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F-Logic 5.2 Manual  

No part of this publication may be reproduced or transmitted in any form or for any 
purpose without the express permission of ontoprise GmbH. The information contained in 
this document may be changed without any previous notice. These materials are subject 
to change without notice. These materials are provided by ontoprise GmbH for 
informational purposes without representation or warranty of any kind. ontoprise GmbH 
shall not be liable for errors or omissions with respect to the materials. The only 
warranties for ontoprise GmbH products and services are those that are set forth in the 
express warranty statements accompanying such products and services, if any. Nothing 
herein should be construed as constituting an additional warranty.  

This documentation and its content is copyright of ontoprise GmbH® ontoprise GmbH 
2008. All rights reserved.  
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1. Introduction  

F-Logic [KLW95] is a deductive, object oriented database language which combines the 
declarative semantics and expressiveness of deductive database languages with the rich 
data modeling capabilities supported by the object oriented data model. The theoretical 
foundations of F-Logic have been described in the F-Logic report [KLW95].  

The present manual describes how to apply F-Logic in the OntoBroker system. Therefore, 
this document explains the various features of F-Logic by example and shows how to use 
them for typical problems. It covers the features of the OntoBroker version V5.x. The F-
Logic variant of ontoprise slightly differs from the versions in [KLW95] and [FHK] in using 
a slightly different syntax (e.g. <- is used instead of :-) and in providing a lot of 
extensions (like built-ins, name spaces etc.). In the OntoBroker variant of F-Logic 
additionally arbitrary logical formulas can be used in the bodies of rules.  

We assume that the reader of this tutorial is familiar with the basic concepts of deductive 
databases, e.g. Datalog [AHV95, CGT90, Ull89], and the principles of object oriented 
database systems [ABD + 89].  
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2. Example  

Before explaining the syntax and semantics in detail, we will give a first impression of F-
Logic by presenting an F-Logic-program using F-Logic syntax. We will refer to the 
contents of this model in later sections of the documentation.  

 /* schema facts */  
 Car:Vehicle. 
 Boat:Vehicle. 
 Bike:Vehicle. 
  
 Person[ 
  name => xsd#string; 
  age => xsd#integer; 
  friend =>> Person]. 
 Vehicle[ 
  owner => Person;  
  admissibleDriver =>> Person]. 
 Car[ 
  passenger =>> Person; 
  seats => xsd#integer]. 
    
 /* facts */  
 peter:Person[ 
  name -> "Peter";  
  age -> 17]. 
 paul:Person[ 
  name -> "Paul";  
  age -> 21; 
  friend->peter]. 
 mary:Person[ 
  name -> "Mary";  
  age -> 17]. 
 bike26:Bike[ 
  owner -> paul]. 
 car74:Car[ 
  owner -> paul]. 
  
 /* rules consisting of a rule head and a rule body */  
 FORALL X,Y X[friend->>Y] <- Y:Person[friend->>X].  
 FORALL X,Y X[admissibleDriver->>Y] <- X:Vehicle[owner->Y]. 
 FORALL X,Y,Z X[admissibleDriver->>Z] <- X:Vehicle[owner->Y] AND 
Y:Person[friend->>Z].  
  
 /* query */ 
 FORALL X,Y <- X[admissibleDriver->>Y] AND X:Vehicle[owner->paul]. 

The first section of this example consists of a set of schema facts. The schema represents 
in an object-oriented way the classes and their relationships, e.g. to indicate that car and 
bike are subclasses of vehicle. It also describes that every vehicle has an owner and 
potentially multiply admissible drivers, which are persons. The schema also defines 
that each person has a name and an age of type, string and int, respectively.  

The second section titled "facts", describes that some people belong to the class person 
and gives information about them, such as their name and age. Also it defines a 
relationship between the objects namely that peter is the friend of paul. According to 
the object-oriented paradigm, relationships between objects are represented as methods, 
e.g. applying the method friend to the object paul yields the result object peter. All 
these facts may be considered as the extensional database of the F-Logic program. 
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Hence, they form the framework of an object base which is completed by some closure 
properties.  

