But in Figure

7.3 below, we illustrate a 2-dimensional situation whgPe= {2}, T/ is the vertical line, and

T/ N X (tf) consists of just one vector. It follows that the contud(-) € U for which

z*(tg) = ¢(tg, to, 2% u*) € T/ is optimal for any ¢ Clearly then for some (in particular for the

¢ in Figure 7.3) we are forced to sgt = 0. In higher dimensions the reasons may be more
complicated, but basically if'/ is “tangent” toX (¢ #) we may be forced to sgf) = 0 (see
Exercise 2 below). Finally, we note that part (i) is not too usefiit= 0, since then (7.12), (7.13),
and (7.14) hold for any vecterwhatsoever. Intuitivelypy = 0 means that it is so difficult to satisfy
the initial and final boundary conditions in (7.11) that optimization becomes a secondary matter.
Remark 31n (i) the convexity of(2 is only used to guarantee that(t, ¢y, 0) is convex. But it is
known thatK (¢4, to,0) is convex even if is not (see Neustadt [1963]).

Exercise 2: Suppose there existsin theinterior of X (¢;) such that: € Tf. Then in part (i) we
must haveyy > 0.

We now translate the conditions obtained in Lemma 1 in terms of the caritrol
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Theorem 1letx*(ty) € T? andu*(-) € U. Letx*(t) = ¢(t,to,x*(t9), u*) and suppose that

z* (tf) € T/,

(i) Suppose thaf2 is convex. Ifu*(-) is optimal for (7.11), then there exist a numpgr> 0, and a
functionp* : [to,t¢] — R", not both identically zero, satisfying

adjoint equation: p*(t) = —A'(t)p*(t) , to <t < ty (7.22)
initial condition: p*(to) LT%(z*(to)) (7.23)
final condition: (p*(t;) — pie) LT (z*(t5)) , (7.24)

and themaximum principle

H(t,a*(t),u(t), p*(t)) = M(t,z*(t),p" (1)) , (7.25)

holds for allt € [to, ;] except possibly for a finite set.
(if) Conversely suppose there exjgt > 0 andp*(-) satisfying (7.22), (7.23), (7.24), and (7.25).
Thenu*(-) is optimal.

[Here
H(t,z,u,p) = p'(A(t)x + B(t)u), M(t,xz,p) = sup{H (t,z,v,p)lv € Q}.]

Proof: A repetition of a part of the argument in the proof of Theorem 1 of Section 1 show tpiat if
satisfies (7.22), then (7.25) is equivalent to (7.26):

(p*(tg))x*(ty) > (p*(ty))'x forall x € K(ts,to,z*(to)) - (7.26)

(i) Supposeu*(-) is optimal and? is convex. Then by Lemma 1 there exist> 0, p € R", not
both zero, such that (7.12), (7.13) and (7.14) are satisfiedp{-et po and letp*(-) be the solution
of (7.22) with the final condition

p*(tf) :pSC—i-ﬁ =pogc+p.

Then (7.14) and (7.13) are respectively equivalent to (7.23) and (7.24), wherea& $ince), z* (ty)) C
X(ty), (7.26) is implied by (7.12).

(if) Supposep; > 0 and (7.22), (7.23), (7.24), and (7.26) are satisfied. geet= pj; andp =
p*(tf) — pjec, so that (7.24) becomes equivalent to (7.13). Nextdf X (ty) we have

(Poc+ p)'w = (p*(tg)) =
= p*(tf))/(q)(tfv tO)Z + ’U)) )
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= X(tp)NT!
K(tf,to,l'o) = X(tf)

, 2¥(ty)

Figure 7.3: Situation whergy = 0
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for somez € T° and somev € K (i, to,0). Hence

(Poc+p)'x —(( -
= (p*(
( *

But by (7.23) the first term on the right vanishes, and since¢(t ¢, to)x*(to)) € K(ty,to, z*(t0)),
it follows from (7.26) that the second term is bounded(p¥(t))'z*(ts). Thus

) @(ts,to)(z — *(to))
)/ (w + d(ty, to)z* (to))
)))’) z —x*(to))

P (
t
0
tf)) (w+ @(ty, to)z*(to)) -

(
'
(tr

(Ppoc+p)'z*(tf) > (poc + p)'x forall z e X(ty),

and sou*(-) is optimal by Lemma 1. &

Exercise 3:Suppose that the control constraint se®ig) which varies continuously with and

we require thau(t) € Q(t) for all . Show that Theorem 1 also holds for this case where, in (7.25),
M (t,z,p) =sup{H (t,z,v,p)|v € Q(t)}.

Exercise 4:How would you use Exercise 3 to solve Example 3 of Chapter 1?
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Chapter 8

SEQUENTIAL DECISION PROBLEMS:
CONTINUOUS-TIME OPTIMAL
CONTROL OF NONLINEAR SYSTEMS

We now present a sweeping generalization of the problem studied in the last chapter. Unfortunately
we are forced to omit the proofs of the results since they require a level of mathematical sophis-
tication beyond the scope of theSletes However, it is possible to convey the main ideas of the
proofs at an intuitive level and we shall do so. (For complete proofs see (Lee and Markus [1967]
or Pontryagingt al,, [1962].) The principal result, which is a direct generalization of Theorem 1 of
7.2 is presented in Section 1. An alternative form of the objective function is discussed in Section
2. Section 3 deals with the minimum-time problem and Section 4 considers the important special
case of linear systems with quadratic cost. Finally, in Section 5 we discuss the so-called singular
case and also analyze Example 4 of Chapter 1.

8.1 Main Results

8.1.1 Preliminary results based on differential equation theory.

We are interested in the optimal control of a system whose dynamics are governed by the nonlinear
differential equation

i’(t):f(t,:r, (t)vu(t)) ;o Stgtf ) (81)

wherez(t) € R" is the state and,(¢) € RP is the control. Suppose*(-) is an optimal control
andz*(-) is the corresponding trajectory. In the case of linear systems we obtained the necessary
conditions for optimality by comparing™*(-) with trajectoriesz(-) corresponding to other admis-

sible controlsu(-). This comparison was possible because we had an explicitly characterization of
z(+) in terms ofu(-). Unfortunately whenf is nonlinear such a characterization is not available.
Instead we shall settle for a comparison between the trajectdry and trajectories:(-) obtained

by perturbing the contral*(-) and the initial condition:*(¢,). We can then estimate the difference
betweenz(-) andz*(-) by the solution to a linear differential equation as shown in Lemma 1 below.
But first we need to impose some regularity conditions on the differential equation (8.1). We assume
throughout that the functiofi : [to,ts] x R™ x RP — R" satisfies the following conditions:

95



96 CHAPTER 8. CONINUOUS-TIME OPTIMAL CONTROL
1. for each fixed < [to,ty], f(t,-,-) : R"XRP — R™ is continuously differentiable in the
remaining variablez, u),

2. except for a finite subsél C [to, ], the functionsf, f,, f,, are continuous ofto, ] x R" x
RP,and

3. for every finiter, there exist finite numbe$ and~y such that
|f(t,z,u)| < B+ |zl forallt € [ty, ts], v € R", v € RP with [u] < .
The following result is proved in every standard treatise on differential equations.

Theorem 1For everyz € R", for everyt; € [ty,ts], and every piecewise continuous function
u(-) : [to,ty] — RP, there exists a unique solution

z(t) = o(t t1,2,u(r) , th <t <ty,
of the differential equation
w(t) = f(t,x(t),u?)) , 1 <t <ty
satisfying the initial condition
x(t1) =z .

Furthermore, for fixed; < ¢, in [to, ;] and fixedu(-), the functiong(ta, t1,-,u(-)) : R* — R™is
differentiable. Moreover, the x n matrix-valued functiornb defined by

B(ty, t1, 2,u(-)) = (g, t1, 2, u(-))
is the solution of the linear homogeneous differential equation
Gt tr, 2, () = [0 @, (1), )@t 1, 2,u(), 0 <t <tf,
and the initial condition
O(t1,t1,z,u(:)) =1, .

