

A New Approach for Constructing and Generating AOA Networks

Yuval Cohen

1

Department of Management & Economics, The Open University of Israel,
108 Rabutzki Street, P.O.Box 808, Raanana 34104, Israel
yuvalco@openu.ac.il

Arik Sadeh

Department of Technology Management, Holon Academic Institute of Technology,
Golomb 52, Holon, Israel,
sadeh@hit.ac.il

1
 Corresponding author

mailto:yuvalco@openu.ac.il
mailto:sadeh@hit.ac.il

A New Approach for Constructing and Generating AOA Networks

Abstract

A significant drawback of Activities on Arcs (AOA) networks, is having several different possible networks describing
the same project. In contrast, the Activities on Nodes (AON) representation is unique. Having both AOA and AON
networks of a project is an advantage since some planning and optimisation techniques strictly require AOA format
while others require AON format. While previous AOA research has been focusing on minimizing the number of
dummy arcs, this paper focuses on generating a meaningful consistent network. Each AOA node in the proposed
technique is related to a specific row in the immediate predecessors table: its incoming arcs represent the immediate
predecessors, and its outgoing arcs represent the activity/ies possessing this set of precedence constraints. The
proposed algorithm generates a unique AOA network from a list of precedence constraints. While it does not minimize
the number of dummy arcs the efficiency in dummies is a by-product of this approach. Two equivalent mathematical
expressions are developed for the number of generated AOA dummies of a given precedence table. The paper also
presents some linear formulations that could be directly derived from an AOA net. The algorithm is explained through
a detailed example that starts with an immediate predecessors table and ends with an AOA network.

One line summary:

Method for constructing a unique AOA net with a node for each precedence constraint of its corresponding AON
network (yielding small number of dummy arcs).

Keywords: Project scheduling, Network design, Network generation, AOA network, Activities on Arcs.

Journal of Engineering, Computing and Architecture

1. Introduction

Project networks for planning and scheduling are based on two representation types: Activities on Arcs (AOA) and
Activities on Nodes (AON). Each representation type (AOA or AON) has desirable features that are unique to their
type [16] (see next section for a comparison of AOA to AON). For example, some advantages of Activities on Arcs
(AOA) networks for project network planning are: (1) each AOA arc has its origin and destination node, conforming
with a "from-to" matrix (incidence matrix), or with variables in a node arc matrix. (2) AOA networks could be arranged
in a total unimodular "node-arc" matrix that ensures an integer solution for integer data. (3) AOA is suitable for some
popular formulations that use pairwise subtractions of AOA node variables.
While the construction of AON is relatively easy, AOA networks may contain dummy arcs and their construction is
much more problematic. However, due to their importance, AOA networks have been drawing many research trials to
generate AOA networks with minimal number of dummy arcs. Examples of dummy minimization heuristic methods
can be found as early as in [7, 11, 12]. In the 1970's Corneil et. al. [4], claimed to have an optimal algorithm, but Syslo
[20] disproved their claim. Krishnamoorty and Deo [13] showed that finding the minimum dummy problem is NP-hard.
In the 1980's [19, 20, 21] offered more heuristics. In the 1990's [1, 5] proposed AOA network-generating methods but
they did not consider the redundancy and other problems brought up by dummy activities, and therefore, are
considerably impaired. A different direction was opened when Elmaghraby and Herroelen [8] developed a complexity
index as a measurement tool for the complexity in activity networks. Kamburowski et. al. [14, 15] developed a method
that generates minimal complexity-index AOA networks. Note however, that a single AON network may be
represented by several different AOA networks with the same minimal complexity index.
The meaning of an AOA node in all of the above papers is an event in time, that does not necessarily correspond to
anything expressed by the AON of the same project. Thus, the resulted net is convoluted and it is difficult (and
sometimes impossible) to recover the original immediate precedence constraints.
The approach in this paper is different. We propose an AOA network in which each node corresponds to a
precedence constraint. For this network, minimizing the dummy arcs is much easier and is an inherent part of the
algorithm presented below. Although the algorithm logic is self evident, we still verified and validated it by testing it on
a variety of different networks.
The proposed algorithm enables both a systematic translation of AON network to AOA network (and back to AON)
and a systematic construction process of AOA networks from the corresponding immediate predecessor tables.