The rules in the third section of the example derive new information from the given 
object base. Evaluating these rules in a bottom-up way, new relationships between the 
objects, denoted by the methods friend and admissibleDriver, are added to the object 
base as intentional information.  

The final section of the example contains a query to the object base. It is asking for all 
vehicles that are owned by paul. For each such vehicle it also retrieves the 
admissible drivers.  

3. Basic Syntax  

The F-Logic language allows formulating logic programs that represent knowledge about 
objects, about their relationships and also about the classes they belong to. In addition 
to this factual knowledge rules and queries can be modeled that represent implicit, 
intensional knowledge. The basic knowledge representation is based on the notion of 
terms and predicates as known from the logic-programming world.  

Terms represent all the differente entities of a F-Logic program, i.e. objects, classes, 
methods and method values. Because all these "first-class citizens" have names, we can 
query for them, which gives F-Logic the appeal and partially also the power of a second-
order language.  

Of course, a logic program must make assertians about the objects. These assertions are 
made with logical predicate. Refer to the "Statements" section below.  

3.1. Terms  

In F-Logic all objects have names. This includes classes and instances, values but also 
methods. The names of objects are formed by logical terms, known from datalog or 
prolog. Essentially, there are three types of terms:  

1. constants, like Person, car74 or admissibleDriver  

Each constant starts with a letter followed by (uppercase or lowercase) letters, 
digits or the underscore symbol "_" of the ASCII character set.  

2. functions, like f(X), maximumSpeed(germany, autobahn)  

Functions are complex terms that consist of a function symbols (which follows the 
same grammar as the constants above) and a list of one or more terms (enclosed 
in parenthesis) representing the arguments.  

3. variables, like X or Y  

Variables follow the same grammar as the constants above. To distinguish 
constants from variables, the latter are always declared using logical quantifiers 
FORALL and EXISTS. Variables are only used in the context of rules and queries.  
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Additionally, there are three special types of constants: numbers and strings and 
symbols.  

 Every positive or negative number may be used as a term, e.g., 17, -2.7, or 1E100.  
 String constants are enclosed by "quotation marks" and may contain any legal 

printable character.  
 Alternatively, strings can be enclosed in a pair of single quotes in order to use 

otherwise illegal characters, e.g. 'Müller' is a legal term while Müller is not. Note: the 
terms 'Müller' and "Müller" are different and do not unify (in logical sense).  

In addition to the basic function introduced above two special functions can be used in F-
Logic.  

 Lists  
 namespace terms  

These special cases deserve more attention and are described in more detail below.  

Following the object oriented paradigm, objects may be organized in classes. 
Furthermore, methods represent relationships between objects. This information about 
objects is expressed by F-atoms (cf. the Statements-section below).  

3.2. Lists  

A special kind or terms are lists. In F-Logic lists of terms can be represented as in Prolog. 
A list containing the constants a to e looks like this:  

 [a, b, c, d, e] 

Internally a list is represented by recursively nesting the binary function symbol l_(). Its 
first argument represents the first element of the list and its second argument represents 
the rest of the list (i.e. head and tail in Prolog-speak, or car and cdr in Lisp-speak). The 
example list presented above looks like this in its functional representation. 

 l_(a, l_(b, l_(c, l_(d, l_(e, nil_))))) 

Note the 0-ary function symbol nil_ to represent the end of the list. This symbol can be 
used to represent an empty list outside of l_() terms as well. Due to the canonical 
mapping even open lists with no fixed length can be represented, e.g. 

 [a, b, c, d | Tail] 

The variable Tail represents the currently not bound list, following the fourth element of 
this list. Note the "|"-symbol after d. This symbol separates the remainder of the list of 
the lists firsts element. When replacing "|" by "," (yielding ) represents a list of exactly 
five elements, whose first elements are fixed and whose fifth element is not yet bound. 

 l_(a, l_(b, l_(c, l_(d, Tail)))) 

In this case Tail may even also represent a list, but then the two example lists would still 
be different, since in this case the list Tail is the fifth element not the cdr. Assume Tail 
to be [X, Y]. Then the two lists would be 
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[a, b, c, d| Tail] = l_(a,l_(b,l_(c,l_(d, Tail)))) 
                    = l_(a,l_(b,l_(c,l_(d, l_(X,l_(Y,nil_)))))) 
 [a, b, c, d, Tail] = l_(a,l_(b,l_(c,l_(d, l_(Tail, nil_))))) 
                    = l_(a,l_(b,l_(c,l_(d, l_(l_(X,l_(Y,nil_)), 
                                                    nil_))))) 

In particular, these two lists do not unify. 

