Cryptography Research Directions and Challenges

Aggelos Kiayias

University of Athens

Cryptography?

Cryptography?

Cryptography?

Cryptography?

Cryptography?

Cryptography?

Cryptography?

Cryptogrpaphy?

What is

Cryptography?

Art
of secret writing

Cryptography reincarnated.

General Setting

- Consider a set of parties (>1)
- Each may have some input.
- Each wishes to a sample a specific output distribution / functionality.
- They can communicate following some prescribed mode of interaction.

Modeling

- The parties' strategies are algorithmic.
- The course of their interaction is mediated by an external controller.

Adversity

- Parties can turn adversarial and may:
- Engage in additional non-prescribed interactions between them.
- Follow different algorithmic strategies.
- Refuse to participate.

Adversity vs. Trust

 sp- Total honesty is rare (and uninteresting)
- Total adversity is rare (and uninteresting)
- More common / interesting : a mixture of adversity and honesty subject to a certain trust configuration.
- Note : honest parties' expectations may change depending on the level of adversity.

Example: Fair Exchange of Secrets

Trust Configuration

- Alice and Bob can both write messages to each that are delivered.
- If Alice is adversarial, there is no way she obtains output before Bob obtains output.
- If Bob is adversarial, there is no way he obtains output before Alice obtains output.

Trust Configuration

- Alice and Bob can both write messages to each that are delivered.
- If Alice is adversarial, there is no way she obtains output before Bob obtains output.
- If Bob is adversarial, there is no way he obtains output before Alice obtains output.

Observe: this is a cryptographic problem - but it has no obvious reliance of encryption or signatures.

Example: Coin Flipping

b is a uniformly distributed bit

Trust Configuration

- Alice and Bob can both write messages to each that are delivered.
- If Alice is adversarial, there is no way she can bias Bob's output.
- If Bob is adversarial, there is no way he can bias Alice's output.

Trust Confiǵuration

- Alice and Bob can both write messages to each that are delivered.
- If Alice is adversarial, there is no way she can bias Bob's output.
- If Bob is adversarial, there is no way he can bias Alice's output.

Observe: again this is a cryptographic problem - but it has no obvious secrecy requirements

the cryptographic problem

- Consider
(1) a functionality of interest.
(2) a certain trust configuration.
- Prove a theorem stating that : honest parties can reach successfully the evaluation of the functionality given the trust configuration, in spite the presence of adversity.

3 important

 cryptographic objectives
3 important cryptographic objectives

- Depending on the occasion we may wish to ensure that adversity will not disrupt:

3 important
 cryptographic objectives

- Depending on the occasion we may wish to ensure that adversity will not disrupt:
- Integrity. the ability of honest parties to obtain their (properly distributed) output.

3 important
 cryptographic objectives

- Depending on the occasion we may wish to ensure that adversity will not disrupt:
- Integrity. the ability of honest parties to obtain their (properly distributed) output.
- Secrecy. the honest parties private inputs will remain hidden from the adversaries.

3 important
 cryptographic objectives

- Depending on the occasion we may wish to ensure that adversity will not disrupt:
- Integrity. the ability of honest parties to obtain their (properly distributed) output.
- Secrecy. the honest parties private inputs will remain hidden from the adversaries.
- Fairness. the honest parties are denied output while the adversarial ones do obtain.

3 important
 cryptographic objectives

- Depending on the occasion we may wish to ensure that adversity will not disrupt:
- Integrity. the ability of honest parties to obtain their (properly distributed) output.
- Secrecy. the honest parties private inputs will remain hidden from the adversaries.
- Fairness. the honest parties are denied output while the adversarial ones do obtain.

3 important cryptographic objectives

- Depending on the occasion we may wish to ensure that adversity will not disrupt:
- Integrity. the ability of honest parties to obtain their (properly distributed) output.
- Secrecy. the honest parties private inputs will remain hidden from the adversaries.
- Fairness. the honest parties are denied output while the adversarial ones do obtain.