Now let @ C RP be a fixed set and €t be set of all piecewise continuous function§) :
[to,tf] — Q. Letu*(-) € U be fixed and letD* be the set of discontinuity points af (-). Let
xj € R™ be a fixed initial condition.

Definition: m = (t1, ..., tm; 1,...,m; u1,...,uy) IS said to be gerturbation datafor w*(-) if
1. m is a nonnegative integer,

2. tg <ty <ty < ...ty <ty andt; & D*JD, i = 1,...,m (recall thatD is the set of
discontinuity points off),

3.4,>0,i=1,...,m, and

4, u; €Q,i=1,...,m.
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Let () > 0 be such that fob < ¢ < e(7) we have[t; — f;,t;] C [to,ty] for all 4, and
[ti—eli, ti] [t —¢elj,t;] = ¢ fori # j. Thenfor0 < e < ¢(r),the perturbed controk,. .(-) € U
corresponding tor is defined by

(t)* U; forallte[ti—s&,ti],z‘:l,...,m
U\ = wr(t) otherwise .

Definition: Any vector{ € R™ is said to be aerturbationfor z{, and a functionz . . defined for
¢ > 0is said to be gerturbed initial conditionif

lim — g
e—0 x(&vs) - xo ’

and

lim %(x(f,e) - xé) = f .

e—0

Now let CC*(t) = ¢(t,t0,x8,u*(-)) and |et$5(t) = qb(t,to,IE(§76),U(7T76)(')). Let q)(tg,tl) =
O(to,t1,xz*(t1), u*(-)). The following lemma gives an estimate ©f(t) — z.(¢). The proof of the
lemma is a straightforward exercise in estimating differences of solutions to differential equations,
and it is omitted (see for example (Lee and Markus [1967])).

Lemma 1ilirr(1) |ze(t) — 27(t) — eh(r o) (t)] = 0 for t € [to, t1], whereh, ) (-) is given by
E—

h(ms)(t) = (I)(t,to)f ,t € [to,tl)
= ®(t,t0)6 + Pt t1)[f (b1, 2™ (t1),ur) — f(tr, 2™ (t1), u*(t1)))lr 5 t € [t1,t2)

= B(t,10)6 + Y B(t,15)[f(t), 2" (t;), w5) — f (5,27 (85), 0" (8))]E; , t € [tistis1)

J=1

= Ot )€+ D Bt t)[f (" (85),05) — F(tj, " (8), 0t ¢ € [tmaty]
j=1
(See Figure 8.1.)

We callh, ¢ (-) thelinearized (trajectory) perturbation corresponding (o, §).
Definition: Forz € R", t € [to, ] let

K(t,to,2) = {o(t,to, z, u())|u(-) € U}

be the set of states reachable at timstarting at time, in statez, and using controls(-) € U.
Definition: For eacht € [to, /], let

Q(t) = {h(r0)(t)|7is @ pgrturbgtion Qata far*(-), anpl
h(x0)(-)is the linearized perturbation
corresponding tor,0)} .

Remark:By Lemma 1(z*(t)+¢h(r ¢)) belongs to the sk (¢, 2o, z(¢ )) up to an error of ordes(e).
In particular for{ = 0, the setz*(t) + Q(t) can serve as an approximation to the K&t, to, z)).
More precisely we have the following result which we leave as an exercise.
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| _
th té——<> t3 tf

Figure 8.1: lllustration for Lemma.

Exercise 1:(Recall the definition of the tangent cone in 5.1.1.) Show that
Q(t) C C(K(t,to, ), x*(t)) . (8.2)

We can now prove a generalization of Theorem 1 of 7.1.
Theorem 2 Consider the optimal control problem (8.3):

Maximize ¢ (x(ts))
subject to
dynamics: (t) = f(t,z(t),u(t)) , to <t <ty,
initial condition: z(ty) =z , (8.3)
final condition: z(tf) € R" ,
control constraint: u(-) € U, i.e.,u: [to,ts] — Q and
u(-) piecewise continuous

wherey : R"™ — R is differentiable and’ satisfies the conditions listed earlier.
Let w*(-) € U be an optimal control and let*(t) = ¢(t,to, zj,u*(-)), to < t < ty, be the
corresponding trajectory. Let (¢), ¢y <t < t;, be the solution of (8.4) and (8.5):

adjoint equation: p*(t) = —[2L (¢, 2* (t),w*(t))'p*(t), to <t <t; , (8.4)
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final condition: p*(t;) = 7 (x*(ty)) . (8.5)
Thenu*(-) satisfies thenaximum principle
H(ta x*(t)v u* (t)v p* (t)) - M(tv x* (t)vp* (t)) (86)

forall ¢ € [to, ] except possibly for a finite set. [Hefé(t, x, u,p) = p'f(t,z,u,), M(t,z,p) =
SUp(H (¢, z, v, p)|v € QY.
Proof: Sinceu*(-) is optimal we must have
Y(x*(ty)) > (z) forall z € K(ty, to, )
and so by Lemma 1 of 5.1.1
P(a*(ty))h < 0forall h € C(K(ty, to, xg), v (tf))
and in particular from (8.2)

e (x*(ty))h < Oforall h e Q(ty) . (8.7)
Now suppose that (8.6) does not hold from samg D* U D. Then there exists € 2 such that
prE) (7, 2 (t7), v) = f(E", (), w ()] > 0. (8.8)

If we consider the perturbation data= (t*;1; v), then (8.8) is equivalent to
Pr(t*) hroy(t7) >0 . (8.9)

Now from (8.4) we can see that (t*)' = p*(t;)'®(ty,t*). AlSO hizo)(ty) = @(ts, t*)hir o) (t*)
so that (8.9) is equivalent to

P (ts) hiroy(ty) >0
which contradicts (8.7). &

8.1.2 More general boundary conditions.

In Theorem 2 the initial condition is fixed and the final condition is free. The problem involving
more general boundary conditions is much more complicated and requires more refined analysis.
Specifically, Lemma 1 needs to be extended to Lemma 2 below. But first we need some simple
properties of the set@(¢) which we leave as exercises.

Exercise 2: Show that

(i) Q(t)isaconej.e,if h € Q(t)andX > 0, thenAh € Q(t),

(i) fortg <ty <to <ty, ®(t2,£1)Q(t1) C Q(t2) .

Definition: Let C(¢) denote the closure @p(¢).

Exercise 3:Show that

(i) C(t)is aconvex cone,

(II) for tg <t1 <ty < tf, (I)(tg,tl)C(tl) - C(tQ) .

Remark:From Lemma 1 we know that if € C(t) then(z*(¢) 4+ ch) belongs taK (t, to, *(to)) up
to an error of ordeo(s). Lemma 2, below, asserts further thakifs in the interior ofC'(¢) then in
fact (x*(t) +ch) € K(t,to,2*(to)) for e > 0 sufficiently small. The proof of the lemma depends
upon some deep topological results and is omitted. Instead we offer a plausibility argument.
Lemma 2:Let h belong to the interior of the cor@(t). Then for alle > 0 sufficiently small,
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(x*(t) +eh) € K(t,tg,x5) - (8.10)
Plausibility argument(8.10) is equivalent to

ch € K(t.to, 2" (to)) — {a* (1)} | (8.11)

where we have moved the origin 46 (¢). The situation is depicted in Figure 8.2.

Figure 8.2: lllustration for Lemma.