Examples 

For list operations you may use the built-in features concat and inlist (see chapter 
"Built-in Features").  

Define a new list: 

 p([a,b,c]) 

Separate a list: 

 FORALL Head,Tail <- p([Head | Tail]). 

The result will be: 

 Head=a, Tail=[b,c] 

All elements of the list: 

 FORALL X <- inlist(X,[a,b,c]). 

The result will be: 

 X=a, X=b, X=c 

Merge lists: 

 FORALL X <- concatlists([a,b],[c,d],X). 

The result will be: 

 X=[a,b,c,d] 

Add elements to a list: 

 FORALL L q([a | L]) <- p(L). 
 FORALL X <- q(X). 

The result will be: 

 X=[a,a,b,c] 
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An extended example calculating a graph using lists is this: 

 // the edges of a graph between two knots 
 edge(a,b). 
 edge(b,c). 
 edge(a,d). 
 edge(d,e). 
 edge(e,f). 
  
 // add each edge to a path containing two knots 
 FORALL X,Y path([Y,X]) <- edge(X,Y). 
  
 // add every new edge to the appropriate path 
 FORALL L,H1,H2,T path([H1|L]) <- path(L) and unify(L,[H2,T]) and 
edge(H2,H1). 

This query outputs all paths of the graph: 

FORALL L <- path(L) 

4. Basic Syntax -- Statements  

According to the logic-programming paradigm, F-Logic also provides the notion of 
predicates which represent the atomic pieces of knowledge (statements), which can be 
true or false. Since F-Logic is also based on the object-oriented paradigm it not only 
provides plain predicates (as e.g. known from Prolog) but also offers epistemological 
primitives for modeling in an object-oriented way, i.e. subclass, and instance-of relations 
but also specification of the signatures for methods or the definition of the values for 
method applications.  

In this section we will present the different kinds of statements available in F-Logic.  

 Schema level statements  
 Instance level statements  
 Plain predicates  

Later in this documentation we will also discuss rules, which from a logical point of view 
also represent statements.  

The object-oriented statements of F-Logic comprise F-Atoms and F-Molecules and are 
syntactically distinguished from plain predicates.  

4.1. Schema level statements  

Subclass-of statements  

In order to define the class hierarchy in F-Logic the language provides the so-called 
subclass-F-atoms. The subclass relationship between two classes is denoted by a double 
colon. In the following example we present two subclass-F-atoms that state that the 
classes car and bike are subclasses of the class vehicle: 

 Car:Vehicle. 
 Bike:Vehicle. 

In subclass-F-atoms, the classes are denoted by id-terms. Hence, classes may have 
methods defined on them and may be instances of other classes, which serve as a kind 
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of metaclass. Furthermore, variables are also permitted in all positions of subclass-F-
atoms.  

A class may have several incomparable direct superclasses. Thus, the subclass 
relationship specifies a partial order on the set of classes, so that the class hierarchy may 
be considered as a directed acyclic (but not reflexive) graph with the classes as its nodes.  

Note that in analogy to HiLog [CKW93] a class name does not denote the set of objects 
that are instances of that class.  

Signature statements  

In F-Logic signature-F-atoms define which methods are applicable for instances of certain 
classes. In particular, a signature-F-atom declares a method on a class and gives type 
restrictions for parameters and results. These restrictions may be viewed as typing 
constraints. Signature-F-atoms together with the class hierarchy form the schema of an 
F-Logic database. Syntactically signature-F-atoms use an equals character and one or 
two greater-than characters. Here are some examples for signature-F-atoms: 

 Person[name => xsd#string]. 
 Person[friend =>> Person]. 
 Vehicle[owner@(xsd#integer) => Person]. 