Formalizing Security

- The simulation paradigm:
- prove that the whole view of the adversaries can be simulated without access to resources that are unavailable to adversarial parties.

cryptography ...redefined

cryptography ...redefined

Cryptography is a CS discipline that applies mathematics / statistics, algorithms and computational complexity to solve problems of trust
between two or more parties.

Cryptographic Proofs

Example: a secure channel.

- Three parties: Alice, Bob, Christine.
- Mode of interaction : Alice wishes to send an unlimited number of private messages to Bob. The only way to communicate is through Christine.
- Trust model : Christine will always deliver Alice and Bob's messages but she cannot be trusted not to read them.

Using PK Encryption

 KeyGen, Enc, DecKeyGen \rightarrow (pk, sk)

Using PK Encryption

 KeyGen, Enc, DecKeyGen \rightarrow (pk, sk)

m_{1}, \ldots, m_{N}
Adversary's view

Using PK Encryption

KeyGen, Enc, Dec

KeyGen \rightarrow (pk, sk)

m_{1}, \ldots, m_{N}
Adversary's view

Using PK Encryption

 KeyGen, Enc, DecKeyGen \rightarrow (pk, sk)

$$
m_{1}, \ldots, m_{N}
$$

$\operatorname{Enc}\left(p k, m_{1}\right), \ldots, \operatorname{Enc}\left(p k, m_{N}\right)$

Simulator

Hybrid Argument

pk

$\left\langle\operatorname{Enc}\left(p k, m_{1}\right), \ldots, \operatorname{Enc}\left(p k, m_{i}\right), \operatorname{Enc}\left(p k, m_{i+1}\right), \ldots, \operatorname{Enc}\left(p k, m_{N}\right)\right.$

pk

$\left\langle\operatorname{Enc}(p k, 0), \ldots, \operatorname{Enc}(p k, 0), \operatorname{Enc}\left(p k, m_{i+1}\right), \ldots, \operatorname{Enc}\left(p k, m_{N}\right)\right\rangle$

Any distinguishing advantage ε between the extremes will translate to a distinguishing advantage of ε / N between hybrids, something that yields a ciphertext distinguisher:

$$
\langle m, \mathrm{pk}, \operatorname{Enc}(\mathrm{pk}, m)\rangle \approx\langle m, \mathrm{pk}, \operatorname{Enc}(p k, 0)\rangle
$$

Trapdoor Functions

Trapdoor One Way Function

ParGen
$\langle e, d\rangle \quad f_{d}: Y \rightarrow\{0,1\}^{n}$
"trapdoorness" $\forall x: f_{d}\left(f_{e}(x)\right)=x$
"one-wayness" $\operatorname{Pr}\left[A\left(f_{e}(x)=x\right]=\right.$ negl

Hardcore Bits

(for any one-way function)
random mapping :

$$
r \in\{0,1\}^{n} \quad\langle e, r, x\rangle \rightarrow\left\langle e, r, f_{e}(x)\right\rangle
$$

Hardcore

$$
B(r, x)=r \odot x=\sum_{i=1}^{n} r_{i} \cdot x_{i} \bmod 2
$$

Goldreich-Levin Theorem. Given an oracle to B that works with probability $1 / 2+\epsilon$
f can be inverted with probability $1 / 2$ in time

$$
O\left(n^{3} \epsilon^{-4}\right)
$$

Realizing PK Encryption

$\langle e, d\rangle$: public-key and secret-key

Encryption of a bit m :

$$
\left\langle r, f_{e}(x),(r \odot x) \oplus m\right\rangle
$$

Decryption of a ciphertext $\langle r, y, c\rangle$
$c \oplus\left(f_{d}(y) \odot r\right)$

Security Proof, 1

 $\langle m, \operatorname{pk}, \operatorname{Enc}(\mathrm{pk}, m)\rangle \approx\langle m, \operatorname{pk}, \operatorname{Enc}(p k, 0)\rangle$$\left\langle m, e, r, f_{e}(x),(r \odot x) \oplus 1\right\rangle \approx\left\langle m, e, r, f_{e}(x),(r \odot x)\right\rangle$