Let C’(s) be the cross-section @f(¢) by a plane orthogonal th and passing throughh. Let
K (¢) be the cross-section @ (¢, to, =) — {x*(to)} by the same plane. We note the following:

(i) by Lemma 1 the distance betweélfs) and K (¢) is of the ordern(e);
(i) since h is in the interior ofC(), the minimum distance betweer and C(¢) is dc where
0 > 0is independent of.
Hence fore > 0 sufficiently smallsh must be trapped inside the S€1c).

(This would constitute a proof except that for the argument to work we need to show that there
are no “holes” ink (¢) through whicheh can “escape.” The complications in a rigorous proof arise
precisely from this drawback in our plausibility argument.) O

Lemmas 1 and 2 give us a characterizatiorkat, ¢y, z{;) in a neighborhood of*(¢) when we
perturb the control*(-) leaving the initial condition fixed. Lemma 3 extends Lemma 2 to the case
when we also allow the initial condition to vary over a fixed surface in a neighborhoggl of

Letg” : R™ — R‘ be a differentiable function such that thg x n matrix ¢%(z) has rank
l for all z. Lett® € R™ be fixed and lef® = {z[¢"(z) — 8}. Suppose that} € T° and let
TOxy) = {€|g%(x)¢ = 0}. Thus, T9(zf) + {x}} is the plane throughy, tangent to the surface
T°. The proof of Lemma 3 is similar to that of Lemma 2 and is omitted also.

Lemma 3:Let k belong to the interior of the confe” () + ® (¢, to)T°(xf)}. Fore > 0leth(s) € R™

be such that limh(c) = 0, andlir%(g)h(s) = h. Then fore > 0 sufficiently small there exists
zo(e) € T such that

(x*(t) + h(e)) € K(t,to,zo(e)) .
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We can now prove the main result of this chapter. We keep all the notation introduced above.
Further, letg/ :  R™ — R/ be a differentiable function such th@i(m) has rank?, for all .
Letb/ € R" be fixed and lef/ = {z|g/ (z) — b/}. Finally, if 2*(t;) € T/ let T/ (z*(ts)) =

{€lgl (" (tp))€ = 0}

Theorem 3:Consider the optimal control problem (8.12):

Maximize ) (x(ts))
subject to
dynamics: @(t) = f(t,z(t),u(t)) , to <t <ty ,
initial conditions: ¢°(z(to)) = " , (8.12)
final conditions: g/ (z(t¢)) = b/ ,
control constraint: u(-) € U,i.e., u: [to,ty] — Q and
u(-) piecewise continuous

u(t

Letu*(:) € U, letx} € T° and letz*(t) = ¢(t,to, xf, u*(-)) be the corresponding trajectory.
Suppose that*(t;) € T/, and suppose thdt:*(-), =) is optimal. Then there exist a number
p; > 0, and a functiorp® :  [to,ts] — R", not both identically zero, satisfying

adjoint equation: p*(t) = —[2L (¢, 2* (t),u*(t))]'p*(t), to <t <ty (8.13)
initial condition: p*(to) LT°(z}) (8.14)
final condition: (p*(t¢) — psVeb(z*(ts))) LT (z*(ty)) . (8.15)

Furthermore, thenaximum principle
H(t, 2 (t), u*(t),p"(t)) = M(t,2"(t), p (1)) (8.16)

holds for allt € [to, t ;] except possibly for afinite set. [Hefé(t, z, p,u) = p'f(t,x,u,), M(t,z,p) =
SUp(H (t, 2, v, p)|v € Q}].

Proof: We break the proof up into a series of steps.
Step 1.By repeating the argument presented in the proof of Theorem 2 we can see that (8.15) is
equivalent to

p*(ty)'h <0 forall heClty) . (8.17)

Step 2.Define two convex setS;, S, in R as follows:

Si = {(y. W)y >0, h € T (a*(t7))},

S = {(y, W)ly = Yu(a*(t;)h, b€ {Clty) + B(ty, to)TO(xf)}} -

We claim that the optimality ofu*(-), zj) implies thatS; N Relative Interior(S2) = ¢. Suppose
this is not the case. Then there exists 77/ (z*(t¢)) such that

Yoz (tr)h >0 (8.18)
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h € Interior{C (t) + ®(ts,t0)T°(z})} - (8.19)

Now by assumptiory;{(x*(tf) has maximum rank. Sincﬁ(x*(tf))h = 0 it follows that the
Implicit Function Theorem that far > 0 sufficiently small there exists(¢) € R™ such that

g/ (@*(ty) + h(e) =0, (8.20)

and, moreoverh () — 0, (1/¢)h(e) — h ase — 0. From (8.18) and Lemma 3 it follows that for
e > 0 sufficiently small there existsy(¢) € T° andu.(-) € U such that

z*(ty) + h(e) = d(tg, to, zo(e), uc(-))

Hence we can conclude from (8.20) that the gair(c), u-(-)) satisfies the initial and final condi-
tions, and the corresponding value of the objective function is

P(a*(ty) + h(e)) = (™ (ty)) + ve(@*(tr))h(e) + o(|h(e)])
and sinceh(e) = ch + o(c) we get
P(a*(ty) + h(e)) = (@™ (ty)) + &)™ (tr))h + ole) ;
but then from (8.18)
Px*(ty) + h(e)) > P(a*(tf))

for ¢ > 0 sufficiently small, thereby contradicting the optimality(af (-), x7).
Step 3.By the separation theorem for convex sets there gyist R, p; € R", not both zero, such
that

Poy' + piht > poy® + pih? forall (v',h') € S, i=1,2 . (8.21)

Arguing in exactly the same fashion as in the proof of Lemma 1 of 7.2 we can conclude that (8.21)
is equivalent to the following conditions:

ﬁO Z 0 )
PLT! (@ (1)) | (8.22)
D(t s, t0) (PoVib(x*(ts)) + p1) LTO(xp) (8.23)
and
(Povz(x*(tf)) + p1)h < Oforall h € C(ty) . (8.24)

If we let p = po andp*(ty) = poVip(x*(ty)) + p1 then (8.22), (8.23), and (8.24) translate respec-
tively into (8.15), (8.14), and (8.17). &
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8.2 Integral Objective Function

In many control problems the objective function is not given as a funafi@r(t)) of the final
state, but rather as an integral of the form

7 ot (t),ult)dt . (8.25)

to
The dynamics of the state, the boundary conditions, and control constraints are the same as before.
We proceed to show how such objective functions can be treated as a special case of the problems
of the last section. To this end we defined thggmented systemith state variable: = (zg,x) €
R'*™ as follows:

L[ @o(t) | _ | folt,a(t), ult))
x‘L%] “”“(m‘{ﬂmmmm}
The initial and final conditions which are of the form
¢ (x) =1v°, g/ (x) = b are augmenteg’(z) = [ gg”&) } =0 = [ b% ]

andgf () = ¢/ (x) = b/. Evidently then the problem of maximizing (8.25) is equivalent to the
problem of maximizing

Y(E(ty)) = zo(ty) |
subject to the augmented dynamics and constraints which is of the form treated in Theorem 3 of
Section 1, and we get the following result.
Theorem 1:Consider the optimal control problem (8.26):

ty

Maximize | = fo(t,z(t), u(t))dt
t

subject to ’

dynamics: (1) = /(t,a(t), u(t)), to <t < t; | (8.26)
initial conditions: ¢°(z(ty)) = #° ,

final conditions: ¢/ (z(ts)) = b/ ,

control constraint: u(-) e U .

Letu*(-) € U, letz) € T° and letz*(t) = ¢(t, to, x5, u*(-)), and suppose that'(t;) € T7. If
(u*(-), z§) is optimal, then there exists a functiph = (pf,p*) : [to.ts] — R'*™, notidentically
zero, and withp{(t) = constant angy;(¢) > 0, satisfying
(augmented) adjoint equationp* (t) = —[%(t,x*(t),u*(t))]’ﬁ*(t) ,
initial condition: p*(to) L7T°(z})
final condition: p*(t;) LT/ (z*(tf)) .