The first one states that the single-valued method name is defined for members of the 
class person and the corresponding result object has to belong to the datatype string. 
The second one defines the multi-valued method friend for members of the class 
person restricting the result objects to the class person. Finally, the third signature-F-
atom allows the application of the single-valued method owner to objects belonging to 
the class vehicle with parameter objects that are values of the datatype integer. The 
result objects of such method applications will be instances of the class person. By using 
a list of result classes enclosed by parentheses, several signature-F-atoms may be 
combined in an F-molecule. This is equivalent to the conjunction of the atoms, i.e. the 
result of the method is required to be in all of those classes:  

 Vehicle[owner =>> {Person, Adult}]. 

is equivalent to  

 Vehicle[owner =>> Person]. 
 Vehicle[owner =>> Adult]. 

F-Logic also supports method overloading. This means that methods denoted by the 
same object name may be applied to instances of different classes. Methods may even be 
overloaded according to their arity, i.e. number of parameters. For example, the method 
owner applicable to instances of the class vehicle can be used as a method without 
parameter or as a method with one parameter. The corresponding signature-F-atoms 
look like this: 

 Vehicle[owner => Person]. 
 Vehicle[owner@(xsd#integer) => Person]. 

Classes without any methods  

As a special case, if we want to represent an object without giving any properties, we can 
attach an empty specification list to the object name, e.g.  
 thing[]. 
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In this example a class thing is "created" that does not have any properties (yet).  

If we use a similar expression that consists solely of an object name (without the empty 
pair of brackets, i.e. thing.), it is treated as a 0-ary predicate symbol (see the section 
below).  
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4.2. Instance Level Statements  

To assert that an object is an instance of a certain class F-Logic provides so-called isa-F-
atoms. The class membership is denoted by a single colon separating two id-terms, 
representing the instance and the class. The following example lists three isa-F-atoms 
express that peter and paul are members of the class person, whereas car74is a 
member of the class car.  

 peter:Person. 
 paul:Person. 
 car74:Car. 

In contrast to other object-oriented languages, where every object instantiates exactly 
one class, F-Logic permits that an object is an instance of several classes that are not 
necessarily linked via the subclass relationship.  

In F-Logic, the application of a method on an object is expressed by data-F-atoms which 
consist of a host object, a method and a result object, denoted by id-terms.  

Variables may also be used at all positions of a data-F-atom, which allows queries about 
method names like 

 FORALL X,Y <- paul[X->>Y]. 

Methods may either be single-valued (->), i.e. can have one value only or they may be 
multi-valued (->>), i.e. can have more values. If more values are given for multi-valued 
attributes the values must be enclosed in curly brackets: 

 peter[friend->>{paul, mary}]. 

Sometimes the result of the invocation of a method on a host object depends on other 
objects, too, i.e. methods can also have parameters. For example, the paul might sell 
the car74 to peter, which means that for different dates the car has different owners.  

 car74[owner@(2007)-> paul]. 
 car74[owner@(2008)-> peter]. 

The syntax extends straightforwardly to methods with more than one parameter.  

4.3. F-Molecules  

Instead of giving several individual atoms, information about an object can be collected 
in F-molecules, which combine multiple F-atom statements in a concise way. For 
example, the following F-molecule denotes that car74 is a car whose owner is paul and 
whose admissible drivers are peter and mary.  

 car74:Car[owner->paul; admissibleDriver->>{peter, mary}]. 

This F-molecule may be split into several F-atoms: 

 car74:Car. 
 car74[owner->paul]. 
 car74[admissibleDriver->>peter]. 
 car74[admissibleDriver->>mary]. 
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For F-molecules containing multi-valued methods, the set of result objects can be divided 
into singleton sets (recall that the F-Logic semantics is multi-valued, not set-valued). For 
singleton sets, it is allowed to omit the curly bracket enclosing the result set, so that the 
two variants above are equivalent, which means that they yield the same object base.  

The same can be done for schema-level statements such as subclass-F-atoms or 
signature-F-atoms. For that purpose, a subclass relationship may follow after the host 
object. Then, a specification list of signatures separated by semicolons, may be given. If 
a signature contains more than one class, those can be collected in parentheses, 
separated by commas:  

 Car::Vehicle[ 
  passenger =>> Person; 
  seats => xsd#integer]. 