2. AOA vs. AON Network Representation

The first step in constructing an AOA network is to list the immediate predecessors of each activity and to sequence
the activities in a table according to the precedence constraints. The resulting precedence table, corresponds directly
to an Activities on Nodes (AON) network diagram [16]. In an AON diagram, the activities are represented on nodes
and the precedence constraints by the arcs connecting the nodes. Therefore, in AON the number of nodes is the
number of activities, and the number of arcs is the number of immediate predecessors. AON representation is natural
and does not contain artificial elements on the network.
In contrast, AOA nets are characterized by dummy arcs and implicit precedence relations. As a result each project
can have multiple AOA representations [10]. The different representations have actual and undesirable effect on the
slack measures (time flexibility measures) of certain activities [6, 9].
 On the other hand, the structure of the AOA network is much more suitable for certain analytical techniques and
optimization formulations. For example, AOA activities correspond to entries in a matrix of origin to destination which
in turn suites some linear programming formulations. Most of the network optimization techniques are based on either

node arc formulations or origin-destination matrix formulations (i.e., AOA representation and not AON representation).
Also, most linear programming formulations for finding the critical path or "crashing" critical activities are based on
AOA. Another kind of formulations utilize subtractions of AOA node variables to express the arc (activity) value.
The following are some examples of AOA based formulations:
I. A time crashing formulation taken from [2, p. 181]:
Define: i,j as pair of AOA nodes; tij=time for activity (i,j); Sij=cost/time-unit for activity (i,j).
Further define: Mij=Crash duration for (i,j); Nij=Normal duration for (i,j); Ei=time of node i; O= Overhead $ per time
unit; L= index of last node; T=maximal specified time for the project.
 Maximize:

Lij ij
i j

S t O E

 Subject to:

 (1) Mij≤ tij ≤ Nij for all pairs (i,j) (i,j)

 (2) Ei+ tij -Ej ≤ 0 for all pairs (i,j) (i,j)
 (3) EL ≤T
II. Formulation for determination of the critical path from [6, page 112].
Define: i and j as indexes of AOA nodes, A=the set of all activities, n=last node, dij=AOA activity duration; Pj=set of
predecessor nodes of node j; Sj=set of successor nodes of node j; xij= the quantity flowing on arc (i,j) from node i to
node j. The formulation is given by:

Max

ij ij

ij A

d x

Subject to:

 (1)

1

1
1

j
j S

x

 (2)

0

j j

ij jk
i kP S

x x

 for j=2,3,4,5…,n-1

 (3)

1

n

in
i P

x

 (4) All xij>0 for all (ij)A

III. AOA critical path formulation [17]:

0

,

()

. .

, 1, 2,...

0

n

j i i j

i

Min T T

s t T T T

i j n

T

Where Ti,j is the time of an AOA activity that starts at node i and finishes at node j. Ti is the time for completing all the
activities that lead to node i.

While small AOA networks can be easily drawn by hand, the construction of large AOA network is a complex task that
requires time, rigor, and attention to details. An AOA construction algorithm can save a great deal of work and
mistakes. Moreover, in many cases the user would like to go back and forth between a AON representation and a
AOA representations. The logic of the following algorithm can make this desire a reality.

3. The Algorithm Logic

This section briefly describes the logic of the algorithm that generates a AOA network from a corresponding AON net
or a precedence table. A more elaborate discussion could be found in [3]. However, the logic and its details are best
explained in section 6.
The first step of the algorithm presented below is almost trivial: to build a simple precedence table, that lists the
immediate predecessors (activities) for each activity, and to transform it into an "Activities on Nodes" network. For n
tasks, the complexity of the first step is O(n

2
)

The second step identifies the final AOA nodes. Each AOA node corresponds to a unique precedence constraint.

Each node in AOA marks the starting event of the arcs that emanates from it. Thus, if two or more activities have the
same precedence constraint, their arcs can emanate from the same node (which corresponds to that constraint).
Combining the starting point of all the arcs that have the same precedence constraint, into one node, helps in
minimizing the number of nodes in the AOA network. In the second step the algorithm generates a list of unique
precedence constraints, each of which becomes a node in the final AOA diagram (including the start node for

activities with no predecessors). Finally, if more then one activity does not have any successor, a dummy node should
be added symbolizing the end of the project.
The third step consists of identifying necessary dummies. A dummy arc is necessary whenever an activity is playing