Futhermore, thenaximum principle
H(t,a*(t),p*(t), u™(t)) = M(t,z*(t),p"(t))
holds for allt € [to,t;] except possibly for a finite set. [Hed (t,z,p,u) = §'f(t,z,u) =
pofo(t,x,u) + p' f(t,z,u), andM (t,z, p) = sup{H (t,z, p,v)|v € Q}.]
Finally, if fo andf do not explicitly depend on, thenM (¢, z* (), 5*(t)) = constant.

Exercise 1:Prove Theorem 1. (Hint: For the final part show thétdt) M (¢, z*(t), 5*(t)) = 0.)
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8.3 Variable Final Time

8.3.1 Main result.

In the problem considered up to now the final timeis assumed to be fixed. In many important
cases the final time is itself a decision variable. One such case is the minimum-time problem where
we want to transfer the state of the system from a given initial state to a specified final state in
minimum time. More generally, consider the optimal control problem (8.27).

Ly

Maximize fo(t,x(t),u(t))dt
t

subject to ’

dynamics: (t) = f(t,z, (t),u(t)), , to <t <ty ,
initial condition: ¢°(xz(tg)) = b° ,

final condition: ¢/ (x(t)f)) = b/,

control constraint: u(-) e U ,

final-time constraint: ¢ € (¢, 00) .

(8.27)

We analyze (8.27) by converting the variable time intef¥@alt ;] into a fixed-time interval0, 1].
This change of time-scale is achieved by regardirmg a new state variable and selecting a new
time variables which ranges ovelf, 1]. The equation fot is

dt(s)
ds

=a(s),0<s<1,
with initial condition
t(0) =tg .
Herea(s) is a new control variable constrained bys) € (0, co). Now if z(-) is the solution of
(t) = f(t,x(t),u(t)), to <t <ty, x(ty) = x0 (8.28)

and if we define

then it is easy to see that-) is the solution of
%(s) =a(s)f(s,z(s),v(s)), 0<s<1 2(0) =z . (8.29)
Conversely from the solution(-) of (8.29) we can obtain the solutiat{-) of (8.28) by
x(t) = 2(s(t)) | to<t<ty .

wheres(-) : [to,tf] — [0,1] is the functional inverse of(t); in fact, s(-) is the solution of the
differential equations(t) = 1/a(s(t)), s(to) = 0.
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With these ideas in mind it is natural to consider the fixed-final-time optimal control problem
(8.30), where the state vect(r, z) € R'*™, and the contro{a,v) € R17 :

1
Maximize / fo(t(s), z(s),v(s))a(s)ds
0
squect to
dynamics: ((s).£(s)) = (f(t(s).2(s). v(s))a(s), a(s)), 6.0)
initial constraint: ¢°(z(0)) = v°, #( '
final constraint: g/ (z(1)) = b/, ¢(1)
control constraint: (v(s), a(s)) € Q2
for0 <s <1anduv(-),a(-) piecewise continuous

The relation between problems (8.27) and (8.30) is established in the following result.

Lemma 1:(j) Let =5 € T%, u*(-) € U, t} € (to,00) and letz*(t) = ¢(t, to, x5, u*(-)) be the
corresponding trajectory. Suppose tln‘a(t}) € T/, and suppose that*(-), =, t’}) is optimal for
(8.27). Definez, v*(-), anda*(-) by

* %
20 = Iy

v*(s) = u(to + st} —to)) ,0<s<1,
a*(s):(t}—to) ,0<s<1.

Then((v*(-),a*(+)), 25 ) is optimal for (8.30).

(i) Let 25 € 79, and let(v*(-), o*(-)) be an admissible control for (8.30) such that the correspond-
ing trajectory(¢*(-), z*(-)) satisfies the final conditions of (8.30). Suppose ftiat(-), a*(-)), 2)

is optimal for (8.30). Definef, u*(-) € U, andt} by

xy =2,
ur(t) =v*(s*(t)) , to<t <t}
tp =1,

wheres*(-) is functional inverse of*(-). Then(u*(-), 2, t}) is optimal for (8.27).

Exercise 1:Prove Lemma 1.

Theorem 1Lletu*(-) € U, letxj € TO, lett} € (0,00), and let

z*(t) = d(t, to, x5, u™ (1)), to <t < ty, and suppose that'(t}) € T/, If (u*(-), 5, t}) is optimal
for (8.27), then there exists a functiph = (p§, p*) : [to, t;‘c] — R*™ not identically zero, and
with p(t) = constant angh(t) > 0, satisfying

(augmented) adjoint equation:

oz 8.31
b (1) = —[ e O O ) (63D

initial condition: p*(to) LT°(z}) (8.32)
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final condition: p*(t})J_Tf(x*(t})) . (8.33)
Also themaximum principle
H(t,a*(1), (1), u* (1) = M (¢, 2 (8), 5" (1)) (8.34)
holds for allt € [to, ;] except possibly for a finite set. Furthermor]émust be such that
H(t, a*(£5), 9 (), u*(£3)) = 0 . (8.35)

0.

Finally, if fo and f do not explicitly depend on, thenM(t, x*(t),p*(t))

Proof: By Lemma 125 = a5, v*(s) = u*(to + s(t} — to)) anda*(s) = (t} —tp) for0 < s <1
constitute an optimal solution for (8.30). The resulting trajectory is

2*(s) = x*(to + s(t} —t0)), t"(s) = to + s(t} —to), 0 < s <1 ,sothatin particular

2*(1) = z*(t}).

By Theorem 1 of Section 2, there exists a function= (A5, \*, \5.,) = [0,1] — R+ not
identically zero, and with\{(s) = constant and;(s) > 0, satisfying

A (t) 0 T
A*(t) {152 (# (), 2" (), " ()] N5 (5)
adjoint equation: = — -l—[%(t*(s), 2*(s),v*(8))] X*(s) }a*(s) (8.36)
N0 (GR 0 (5). 2 (). 0" () Ni(o)
|G (9), 2% (), 07 () X (5) b ()|
initial condition: A*(0) L7T°(z) (8.37)
final condition: A*(1) LT/ (z*(1)) , A5, (1) =0. (8.38)

Furthermore, the maximum principle

M)A(< )(JZ( <(>)’ <<‘°3”0‘?<‘§3 () + Ao (5)0*(5)

+X*(s) f(t* v(s))a(s) + A5 (s)a* (s

— sup{[N () fo(t*(s), 2* (), w)B B (8:39)
X (s) (8 (5), 2°(5), )3 + N (5)Blw € 2, B € (0,00)}

holds for alls € [0, 1] except possibly for a finite set.
Lets*(t) = (t —to)/(t} —to), to <t <}, and defing™ = (pj,p*) = [to, 7] — R by

po(t) = Ag(s™ (), p*(t) = A*(s*(¢)), to <t <1 . (8.40)

First of all, p* is not identically zero. Becausejif = 0, then from (8.40) we have\j, A*) = 0 and
then from (8.36),\;; . ; = constant, but from (8.38)\" , ;(1) = 0 so that we would hava* = 0
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which is a contradiction. Itis trivial to verify that*(-) satisfies (8.31), and, on the other hand (8.37)
and (8.38) respectively imply (8.32) and (8.33). Next, (8.39) is equivalent to

Ao(8)fo(t(s)

2*(s),0(s))
X () F(E4(5), 2% (5),0* () + Ny (5) = O (8.41)
and
N() ol (), 2% (5), " ()) + N () F(#*(5), 2* (), 0" (5)) 8.4
= SUD{IN(5) folt (5), 2" (5), w) + A* () F(*(s), =*(s), w)]lw € 2. '

Evidently (8.42) is equivalent to (8.34) and (8.35) follows from (8.41) and the facithat(1) =

0.
Finally, the last assertion of the Theorem follows from (8.35) and the facf\mam: (t),p"(t)) =
constant iffy, f are not explicitly dependent an O

8.3.2 Minimum-time problems

We consider the following special case of (8.27):

ly
Maximize / (—=1)dt
to
subject to

dynamics: @(t) = f(t,z(t),u(t)), to <t <ty
initial condition: x(ty) = zo ,

final condition: x(t¢) = z¢ ,

control constraint: u(-) e U

final-time constraint: ¢ € (¢, 00) .