Observe that the existence of a distinguisher between the two distributions can be used to build a predicate B guessing the hardcore bit.
E.g. , if D biases to the left with distance ε, then

$$
D(m, e, r, y, b) \oplus b
$$

predicts the hardcore bit

Security Proof, 2

Given a distinguisher for the simulation of N messages with advantage α

hybrid
habtain a
argument
ciphertext
distinguisher with
probability α / N

A ciphertext distinguisher yields a hardcore bit predictor with α / N
$\xrightarrow[\text { theorem }]{\mathrm{G}-\mathrm{L}}$
An algorithm inverting f
running in time

$$
O\left(n^{3} N \alpha^{-1}\right)
$$

Parameterization

- Suppose we want "security" of 80 bits and the ability to send up to $2^{\wedge}\{20\}$ messages.
- Suppose that the best algorithm inverting fhas time-complexity $2^{\sqrt{n}}$

Then we should choose parameters:

$$
3 \log n+20+80<\sqrt{n}
$$

so that our reduction complexity becomes less than the best algorithm and hence impossible
$n \approx 20436$ bits

QUESTION \# 1

Tight Reductions

- Most reductions of relevant constructions are non-tight.
- Obtaining lower bound arguments on tightness is an open question in most cases.

Possible Targets

- Building Public-Key encryption from a given trapdoor function.
- Building Digital Signatures and PRG's from a given one-way function.
- even for specific assumptions : e.g., obtain Public-Key encryption under RSA in the standard model

QUESTION \#2

Trapdoor Functions

- We showed that trapdoor functions imply public-key encryption. Security was shown in the "indistinguishability" sense.
- Reverse question is open : does secure public-key encryption imply trapdoor functions? [BHSV98] show in RO model.
- Other examples of trapdoor functions?

QUESTION \#3

Versatile Encryption

In a typical encryption correctness is supposed to work as follows:
$\forall m: \operatorname{Dec}(s k, \operatorname{Enc}(p k, m))=m$
In versatile encryption we have the ability to generate secret-keys such that:

$$
\forall V, m: \operatorname{Dec}\left(s k_{V}, \operatorname{Enc}(p k, m)\right)=V(m)
$$

A Trivial Solution

Consider V_{1}, \ldots, V_{n} functions
$\left(p k_{1}, s k_{1}\right), \ldots,\left(p k_{n}, s k_{n}\right)$
$\operatorname{Enc}(p k, m)=\left\langle\operatorname{Enc}\left(p k_{i}, V_{i}(m)\right)\right\rangle_{i=1}^{n}$

Note that with homomorphic encryption we can transform $\operatorname{Enc}(p k, m)$ to $\operatorname{Enc}(p k, V(m))$

However it is unclear how to obtain the appropriate secret-keys.

QUESTION \#4

Broadcast Encryption

$\left\langle p k, s k_{1}, \ldots, s k_{n}\right\rangle$
$\operatorname{Enc}(p k, m, R)$

$$
R \subseteq\{1, \ldots, n\}
$$

is decryptable only by the set

$$
\{1, \ldots, n\} \backslash R
$$

Currently unknown how to obtain sublinear parameters (only known constant ciphertext schemes are based on elliptic curves)

Anonymous Broadcast Encryption is also open.

QUESTION \#5

Verifiable Computation

- Can you delegate computation to a server so that:

1. The server cannot cheat you.
2. The server cannot learn your data.

How to delegate computation

Server
$E(x)$

Client

$C(x)$

$$
E^{\prime}(C(x))
$$

Circuit

The client wants to ensure that the server performs the computation properly (without repeating the computation). + overall communication should be

$$
O(|x|+|C(x)|)
$$

Fully Homomorphic

 EncryptionGentry'09

- A type of public-key encryption that allows oblivious computation over ciphertext

This can be combined with PCP (probabilistically checkable proofs) to provide a (plausibility-type) solution.