part in more than one unique precedence constraint (from step 2). The reason for needing the dummy arc is having
more than one end node (each node represents the different precedence constraints of its successors). Thus, the
algorithm's third step is to identify all these necessary dummies.
After the third step we have all the AOA nodes (from step 2) and all the AOA arcs (an arc for each activity and dummy
arcs from step 3). All that remains to be done is to assign each start and finish pairs of nodes to their corresponding
arcs. The rest of the algorithm steps achieve this end. In addition, giving the activities new names according to a
'from-to' scheme facilitates the formulation of the optimization problem and is also part of the algorithm. The algorithm
contains a total of seven steps. The results of each step are summarized in a table as shown in the next section. Step
seven ends with a table suitable for forming an “Activities on Arcs” network.
The seven steps and their complexities are as follows:
(1) Construct immediate predecessors table, O(n

2
); (2) Find a list of unique precedence relations and number them as

the AOA nodes, O(n); (3) Find necessary dummy activities, O(n); (4) Add dummy activities to the table, O(n); (5)
Associate each AOA node with its incoming arcs, O(n

2
); (6) Associate each node with its outgoing arcs, O(n); (7) Mark

the arcs (activities) with indexes by their start and finish nodes, O(n).
From the above the overall complexity of the algorithm is O(n

2
).

4. The AON Case Study

The example detailed below will assist in illustrating the algorithm. The example is based on a construction project of
casting concrete. The data is provided in table 1, and an illustration of the data is given in figure 1 using AON
representation.

Table 1. An Example of Activities and their Precedence Constraints

The Activity Short name
Immediate
Predecessors

A. Get steel rods and beams Get steel None

B. Get wooden rods and beams Get wooden rods None

C. Get beach sand Get beach sand None

D. Get concrete-powder Get concrete-powder None

E. Get tank for blending the concrete Get blending tank None

F. Prepare the casting skeleton as a grid of steel rods attached
by wires and welding.

Prepare skeleton
A

G. Bend the steel beams for frame support Bend the steel beams A

H. Construct a concrete casting frame from wooden beams Construct casting frame B

I. Connect (with a pipe) a water hose to the mixing tank Connect water E

J. Mix concrete powder, sand and water in the tank Mix concrete C,D,I

K. Cover the molding frame with plywood boards Cover frame with boards H

L. Attach the internal skeleton of steel rods to the external
molding frame

Attach skeleton to frame
F,H

M. Support the frame with steel beams Steel beams frame support G,H

N. Support the plywood boards with steel beams
Steel beams boards'
support

G,K

O. Cast the concrete mix into the frame Cast the concrete J,L,M,N

5. Details of the Algorithm Steps

The steps of the algorithm are detailed below and summarized as follows: the first three steps are summarized in
table 2, steps four and five are summarized in table 3 and the last steps are summarized in table 4. It is recommended
to trace the algorithm at the end of each consecutive step, by comparing the step column/s and previous step
column/s.

Step 1: Construct Immediate Predecessors Column

Prepare a column with the immediate predecessors of each activity. For example, see column 1 in table 2.

Step 2: Identify Activities with Identical Constraints (these activities will turn into Arcs emanating from the same node.
5.2.1 Duplicate the immediate predecessor column (column 1) into column 2.

Figure 1. AON network for the precedence relations shown in Table 1.

5.2.2 Go over column 2 and find repeating precedence constraints. For each repeating constraint insert the mark “-“in

column 2, blocking the entry of the repeating constraint.
We can see in column 2 that the repeating constraints are the null constraint (preceding activities A through E) and
activity A (preceding activities F and G). Therefore, the arcs of activities A through E will originate from node 0 (in the
AOA net) and the arcs of activities F and G will originate from the end node of activity A. Since column 2 must have a
unique list with no repetitions, the repeating occurrences at rows B through E are blocked. The same is true for the
row of activity G in column 2.
5.2.3 Open a third column (column 3) and number the unique precedence constraints sequentially. Repetitions get the

same number as the first occurrence. Table 2 lists ten (0 through 9) unique precedence constraints corresponding to
AOA nodes. Thus, we already know that together with the end node, the AOA in the example cannot have less then

10+1=11 nodes.

Step 3: Identify Necessary Dummy Arcs
5.3.1 Scan column 2 of table 2 (from step 2) and list activities that appear more than once in that column. For

example, list activity G since it appears as a predecessor of activities M and N (note that activities M and N have
different precedence constraints). Also, list activity H as it precedes activities K, L and M. Since all non-blocked
entries are unique constraints, each of them represents an AOA node. The repeating activities (i.e., G, H) are

precedents to two or more AOA nodes. Since an arc can only point to one of these nodes, there is a need for
dummy arcs pointing to the other nodes.