(8.43)

In (8.43),z0, z s are fixed, so that the optimal control problem consists of finding a control which
transfers the system from statg at timet, to statex; in minimum time. Applying Theorem 1 to
this problem gives Theorem 2.

Theorem 2Lett} € (tg,00) and letu” = [to, 7] — €2 be optimal. Letz*(-) be the corresponding
trajectory. Then there exists a functiph: [to,¢}] — R", not identically zero, satisfying

adjoint equation:p* (t) = —[5L (¢, 2* (), u* (1))'p*(t), to <t <t

initial condition: p*(tg) € R™ ,

final condition: p*(¢}) € R" .

Also themaximum principle

H(t, 2" (t), p*(t), u”(t)) = M(t, 2*(t),p"(t)) (8.44)

holds for allt € [to,t}] except possibly for a finite set.
Finally,

M(t}vx*(tf)vp*(tf)) >0 (845)
and if f does not depend explicitly anthen
M(t,z*(t),p*,(t)) = constant. (8.46)
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Exercise 2:Prove Theorem 2.
We now study a simple example illustrating TheorenEample 1:The motion of a particle is
described by

mi(t) + o (t) = u(t) ,

wherem = massg = coefficient of friction,u = applied force, and = position of the particle. For
simplicity we suppose that € R, v € R andu(t) constrained byu(t)| < 1. Starting with an
initial condition z(0) = z01,4(0) = 22 we wish to find an admissible control which brings the
particle to the state = 0,4 = 0 in minimum time.

Solution: Takingx; = z, x2 = & we rewrite the particle dynamics as

x.l(t) - 0 1 $1(t) 0
[@(f)]_[o—a“@(tﬂ*[b}“(t)v (8.47)
wherea = (o/m) > 0 andb = (1/m) > 0. The control constraint set {3 = [—1,1].

Suppose that*(-) is optimal andc*(+) is the corresponding trajectory. By Theorem 2 there exists
a non-zero solutiop*(-) of

[p*f(t) ] - [ 0 0 ] [PW) } (8.48)

P3(t) 1 —a | [ p)

such that (8.44), (8.45), and (8.46) hold. Now the transition matrix function of the homogeneous
part of (8.47) is

B(t,7) = [(1)

1
a

(1—eolt=7) }

e—a(t—T)

so that the solution of (8.48) is

o]l =00

or

and

p3(t) = £pi(0) + e (=5 pi(0) +p5(0)) - (8.49)

The HamiltonianH is given by

H(z*(t), p*(t),v) = (pi(t) — aps(t))x3(t) + bps(t)v
= e (p}(0) — ap3(0))x5(t) + pbs(t)v
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so that from the maximum principle we can immediately conclude that
+1 if pi(t) >0,
u*(t) =< —1if p3(t) <O, (8.50)
7 0f pi(t) =0 .
Furthermore, since the right-hand side of (8.47) does not depenéxplicitly we must also have

e (p3(0) — api(0))z5(t) + bpi(t)u*(t) = constant (8.51)

We now proceed to analyze the consequences of (8.49) and (8.50). First of alp$ince=
p3(0), p5(-) can have three qualitatively different forms.
Case 1.—p3(0) + ap3(0) > 0: Evidently then, from (8.49) we see thgi(¢) must be a strictly
monotonically increasing function so that from (8.50)-) can behave in one of two ways:

either

w(E) = —1 for t < and pi(t) <0 for t <1,
| +1 for t>¢ and pi(t) > 0 for t >,

or
u*(t) =41 and pi(t) >0 forallt.
Case 2.—p;(0) + ap5(0) < 0 : Evidentlyu*(-) can behave in one of two ways:

either

() = +1 for t <t and pi(t) >0 for t <1,
| —1 for t>% and pi(t) <0 for t > 1,

or
u*(t) = —1 and p*(t) < 0 forall .

Case 3.—p3(0) + ap5(0) = 0 : In this casep;(t) = (1/a)p;(0). Also sincep*(t) # 0, we must
have in this casg;(0) # 0. Henceu*(-) we can behave in one of two ways:

either

or
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Thus, the optimal contral* is always equal to +1 or -1 and it can switch at most once between
these two values. The optimal control is given by

u*(t) = sgn p3(t)
= sgn[2p}(0) + e (=L p3(0) + p3(0))] .

Thus the search for the optimal control reduces to fingif(@), p5(0) such that the solution of the
differential equation

izwz

iy = —as + b SgTLp}(0) + e (~ Lpi(0) + p3(0))] | (8:52)
with initial condition
21(0) = @10, 220 = T20 (8.53)
also satisfies the final condition
z1(t}) =0, @2(t}) =0, (8.54)

for somet} > 0; and thert} is the minimum time.

There are at least two ways of solving the two-point boundary value problem (8.52), (8.53), and
(8.54). One way is to guess at the valugtf0) and then integrate (8.52) and (8.58)wardin time
and check if (8.54) is satisfied. If (8.54) is not satisfied then mqdif@) and repeat. An alternative
is to guess at the value of (0) and then integrate (8.52) and (8.33ckwardin time and check of
(8.53) is satisfied. The latter approach is more advantageous because we know that any trajectory
obtained by this procedure is optimal for initial conditions which lie on the trajectory. Let us follow
this procedure.

Suppose we choogg (0) such that—p;(0) = ap3(0) = 0 andp3(0) > 0. Then we must have
u*(t) = 1. Integrating (8.52) and (8.54) backward in time give us a trajec@rywhere

&i(t) = =&(1)
§2(t) = aba(t) — b
with
€1(0) —&(0) =0 .
This gives
G(h) = 2(~t+ 50 &lt) = L1 —e)

which is the curveO A in Figure 8.3.
On the other hand, i#*(0) is such that-p3(0) + ap’(0) = 0 andp3(0) < 0, thenu*(t) = —1
and we get

E(t) = —2(—t+ =) Ht) =21 —et) |

which is the curve) B.
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A

Figure 8.3: Backward integration of (8.52) and (8.54).

Next suppose*(0) is such that-pi(0) + ap5(0) > 0, andp3(0) < 0. Then[(1/a)p;(0) +
e (—(1/a)p%(0) + p3(0))] will have a negative value far € (0,#) and a positive value fot €
(t,00). Hence, if we integrate (8.52), (8.54) backwards in time we get traje¢tojywhere

D =-60) .y tor 1<
bt =06 {7} for 157

with £ (0) = 0,&(0) = 0. This give us the curv®CD. Finally if p*(0) is such that-p3(0) +
aps(0) < 0, andp3(0) < 0, thenu*(t) = 1fort < # andu*(t) = —1for t > ¢, and we get the
curveOEF.

We see then that the optimal contidi(-) has the following characterizing properties:

“(t) = 1 if a*(t) is aboveBOAor onOA
CWTA=1 if 2*(t) is belowBOAor onOB.

Hence we can synthesize the optimal control in feedback frefit) = ¢ (z*(t)) where the

B ur = -1 x2
e
— ] u =1
|
ut = -1 @ o
\\»/
U/E

Figure 8.4: Optimal trajectories of Example 1.
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functiony : R? — {1,—1} is given by (see Figure 8.4)

o )= 1 if (x1,x9) is aboveBOAor onOA
TP T 21 if (21, 20) is belowBOAor onOB.