Efficient ZK's

- Note that PCP's do not readily yield an efficient way to construct zero-knowledge proofs. (due to the fact the length of the proof itself might be large)
- [Killian] : collision resistance hashing $=>$ short commit to the PCP proof and then open selectively.
- [GKR08] show ZK-proofs with communication quasilinear in witness length for NC verifiable NP-languages.
- [Lipmaa11] show sublinear non-interactive ZK arguments for all NP-languages using bilinear maps using results from additive combinatorics.

Private Information Retrieval (PIR)

```
can be seen as a special case of the previous problem
```


DB server

$E(x)$
Client
$\left\langle w_{1}, \ldots, w_{n}\right\rangle$

Private Information Retrieval (PIR)

```
can be seen as a special case of the previous problem
```


DB server

$$
E(x)
$$

Client

$$
\left\langle w_{1}, \ldots, w_{n}\right\rangle
$$

Currently there are explicit solutions with $O\left(\log ^{2} n\right)$

Private Information Retrieval (PIR)
 can be seen as a special case

of the previous problem

$E(x)$

Client

$$
E^{\prime}\left(w_{x}\right)
$$

DB server

Currently there are explicit solutions with $O\left(\log ^{2} n\right)$ Practical complexity nowhere near "real efficiency"

Private Information Retrieval (PIR)
 can be seen as a special case

 of the previous problemDB server
$E(x)$
$\left\langle w_{1}, \ldots, w_{n}\right\rangle$

Currently there are explicit solutions with $O\left(\log ^{2} n\right)$
Practical complexity nowhere near "real efficiency"
[HHS08] show that all trapdoor permutation constructions would incur $\Omega(n)$ complexity

PIR

PIR

- How to minimize server computation?

PIR

- How to minimize server computation?
- FHE implies logarithmic communication. Are there any other logarithmic constructions without FHE?

PIR

- How to minimize server computation?
- FHE implies logarithmic communication. Are there any other logarithmic constructions without FHE?
- What are useful relaxations of privacy?

PIR

- How to minimize server computation?
- FHE implies logarithmic communication. Are there any other logarithmic constructions without FHE?
- What are useful relaxations of privacy?
- What is the simplest property we can add to trapdoor permutations so that we break the linear lower bound barrier for PIR?

QUESTION \#6 Leakagie / Tamper resilience

- Cryptographic implementation may be:
- prone to leakage (side-channels).
- prone to tampering / faults.
- Due to those issues previous security arguments collapse.
- The restatement of all cryptographic problems in this light is a current major undertaking.

Symmetric Cryptography

Symmetric Cryptography

- In symmetric cryptogaphy efficiency is the prime resource.

Symmetric Cryptography

- In symmetric cryptogaphy efficiency is the prime resource.
- We are interested in linear algorithms with very small constants.

Symmetric Cryptography

- In symmetric cryptogaphy efficiency is the prime resource.
- We are interested in linear algorithms with very small constants.
- Despite many years of attempts complexitytheoretic treatment of security is still unsuccessful.

Symmetric Cryptography

- In symmetric cryptogaphy efficiency is the prime resource.
- We are interested in linear algorithms with very small constants.
- Despite many years of attempts complexitytheoretic treatment of security is still unsuccessful.
- Crypto primitive design remains black magic.

QUESTION \#7

Foundations of Symmetric Crypto

- Security is defined through complex interactions.

Example: security of MACs

$$
\left\langle m_{j}^{*}, \operatorname{MAC}_{k}\left(m_{j}^{*}\right)\right\rangle_{j=1}^{q+1}
$$

Currently : any proof of security of (efficient) MACs is based on a non-falsifiable assumption.

Falsifiable Assumptions

[Naor 2003]
Typical structure of cryptographic theorems

$$
\mathbf{A} \Longrightarrow S \text { is secure }
$$

A desired form for the assumption is:

> A : $\forall \operatorname{PPT} T: \operatorname{Pr}[Q(x, T(x))]=$ negl
> Where Q is a poly-time predicate such assumptions are falsifiable.
cf. $\quad \mathbf{A}: \forall \operatorname{PPT} T: \operatorname{Pr}\left[Q\left(x, T^{O(x, \cdot)}(x)\right)\right]=\mathbf{n e g l}$

Founding Symmetric Cryptography

- Is it possible to obtain constructions for all basic symmetric cryptography primitives with security based on falsifiable assumptions?
- message authentication codes.
- encryption.
- collision resistance hashing.