5.3.2 If one of the repetitions found in 3.1 above is a single activity, no dummy is needed for this repetition/constraint.

The end node of the single predecessor activity becomes the starting point of the successor. For example, H is
the only immediate predecessor of activity K. Thus, the arrow of activity K can originate at the end node of activity
H, and there is no need for a dummy in this case. However, as H is a part of two other precedence relations,
dummies are necessary.

5.3.3 Repetitions not conforming to 3.2 correspond to dummies. Rename these dummies with letters. For example,

activity H is a predecessor of activities L and M. However, H is not the only predecessor of L or of M. Thus, both
repetitions (L, M) do not conform to 3.2 and therefore, there is a need to use two dummy arcs. In column 3, the

two appearances of H are numbered H1 and H2 to designate them as dummies. Another example is activity G
that precedes activities M and N. Both repetitions do not conform to 3.2 and therefore are renumbered as G1 and
G2 to designate them as dummies.

The first 3 steps of the algorithm using the example are summarized in table 2. Activities are marked by letters, and
nodes are marked by numbers.

Step 4: Add Rows and Information for Dummy Arcs

For each dummy activity (identified in step 3), add a row at the end of table 2. Fill this row with the name of the
dummy activity and write the real activity as the predecessor (for example, add a new row for activity G1, and make G
its predecessor). Column 1 of table 3 depicts the result of step 4.

Step 5: Associate Activities with their End Nodes

In this stage, we accept the work column as the new immediate predecessor column.

Table 2: Summary of the first three steps of the algorithm

 Step 1
Step 2

 Step 3

Activity Column 1:
Immediate
Predecessor
Activities

Column 2:
Unique Combinations
Of immediate
Predecessors

Column 3:
Unique Combinations
Numbers
=AOA starting Node #

Column 4:
Dummy Activities
Identification (based on
Column 2)

A None None 0 None

B None - 0
-

C None - 0
-

D None - 0
-

E None - 0
-

F A A 1
A

G A - 1
-

H B B 2
B

I E E 3 E

J C,D,I C,D,I 4
C,D,I

K H H 5
H

L F,H F,H 6
F,H1

M G,H G,H 7
G1,H2

N G,K G,K 8
G2,K

O J,L,M,N J,L,M,N 9
J,L,M,N

- Intentionally blocked entry

Steps 3 and 4 were devoted to solving the following problem: Whenever an activity is part of two or more different
constraints, an arc or arrow (that points to only one node) is not enough for its representation. Thus, additional dummy
arcs are needed to model this activity.
Thus, after steps 3 and 4 each activity has at most one non-dummy succeeding node (if there had originally been
other nodes, they were assigned dummy arcs). From step 2 we know the starting AOA node of each activity (table 2,
column 3). Since each activity has its own immediate predecessors, each starting AOA node serve also as the end
node of its immediate predecessors. So for each activity we add two new columns: a successors column (column 3,
table 3), and a successor start node column (column 4, table 3). The successors starting node is also the end node of
the activity's arc.
Finding successors (table 3, column 3)
For each activity, scan column 1 in table 3 and find where the activity appears as an immediate predecessor. This
activity is illustrated by arrows in table 3.
If an activity still misses a successor, it is either because its end node is followed by dummies only, or it is the project's
end node. For these missing end node entries add new node numbers. For example, since activity G is followed by
dummies only, it needs an artificial node. Therefore, node 10 is added (see table 3, column 4). Also, node 11 is added

for the project end node (see table 3, column 4).
Finding the successor start node (which is the activity end node - table 3, column 4)
The start node of any non-dummy activity (successor activities included) is already in column 2 of table 3 (taken from
table 2, column 3). Once a successor has been found, its start node must be the end node of the predecessor arc.
Looking up in column 2 of table 3 at the successor's row gives the successor's start node. This start node is the end
node of the predecessor activity, which is the activity of the current row. Thus, we go sequentially over all the rows
and find their corresponding end nodes in that fashion.

Table 3. Summary of steps 4 and 5. (The lookup procedure of step 5 is illustrated with arrows for activity A.)