8.4 Linear System, Quadratic Cost

An important class of problems which arise in practice is the case when the dynamics are linear and
the objective function is quadratic. Specifically, consider the optimal control problem (8.55):

- 1
Minimize /O S/ (OP(@)a(t) + o (D)@ u(t) dr

subject to
dynamics: (t) = A(t)z(t) + B(t)u(t), 0<t<T, (8.55)
initial condition: z(0) = z¢ ,
final condition: Gz (t) = b/ ,
control constraint: u(t) € RP, u(-) piecewise continuous.

In (8.56) we assume thdt(¢) is ann x n symmetric, positive semi-definite matrix whereg) is
ap x p symmetric, positive definite matrbxG7 is a given/; x n matrix, andzg € R", vl € RY
are given vectorsT is a fixed final time.

We apply Theorem 1 of Section 2, so that we must search for a nupjber0 and a function
p*: [0,7] — R", not both zero, such that

p*(t) = —p(=P()a"(t)) — A'(H)p*(t) (8.56)
and
P& LTI (a*(t) = {£|G7¢ = 0} . (8.57)
The Hamiltonian function is

Ht, 2% (), 5* (1), v) = —pila () P(0)2* (1) + v/ Q(t)o]
+p*(t)'[A(t)z*(t) + B(t)v]

so that the optimal contral*(¢) must maximize
—2piv'Q(t)v + p*(t)'B(t)v for v e RP . (8.58)
If p§ > 0, this will imply
u*(t) = QOB (1) (8.59)
whereas ifp; = 0, then we must have
p*(t)B(t) =0 (8.60)

because otherwise (8.58) cannot have a maximum.
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We make the following assumption about the system dynamics.
Assumption: The control system(t) = A(t)x(t) + B(t)u(t) is controllable over the interval
[0,T7]. (See (Desoer [1970]) for a definition of controllability and for the properties we use below.)
Let ®(¢, 7) be the transition matrix function of the homogeneous linear differential equation-
A(t)z(t). Then the controllability assumption is equivalent to the statement that fof anit™

Eo(t,7)B(t)=0,0<7<T, implies¢ =0 . (8.61)

Next we claim that if the system is controllable thein+# 0, because ip; = 0 then from (8.56)
we can see that

p*(t) = (®(T'1))'p*(T)
and hence from (8.60)
(p*(t))®(T,t)B(t)=0,0<t<T ,

but then from (8.61) we get*(7") = 0. Hence ifp; = 0, then we must havg*(¢) = 0 which is a
contradiction. Thus, under the controllability assumptigin;> 0, and hence the optimal control is
given by (8.59). Now ifp§ > 0itis trivial thatp*(t) = (1, (p*(¢)/p§)) will satisfy all the necessary
conditions so that we can assume thgt= 1. The optimal trajectory and the optimal control is
obtained by solving the following two-point boundary value problem:

(1) = A()a* () + B()Q () B ()p*(¢)
B(t) = P(O)x*(t) — A/ (t)p*(t)
2*(0) = w0, GIa*(T) = bl | p*(T) LT/ (2*(T)) .

For further details regarding the solution of this boundary value problem and for related topics see
(See and Markus [1967]).

8.5 The Singular Case

In applying the necessary conditions derived in this chapter it sometimes happefséithat(t), p*(t), v)
is independent of for values oft lying in a non-zero interval. In such cases the maximum principle
does not help in selecting the optimal value of the control. We are faced with the so-called singular
case (because we are in trouble—not because the situation is rare). We illustrate this by analyzing
Example 4 of Chapter 1.

The problem can be summarized as follows:

Maximize/OT c(t)dt = /OT(1 — (1)) f(k(t))dt

subject to

dynamics: k(t) = s(t)f (k(t)) — pk(t) , 0 <t < T

initial constraint: k£(0) = ko ,

final constraint: k(t) € R

control constraint: s(t) € [0, 1], s(-) piecewise continuous.
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We make the following assumptions regarding the production fungtion

fk(k) > 0, fkk(K) <0 forall k , (862)

lim fi(k) = oo . (8.63)

Assumption (8.62) says that the marginal product of capital is positive and this marginal product
decreases with increasing capital. Assumption (8.63) is mainly for technical convenience and can
be dispensed with without difficulty.

Now suppose that* : [0,7] — [0, 1] is an optimal savings policy and lét(¢), 0 < ¢ < T,
be the corresponding trajectory of the capital-to-labor ratio. Then by Theorem 1 of Section 2, there
exist a numbepj > 0, and a functiorp* :  [0,7] — R, not both identically zero, such that

pr(t) = —po(1 — s7(8)) fe(K* () — p*(O)[s* (1) fe(K*(2)) — 1] (8.64)
with the final condition
p"(T)=0 , (8.65)

and the maximum principle holds. First of all,jiff = 0 then from (8.64) and (8.65) we must also
havep*(t) = 0. Hence we must havg;, > 0 and then by replacingp;, p*) by (1/p)(p5, p*) we
can assume without losing generality thgt= 1, so that (8.64) simplifies to

pr(t) = =1(1 = s"()) fe (K (1)) — p*(0)[s™ () fu (K™ (£)) — p] - (8.66)

The maximum principle says that

H(t, k2 (), p* (), s) = (1= 8) f(k*(t)) + p™ () [sf (K" (£)) — pk™ ()]

is maximized oves € [0, 1] ats*(¢), which immediately implies that

1if p*(t) > 1
s*(t) = { 0 if p*(t) <1 (8.67)

Tif pr(t) =1

We analyze separately the three cases above.
Case 1p*(t) > 1,s*(t) = 1 : Then the dynamic equations become

ke (t) = F(k*(8)) — pk*(t)
p*(t) = —p* () [fu(k*(t) — p] . (8.68)
The behavior of the solutions of (8.68) is depicted in thep)—, (k,t)— and (p, t)—planes in

Figure 8.5. Heré, ky are the solutions ofy(kg) — p = 0 and f (kas) — pwk = 0. Such solutions
exist and are unique by virtue of the assumptions (8.62) and (8.63). Futhermore, we note from

(8.62) thatk < ks, and f(k) — p So according a% S ke whereasf (k) — pk 20 according
ask ; kas. (See Figure 8.6.)
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p fr. > ,U\Tik/fk < fl
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> pk—=a f < pk
k"G kiM k t
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N
t

Figure 8.5: lllustration for Case 1.

Case 2p*(t) < 1,s*(t) = 0: Then the dynamic equations are

R (t) = —pk*(t)
pr(t) = —fiu(k*(t)) + up*(t)

giving rise to the behavior illustrated in Figure 8.7.

Case 3p*(t) = 1, s*(t) =?: (Possibly singular case.) Evidentlypif(¢) = 1 only for a finite set of
timest then we do not have to worry about this case. We face the singular case phly)it= 1
for t € I, wherel is a non-zero interval. But then we haygt) = 0 for ¢ € I so that from (8.66)
we get

—(L=s"(O)fr(k*(#) = [ () fu(k*(t)) —p] = Ofort e I,
SO
—fe(k*(t)) +p=0 for tel ,
or

k*(t) = kg for teT | (8.69)

In turn then we must havie* (t) = 0 for ¢ € I so that
s*(t)f(kg) — nKg =0forte I ,
and hence,

$5(t) = pras for tel . (8.70)
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line of slopey

Figure 8.6: lllustration for assumptions (8.62), (8.63).

Thus in the singular case the optimal solution is characterized by (8.69) and (8.70), as in Figure 8.8.

We can now assemble separate cases to obtain the optimal control. First of all, from the final
condition (8.65) we know that far close to7', p*(t) < 1 so that we are in Case 2. We face two
possibilities: Either (A)

p*(t) <1 forall t<|[0,T]
and thens*(t) = 0, k*(t) = koe *, for0 <t < T, or (B)
there existsy € (0,7) such thap*(te) = 1 andp*(t) < 1forty <t <T .