QUESTION \#8 Cryptographic Relations

QUESTION \#8

Cryptographic Relations

- Given primitive X can one construct primitive Y ?

QUESTION \#8

Cryptographic Relations

- Given primitive X can one construct primitive Y ?
- Celebrated known results:

QUESTION \#8

Cryptographic Relations

- Given primitive X can one construct primitive Y ?
- Celebrated known results:
- Trapdoor functions imply PK encryption.

QUESTION \#8

Cryptographic Relations

- Given primitive X can one construct primitive Y ?
- Celebrated known results:
- Trapdoor functions imply PK encryption.
- One-way functions imply digital signatures [optimal reduction still open]

QUESTION \#8

Cryptographic Relations

- Given primitive X can one construct primitive Y ?
- Celebrated known results:
- Trapdoor functions imply PK encryption.
- One-way functions imply digital signatures [optimal reduction still open]
- One-way functions do not imply key-agreement (black-box separation: there exists an oracle relative to which OWP exist but KA is impossible)

QUESTION \#9

Computational complexity of Cryptographic Assumptions

- Currently there is a wide array of cryptographic assumptions used for arguing security of various constructions.

Understanding their complexity is essential for choosing parameters in the real-world.

Algorithmic Questions

Algorithmic Questions

1. How hard is discrete-logarithm over elliptic curves? currently (Joux-Vitse, Eurocrypt 2012 best paper) made the first application of subexponential techniques to DLP over a certain type of curves.

Algorithmic Questions

1. How hard is discrete-logarithm over elliptic curves? currently (Joux-Vitse, Eurocrypt 2012 best paper) made the first application of subexponential techniques to DLP over a certain type of curves.
2. What is the relation between RSA and factoring ?

Algorithmic Questions

1. How hard is discrete-logarithm over elliptic curves? currently (Joux-Vitse, Eurocrypt 2012 best paper) made the first application of subexponential techniques to DLP over a certain type of curves.
2. What is the relation between RSA and factoring ? Aggarwal Maurer (Eurocrypt 2009) show they are generically equivalent.

Algorithmic Questions

1. How hard is discrete-logarithm over elliptic curves? currently (Joux-Vitse, Eurocrypt 2012 best paper) made the first application of subexponential techniques to DLP over a certain type of curves.
2. What is the relation between RSA and factoring ? Aggarwal Maurer (Eurocrypt 2009) show they are generically equivalent.

Algorithmic Questions

1. How hard is discrete-logarithm over elliptic curves? currently (Joux-Vitse, Eurocrypt 2012 best paper) made the first application of subexponential techniques to DLP over a certain type of curves.
2. What is the relation between RSA and factoring ? Aggarwal Maurer (Eurocrypt 2009) show they are generically equivalent.
3. What is the exact relation of the learning with errors problem (LWE) and the shortest independent vectors problem (SIVP)? (Regev 2005 show they are quantumly equivalent).

QUESTION \#10

reduce/expand the 5 worlds

R. Impagliazzo

Algorithmica

Cryptography

- ... has rapidly expanded and evolved in the last 36 years enriching itself with various areas of mathematics, statistics, CS theory and algorithms.
- ... problems are firmly grounded on real-world problems and security needs.
- ... is intricately connected with the most fundamental problems of CS theory.
- ... puts to (sometimes surprising) use many techniques and concepts that before remained purely theoretical or seemingly unrelated.

EUROCRYPT 2013

May 26-30, 2013

- Biggest Cryptography conference outside the USA.
- The flagship conference of the International Association of Cryptologic Research.

for more information

cryptography.security @university-of-athens

http:/ / crypto.di.uoa.gr

funded
Ph.D. positions
are available