 Step 4 Step 5

Activity Column 1:
Immediate
Predecessor
Activities

Column 2:
AOA starting Node #
 (Table 2, Column 3)

Column 3:
Succeeding
Activities

Column 4:
Successors
Start Node
= AOA end node

A None 0 F, G 1

B None 0 H 2

C None 0 J 4

D None 0 J 4

E None 0 I 3

F A 1 L 6

G A 1 G1, G2 10

H B 2 K, H1, H2 5

I E 3 J 4

J C,D,I 4 O 9

K H 5 N 8

L F,H1 6 O 9

M G1,H2 7 O 9

N G2,K 8 O 9

O J,L,M,N 9 End 11

G1 (dummy) G M 7

G2 (dummy) G N 8

H1 (dummy) H L 6

H2 (dummy) H M 7

- Intentionally blocked entry

Step 6: Associate Dummy Arcs with Their Start nodes

Each dummy arc represents the end of its associated non-dummy activity. Thus, the dummy arc should follow the end
node of the real arc of its activity. All end nodes are identified in step 5. Therefore, step 5 is required before step 6 to
enable the designation of an origin node to each dummy arc. To recapitulate, the start node of each dummy is the
end node of its corresponding real activity. For example, dummy activity G1 starts where activity G ends. Since
activity G ends at node 10, the arc of activity G1 starts at node 10. The bottom of Column 2 in table 4 depicts the
results of step 6.
Example for step 6:

Dummy Activity Real Activity End Node of Real Activity Start Node of the Dummy
G1 G 10 10
G2 G 10 10
H1 H 5 5
H2 H 5 5

Table 4: Summary of steps 6 and 7. This table is the basis for the AOA

 Step 4 Step 6 Step 7

Activity Column 1:
Immediate
Predecessor
Activities

Column 2:
AOA starting Node
Addition of start
Nodes for dummies

Column 3:
AOA end nodes
With step 7
Changes

Column 4:
AOA Activity
Names

Column 5:
AOA

Immediate
Predecessor

Activities

A None 0 1 A0,1 None

B None 0 2 A0,2 None

C None 0 4 A0,4 None

D None 0 12 A0,12 None

E None 0 3 A0,3 None

F A 1 6 A1,6 A0,1

G A 1 10 A1,10 A0,1

H B 2 5 A2,5 A0,2

I E 3 4 A3,4 A0,3

J C,D,I 4 9 A4,9 A0,4; A12,4; A3,4

K H 5 8 A5,8 A2,5

L F,H1 6 9 A6,9 A1,6; A5,6

M G1,H2 7 9 A7,9 A10,7; A5,7

N G2,K 8 9 A8,9 A10,8; A5,8

O J,L,M,N 9 11 A9,11 A4,9;A6,9;A7,9;A8,9

G1 (dummy) G 10 7 A10,7 A1,10

G2 (dummy) G 10 8 A10,8 A1,10

H1 (dummy) H 5 6 A5,6 A2,5

H2 (dummy) H 5 7 A5,7 A2,5

D1 (dummy) D 12* 4 A12,4 A0,12

* follows by dummies only

Figure 2 depicts the AOA network associated with table 4.

Figure 2. Activities on Arcs (AOA) Network for the "Concrete Casting" Project

Step 7: Check for necessity to add nodes and dummies to compensate for the effect of a single project start node,

and a single project end node. Update the table with the new activity names.
It is a convention to have a start node for the start of a project. Hence, when a project net starts with several parallel
arcs from the start node, some of these arcs may end at the same end node, creating a situation where different arcs
have the same start and end nodes. For classic notations such as Aij there is no way to differentiate between these
arcs, and in addition this is not a tolerable format for some LP formulations. Therefore, dummy node and arc are
added for such cases (until there are no two arcs with the same start and end nodes). For example, both activities C
and D start at node 0 and end at node 4. Therefore, a dummy node 12 is added for activity 4 and a new dummy arc.
Now activity 4 starts at node 0 but ends at node 12 (column 3 in table 4). Next, we connect an additional dummy arc
from node 12 to node 4 (bottom of table 4).
The same situation can arise at the end of the project (since it is customary to have a single end node per project).
Again, the solution is to add dummy nodes and arcs as necessary. These situations are easy to detect by scanning
the columns of the start and end nodes. If the same pair appears more then once, then dummy node and arc are
necessary for each repetition. At the end of this process each arc should have its unique start/end node combination.
After making sure that each arc has its own unique combination of start/end nodes, the arc names should refer to this
combination. The name of each activity is changed to a letter and two indexes marking its start and end nodes (see
column 4 table 4).
Table 4 is suitable for the construction of Activities on Arcs Network. It contain every AOA activity (including the
dummy activities) and the start and end nodes associated with it.