We then have three possibilities depending on the valu€ @f):
(Bi) k*(t2) < kg : thenp*(t2) < 0 so thatp*(t) > 1 for ¢t < t, and we are in Case 1 so that
s*(t) = 1fort < ty. In particular we must haviey < k¢
(Bii) k*(t2) > k¢ : thenp*(2) > 0 but thenp*(t2 + €) > 1 for e > 0 sufficiently small and since
p*(T) = 0 there must exists € (t2,7") such thaip*(¢3) = 1. This contradicts the definition @§
so that this possibility cannot arise.
(Biii) k*(t2) — k¢ : then we can have a singular arc in some intefvalt2) so thatp*(t) =
1,k*(t) = kg, ands*(t) = u(ka/f(kq)) fort € (t1,t2). Fort < t; we either havep*(t) >
1,s%(t) > 1if kg < kg, orwe havep™(t) < 1, s*(t) =01if k > kq.

The various possibilities are illustrated in Figure 8.9.

The capital-to-labor ratid is called thegolden mearand the singular solution is called the
golden path.The reason for this term is contained in the following exercise.

Exercise 1:A capital-to-labor ratid: is said to besustainabléf there existss € [0, 1] such that
sf(k) — uk = 0. Show thatk is the unique sustainable capital-to-labor ratio which maximizes
sustainable consumptign — s) f (k).
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P ko

Figure 8.7: lllustration for Case 2.

8.6 Bibliographical Remarks

The results presented in this chapter appeared in English in full detail for the first time in 1962 in the
book by Pontryaginet al,, cited earlier. That book contains many extensions and many examples
and it is still an important source. However, the derivation of the maximum principle given in the
book by Lee and Markus is more satisfactory. Several important generalizations of the maximum
principle have appeared. On the one hand these include extensions to infinite-dimensional state
spaces and on the other hand they allow for constraints on the state more general than merely initial
and final constraints. For a unified, but mathematically difficult, treatment see (Neustadt [1969]).
For a less rigorous treatment of state-space constraints see (Jacettsip[1,971]), whereas for a
discussion of the singular case consult (Kelletyal. [1968]).

For an applications-oriented treatment of this subject the reader is referred to (Athans and Falb
[1966]) and (Bryson and Ho [1969]). For applications of the maximum principle to optimal eco-
nomic growth see (Shell [1967]). There is no single source of computational methods for optimal
control problems. Among the many useful techniques which have been proposed see (kasdon,
al.,, [1967]), (Kelley [1962]), (McReynolds [1966]), and (Balakrishnan and Neustadt [1964]); also
consult (Jacobson and Mayne [1970]), and (Polak [1971]).



118 CHAPTER 8. CONINUOUS-TIME OPTIMAL CONTROL
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Figure 8.8: Case 3. The singular case.
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Figure 8.9: The optimal solution of example.
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Chapter 9
Dynamic programing

SEQUENTIAL DECISION PROBLEMS: DYNAMIC PROGRAMMING FORMULATION

The sequential decision problems discussed in the last three Chapters were analyzed by varia-
tional methodsj.e., the necessary conditions for optimality were obtained by comparing the op-
timal decision with decisions in a small neighborhood of the optimum. Dynamic programming
(DP is a technique which compares the optimal decision wlitithe other decisions. This global
comparison, therefore, leads to optimality conditions whichsaficient The main advantage of
DP, besides the fact that it give sufficiency conditions, is that DP permits very general problem for-
mulations which do not require differentiability or convexity conditions or even the restriction to a
finite-dimensional state space. The only disadvantage (which unfortunately often rules out its use)
of DP is that it can easily give rise to enormous computational requirements.

In the first section we develop the main recursion equation of DP for discrete-time problems. The
second section deals with the continuous-time problem. Some general remarks and bibliographical
references are collected in the final section.

9.1 Discrete-time DP

We consider a problem formulation similar to that of Chapter VI. However, for notational conve-
nience we neglect final conditions and state-space constraints.

N-1
Maximize Y " fo(i, z(i), u(i)) + ®(x(N))
1=0
subject to (9.1)
dynamics: z(i + 1) = f(¢,x(3),u(i)) , i =0,1,...,N — 1,
initial condition: z(0) = =g ,
control constraint: u(i) € Q; , i =0,1,...,N —1 .

In (9.1), the state:(i) and the controk(i) belong to arbitrary setX andU respectively.X andU

may be finite sets, or finite-dimensional vector spaces (as in the previous chapters), or even infinite-
dimensional spacesy € X is fixed. The); are fixed subsets @f. Finally fo(i,-,-) : X xU —

R,®: X — R, f(i,-,-) : X xU — X are fixed functions.

121
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The main idea underlying DP involves embedding the optimal control problem (9.1), in which
the system starts in statg at time0, into a family of optimal control problems with the same
dynamics, objective function, and control constraint as in (9.1) but with different initial states and
initial times. More precisely, for each € X andk between) and N — 1, consider the following
problem:

N-1
Maximize " fo(i, x(i), u(i)) + ®(z(N)) .
i=k
subject to (9.2)
dynamics: z(i + 1) = f(i,2(i),u(i)), i =k,k+1,...,N —1,
initial condition: z(k) = x,
control constraint:u(i) € Q;, i =k, k+1,-,N —1 .

Since the initial timek and initial stater are the only parameters in the problem above, we will
sometimes use the indgX.2);, , to distinguish between different problems. We begin with an
elementary but crucial observation.

Lemma 1: Supposeu*(k),...,u* (N — 1) is an optimal control for(9.2); ., and letz*(k) =

x, 2*(k+1),...,2*(N) be the corresponding optimal trajectory. Then for &ny < ¢ < N —
Lu*(€),...,u"(N — 1) is an optimal control fo£9.2), .- (¢).

Proof: Suppose not. Then there exists a contrdl), a(¢ + 1),...,a(N — 1), with corresponding
trajectoryz(¢) = x*(¢), (¢ + 1),...,%(N), such that

N-1
Z foli, (i), a(2)) + @(2(N))

¢ (9.3)

> . fo(i, 2" (@), u™ (7)) + ®(z*(N)) .

-
I

F

I
~

But then consider the contralk), ..., a(N — 1) with
o fur@) , =k 0—1
“(1){ ati)y , i=40,...,N—1,
and the corresponding trajectory, starting in stat timek, is z(k), ..., z(N) where

W ), =kt
(1)_{ #G) , i=0+1,...,N .

T
The value of the objective function corresponding to this control for the protdedyy , is

N—

1
foli, 2(2), (@) + @(Z(n))
i
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by (9.3), so thatu*(k),...,u"(IN — 1) cannot be optimal f09.2);, =, contradicting the hypothesis.
(end theorem)

From now on we assume that an optimal solutio(®t@);, ,, exists for all0 < £ < N —1, and all
x € X. LetV(k,z) be the maximum value @d.2);, .. We callV the(maximum) value function
Theorem 1:DefineV (N, -) by (V(N,z) = ®(x). V(k,x) satisfies the backward recursion equa-
tion

V(k,z) = Max{fo, (k,z,u) + V(k1, f(k,z,u,))|u e Q}, 0<E<N-—-1. 9.9)

Proof: Letz € X, letu*(k),...,u*(N — 1) be an optimal control fof9.2), .., and letz*(k) =
z,...,xz*(N) be the corresponding trajectory bék) = z,...,z(N). We have

N—-1

L[]

fo(i,x*(i),u*(i)) + ©(z*(N))
(9.5)

= ) Joli,x(i),u(@)) + ®(z(N)) -

1=

2@

e

By Lemma 1 the left-hand side of (9.5) is equal to
Jo(k, @, u*(k)) + V(K +1, f(k, 2", u*(F)) .
On the other hand, by the definition Bfwe have