6. Translating the Generated AOA to AON

The construction of AON network from its precedence table (where all the immediate predecessors of each activity
are listed) is a trivial task. Thus, describing the steps that generate the precedence table from the generated AOA, is
enough to supply all the information needed for generating an AON network. The steps that generate the precedence
table from the generated AOA are as follows:
1. All real (non-dummy) activities are assigned AON node numbers.
2. Duplicate the AOA net with the new node number from step 1. In the duplicated net, give the dummy arcs the

same number as their predecessors.

3. For each AOA activity, find and list the numbers of its immediate predecessors (numbers from step 2). The

obtained list is the precedence constraint of the activity.
The output of step 3 is a precedence table. Thus, these three steps are enough to accumulate all the information
needed for generating an AON network.

7. Characteristics of the generated AOA network

This section focuses on two main subjects: (1) The number of dummies, and (2) The correspondence between the
precedence table and the generated AOA.
So far the method is presented in somewhat intuitive form. To add some formality to the discussion, some definitions
along with propositions and their proofs are presented next:
Definitions:
N - the number of activities or AON nodes
P - the number of AON arcs (the number of immediate precedence relations)
X - set of all AON nodes having multiple emanating arcs
Y - subset of X, composed of nodes of X that all their emanating arcs terminate in nodes that have other incoming

arcs (from other nodes).
Z - number of AON nodes that all their incoming arcs are from Y
A - the number of emanating arcs of the subset Y (A=2 in "Case B" of Figure 3).
di

+
 - the outbound degree of node i (number of emanating arcs from node i AON)

D = E(d
+
) =

1

N

i
i

N

d

 - the average (expected value) outbound degree of a node in a AON network.
S - number of dummies needed for keeping a unique pair of nodes for activities artificially connected to the start or
end nodes.

Proposition 1. The number of generated dummies in the generated AOA () is:
Number of Dummies = S + P - N + A - Z (1)

Proof 1. S is added for correctly accounting for the addition of single start and end nodes. The number of arcs in the
AON (P) is the number of pairwise precedence relationships each must be expressed by an arc in the AOA. If all N
real activities would be used to express immediate precedence then the number of dummies would have been P-N.
However, of the N real arcs, in (A-Z) cases the real activity could not be used directly to convey precedence (Z
prevents duplicity). Thus, the number of "real" AOA arcs that are used as direct predecessors, is N-A+Z.
Since all AOA arcs have to convey all (P) pairwise precedence relationships, and since there are (N-A) real AOA arcs
that convey immediate precedence relationship, the remaining (P-(N-A+Z)) = P - N + A -Z precedence relationships

must be dummies.

Lemma. The number of generated dummies in the generated AOA is also:

Number of Dummies =S + N(D-1)+A-Z (2)

Proof. Since the total number of AON arcs (P) is also the total number of AON outbound degrees:

1

N

i

P
id

 we

can substitute P = ND, in P - N + A - Z (which is, from proposition 1, the number of dummy arcs). The result is: ND-

N+A-Z = N(D-1)+A-Z . Q.E.D.

Example (using figure 1 for AON and figure 2 for its corresponding AOA):

From figure 1 we have: N=15, P=di=18, A=1 (activity G), D=18/15=1.2
Correctly adding a single start node yields: S=1
Thus, from proposition 1 we have: Number_ of_dummies =S+P-N+A-Z = 1+18-15+1 = 5

And from proposition 2 we have: Number_ of_dummies =S+N(D-1)+A = 1+15(1.2-1)+1= 1+15(0.2)+1 = 5

This indeed is the number of dummy arcs in figure 2.

Proposition 2. In the generated AOA, each combination of: (1) AOA node i, and (2) a non-dummy arc emanating
from the node i, corresponds to a row in the immediate predecessors table.

Proof 2. In the generated AOA, by definition, each non dummy arc corresponds to a unique activity. Also, focusing on

the starting node of an activity i, the algorithm attaches (in step 5) the incoming arcs into node i, which correspond to
the immediate predecessors of this activity, to node i. In case a dummy is a predecessor, it is directly connected to the
end of its real activity.