Z fo(i, (i), u(@) + @(x(N)) = fo(k, z, u(k))

+{ Z fo(i, 2(i), u(@)) + ®(x(N)) < fo(k, z,u, (k) + V(k+1, f(k,z,u(k))}

i=k+1

with equality if and only ifu(k+1), ..., u(N — 1) is optimal for(9.2) ;. 1 4 (x+1)- Combining these
two facts we get

Jo(k,zu*(k)) + V(k + 1, f (k, z,u* (k)))
> fo(k,x,u(k)) + V(k +1, f(x7 k u(k)))

for all u(k) € Qy, which is equivalent to (9.4).(end theorem)
Corollary 1: Let u(k),...,u(N — 1) be any control for the problent.2); , and letz(k) =
z,...,x(N) be the corresponding trajectory. Then

V(L x(0)) < fo(l,x(€), u(l)) + V(€ + 1, f(£,x(6),u(l)), k<L<N -1,

and equality holds for ak < ¢ < N — 1 if and only if the control is optimal fo(9.2), ,..
Corollary 2: Fork =0,1,...,N — 1, lety)(k, ) : X — Qi be such that

folk,z,(k,x)) + V(k+ 1, f(k,z,¢(k,x))
= Max{ fo(k,z,u) + V(k+ 1, f(k,z,u))|u € Qx} .

Then w(k, ), = 0,...,N — 1 is anoptimal feedback control, i.efor any k, z the control
u*(k),...,u ( -1) deflned byu*(€) = (L, x*(0)), k < ¢ < N — 1, where
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¥+ 1) = fl,z*(0),Y(l,x*(0)), k<L{<N-1, 2%k)=2x ,

is optimal for (o), ;.

Remark: Theorem 1 and Corollary 2 are the main results of DP. The recursion equation (9.4) al-
lows us to compute the value function, and in evaluating the maximum in (9.4) we also obtain the
optimum feedback control. Note that this feedback control is optimunalfanitial conditions.
However, unless we can find a “closed-form” analytic solution to (9.4), the DP formulation may
necessitate a prohibitive amount of computation since we would have to compute and store the val-
ues ofV and+ for all k andx. For instance, suppose= 10 and the state-spackg is a finite set

with 20 elements. Then we have to compute and store 20 values ofl/, which is a reasonable
amount. But now supposg = R" and we approximate each dimensionxdby 20 values. Then

for N = 10, we have to compute and starez(20)" values ofV/. Forn = 3 this number is 80,000,

and forn = 5 it is 32,000,000, which is quite impractical for existing computers. This “curse of
dimensionality” seriously limits the applicability of DP to problems where we cannot solve (9.4)
analytically.

e Exercise 1:An instructor is preparing to lead his class for a long hike. He assumes that each
person can take up #&” pounds in his knapsack. There avepossible items to choose from.
Each unit of item; weighsw; pounds. The instructor assigns a number> 0 for each
unit of item<. These numbers represent the relative utility of that item during the hike. How
many units of each item should be placed in each knapsack so as to maximize total utility?
Formulate this problem by DP.

9.2 Continuous-time DP

We consider a continuous-time version of (9.2):

Maximize [i7 fo(t,=(t),u(t))dt + ®(x(tf))

subject to
dynamics: (t) = f(t,z(t),u(t)) , to <t <ty (9.6)
initial condition: z(0) = z¢ ,
control constraint: u :  [to,tf] — © and u(-) piecewise continuous.

In(9.6),z € R™, ue€ RP, Q C RP. ®: R™ — Risassumed differentiable arfg, f are assumed
to satisfy the conditions stated in VIII.1.1.

As before, forty < ¢t < t; andz € R, let V(t,x) be the maximum value of the objective
function over the interval, ¢ ] starting in state: at timet. Then it is easy to see thit must satisfy

t+A
Vit,z) = Max{/ fo(r,x(7),u(r))dr

] 9.7)
+V(iE+ Azt +A)|u: [t,t+A] —-Q}LA>0,

and

V(ty,x) = ®(x) . (9.8)
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In (9.7),z(7) is the solution of

i(r) = f(r,o(r),u(r)) , t<7<t+A,
x(t)=x .

Let us suppose thaf is differentiable int andz. Then from (9.7) we get

V(t,z) = Max{fo(t,z,u)A +V(t,z)+ %—Zf(t,a:,u)A
—l—%—‘{(t,x)A +o(A)|ueQ}, A>0 .

Dividing by A > 0 and lettingA approach zero we get thHdamilton-Jacobi- Bellmarpartial
differentiable equation for the value function:

G (t,2) + Max{fo(t,z,u) + IL(t, ) f(t,z,u)|u € Q} = 0. (9.9)

Theorem 1:Suppose there exists a differentiable function  [to, ;] x R — R which satisfies
(9.9) and the boundary condition (9.8). Suppose there exists a fungtion [to,t¢] x R" — Q
with 1) piecewise continuous ihand Lipschitz inz, satisfying

fot,,9(t, 2)) + G2 f (8, 2, 9 (t, ) (9.10)
= Max{fo(t,z,u) + 9L f(t, 2, u)|u € Q} . '

Theny is an optimal feedback control for the problem (9.6), &his the value function.
Proof: Lett € [tg,ty] andx € R". Leta : [t,tf] — Q be any piecewise continuous control and
let Z(7) be the solution of

i (r) = f(ré(r),alr), t<T<ts, 9.11)
z(t)y==x .

Let z*(7) be the solution of

= f(r,a*(r), (1, 2*(7))) , t <7 <y, (9.12)

Note that the hypothesis concernipguarantees a solution of (9.12). Let(r) = ¢ (7, z*, (1)), t <
7 < ty. To show that) is an optimal feedback control we must show that

ty

fo(tr, 2" (1), u*(7))dr + ®(x*(7))
t (9.13)

< /t " folrat (), alr))dr + ®(3(t)) .
To this end we note that
Vit (t9) =Vt () = [T i

—eif {5 (rat () + S _a*()dr ©14)
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using (9.9), (9.10). On the other hand,

V(tp 2(t)) — /f v v

{— 7, #(r) + 5= & (r)}dr
Oz (9.15)
S - ] fO(Tv ( )7 (T))dT )
using (9.9). From (9.14), (9.15), (9.8) and the fact tkigtt) = (t) = = we conclude that

Vitw) = o6 (1) + | " folr, 2 (7), (7))

> @(a(ty) + [ folra(r).alr)dr

so that (9.13) is proved. It also follows thitis the maximum value function. &

e Exercise 1:0btain the value function and the optimal feedback control for the linear regula-
tory problem:

Minimize %x/(T)P(T)x(t) + % /To{x’(t)P(t)x(t)
+u/ (6)Q(t)u(t) }dt
subject to

dynamics: (t) = A(t)z(t) + B(t)u(t) , 0 <t <T',
initial condition: z(0) = z¢ ,
control constraint: u(t) € RP ,

where P(t) = P'(t) is positive semi-definite, an@(t) = Q' (t) is positive definite. [Hint:
Obtain the partial differential equation satisfied By¢,z) and try a solution of the form
V(t,x) = 2’ R(t)x whereR is unknown.]

9.3 Miscellaneous Remarks

There is vast literature dealing with the theory and applications of DP. The most elegant applications
of DP are to various problems in operations research where one can obtain “closed-form” analytic
solutions to be recursion equation for the value function. See (Bellman and Dreyfus [1952]) and
(Wagner [1969]). In the case of sequential decision-making under uncertainties DP is about the
only available general method. For an excellent introduction to this area of application see (Howard
[1960]). For an important application of DP to computational considerations for optimal control
problems see (Jacobson and Mayne [1970]). Larson [1968] has developed computational tech-
nigues which greatly increase the range of applicability of DP where closed-form solutions are not
available. Finally, the book of Bellman [1957] is still excellent reading. []
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