One of the important by-products of proposition 2 is that the generated AOA net has the same early-start (ES) and
late-finish (LF) times for each activity as in the corresponding AON net.
Also, Each of the AOA arcs (real or dummy) corresponds to a precedence relationship - that is an AON arc.

8. Conclusion

This paper presents a new approach for generating AOA networks: instead of trying to minimize the number of
dummy arcs (and losing the difference between immediate and not immediate predecessors)
an AOA network construction algorithm that builds a network, in which the incoming arcs of each node correspond to
the immediate precedence constraints of the nodes' outgoing arc/s.
The method ensures the generation of a unique AOA network for a given precedence table. While the algorithm does
not minimize the number of dummy arcs, it is very efficient: the method adds dummies only for pointing at more then
one precedence constraint. Any dummy removal destroys this immediate precedence logic, and any other dummy
arrangement destroys the analogy to the precedence table. Expressions for the number of generated dummy arcs are
developed. The new method presented here enables a systematic construction of a unique AOA network from a list of
tasks and precedence constraints. Thus, it enables a systematic translation back and forth from an AON into an AOA
network.

REFERENCES

[1] M. K. Agarawal, S. E. Elmaghraby, W. S. Herroelen, 1996. DAGEN a generator for test sets for project activity
nets, European Journal of Operational Research, 90, 376-382.

[2] N. H. Ahuja, S. P. Dozzi, , S. M. Abourizk, , 1994. Project Management Techniques in Planning and Controlling
Construction Projects (2

nd
 Edition, John Wiley and Sons Inc.).

[3] Y. Cohen, 2003. A New Approach for Automated Construction of Activities on Arcs (AOA) Networks, Research
report - July 2003-1, Deposited at the library, The Open University of Israel.

[4] D.G. Corneil, C.C. Gotlieb, and Y.M. Lee, 1973. Minimal event-node network of project precedence relations,
Communications of the SCM, 16, 296-298.

[5] E. Demeulemeester, B. Dodin, and W. Herroelen, 1993. A random activity network generator, Operations
Research, 41 (5), 972-980.

[6] E. Demeulemeester, L. W. Herroelen, and S. Willy, 2002. Project Scheduling, A Research Handbook, Kluwer

Academic Publishing.

[7] D. Dimsdale, 1963. Computer construction of minimal project network, IBM systems journal, 2, 24-36.

[8] S. E. Elmaghraby, and W. S. Herroelen, 1980. On measurement of complexity in activity networks, European
Journal of Operational Research, 5, 223-234.

[9] S. E. Elmaghraby, and J. Kamburowski, 1990. On project representation and activity floats, Arabian Journal of
Science and Engineering, 15, 625-637.

[10] S. E. Elmaghraby, 1995. Activity nets: A guided tour through some recent developments, European Journal of
Operational Research, 82, 383-408.

[11] M. Hayes, 1969. The role of activity precedence relations in node-oriented networks. In H.J.M. Lombaers (ed.),
Project planning by network analysis, North-Holland Publishing Company, Amsterdam, 128-146.

[12] A.C. Fisher, D.S. Liberman, and G.L. Nemhauser, 1968. Computer construction of project networks,
Communications of the ACM, 11, 493-497.

[13] M. S. Krishnamoorty, and N. Deon, 1979. Complexity of minimum-Dummy-Activities Problem in a Pert Network,
Networks, 9, 189-194.

[14] J. D. Kamburowski, J. Michael, and M. Stallman , 1992. Optimal construction of Project Activity Networks,
Proceeding of the Annual Meeting of the Decision Sciences Institute, San-Francisco, CA, 1424-1426.

[15] J. D. Kamburowski, J. Michael, and M. Stallman, 2000. Minimizing the Complexity of an Activity Network,
Networks, 36 (1), 47-52.

[16] P. J. Lewis, 1995. Project Planning, Scheduling and Control, McGraw-Hill.

[17] S. Nahmias, 2001. Production and Operations Analysis, 4
th

 Edition., McGraw-Hill Irwin.

[18] A. Shtub, J.Bard, S. Globerson, 1994. Project Management: Engineering, Technology and Implementation,
Pearson Education.

[19] J. Spinard, 1980. The Minimum Dummy Task Problem, Networks, 16, 331-348.

[20] M..M. Syslo, 1981. Optimal Construction of Event-Node Networks, RAIRO, 15, 241-260.

[21] M..M. Syslo, 1984. On the Computational Complexity of the Minimum dummy Activities Problem in PERT
Network, Networks, 14, 37-45.