The following set of F-atoms is equivalent to the above F-molecule: 

 Car::Vehicle. 
 Car[passenger =>> Person]. 
 Car[seats => xsd#integer]. 

More complex nesting is also possible in F-Logic f-molecules. Besides collecting the 
properties of the host object, the properties of other objects appearing in an F-molecule, 
e.g. method objects or result objects may be inserted, too. Thus, a molecule may not 
only represent the properties of one single object but can also include nested information 
about different objects, even recursively:  

 car74:Car[owner->paul:Person[friend->peter:Person[age->17]]. 

This complex f-molecule is equivalent to the following set of f-atoms.  

The equivalent set of F-atoms is: 

 peter:Person. 
 peter[age -> 17]. 
 paul:Person. 
 paul[friend->peter]. 
 car74:Car. 
 car74[owner -> paul]. 

4.4. Predicates  

In F-Logic, predicates are used in the same way as in predicate logic, e.g. in Datalog. 
Thus, preserving upward-compatibility from Datalog to F-Logic. A predicate symbol 
followed by one or more terms separated by commas and included in parentheses is 
called a P-atom to distinguish it from F-atoms. The example below shows some P-atoms. 
The last P-atom consists solely of a 0-ary predicate symbol. Those are always used 
without parentheses. 

 owner(car74, paul).  
 adult(paul). 
 true. 

 13



Information expressed by P-atoms can usually also be represented by F-atoms, thus 
obtaining a more natural style of modeling. For example, the information given in the 
first two P-atoms could also be expressed as follows:  

 car74[owner->paul]. 
 paul:adult. 

Note that the expressions in the two examples above are alternative but disjoint 
representations. They cannot be used in a mixed manner, i.e. a query for owner(X,Y) 
does not retrieve any results for facts represented in the object-oriented way with F-
Atoms.  

5. Namespaces in F-Logic  

Without namespaces in F-Logic the names in different ontologies can not be distinguished 
from each other. For instance, a concept named "person" in ontology "car" is the same 
concept as the concept "person" in ontology "finance". Handling more than one ontology 
thus needs a mechanism to distinguish these concepts. Thus, ontoprise introduced the 
notion of namespaces to F-Logic, which enabled RDF-like identifiers for objects, classes 
or properties.  

5.2. Declaring Namespaces  

Since OntoBroker Version 5.0 a new syntax for declaring namespace in F-Logic was 
introducd. The F-Logic file can contain namespace declarations that associate namespace 
URIs with aliases, that can be used to formulate namespace terms in a more concise 
way.  

 :- prefix cars="http://www.cars-r-us.tv/". 
 :- prefix finance="http://www.financeWorld.tv/". 
 :- prefix xsd="http://www.w3.org/2001/XMLSchema#". 
 :- prefix ="http://www.myDomain.tv/private#". 

The code above declares four namespaces. It associates three of them with shortcuts (or 
aliases) and the last is declared as the default-namespace. Each namespace must 
represent a valid URI according to RFC 2396 and must end with either "#", "/" or ":". 
This is essential since these characters mark the separator between the namespace and 
the local part of an identifier. Esp. when exporting to RDF/OWL or reading from these 
formats, this convention is important. 
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5.2. Using Namespaces in F-Logic Expressions  

In F-Logic expressions every concept, method, object, and function may be qualified by a 
namespace. To separate the namespace from the name the "#"-sign is used (as 
conventionally used in the RDF world and in HTML to locate local links inside a web 
page). The following examples use the name space declaration from above:  

 cars#Car[ 
  cars#driver => cars#Person;  
  cars#passenger =>> cars#Person; 
  cars#seats => xsd#integer]. 
 cars#Person[ 
  cars#name => xsd#string; 
  cars#age => xsd#integer; 
  cars#drivingLicenseId => xsd#string]. 
   
 finance#Bank[ 
  finance#customer => finance#Person;  
  finance#location =>> finance#City]. 
 finance#Person[ 
  cars#name => xsd#string; 
  finance#monthlyIncome => xsd#integer]. 
 
 FORALL X,Y  
  Y[finance#hasBank ->> X] <-  
   Y:finance#Person AND 
   X:finance#Bank[finance#customer ->> Y]. 
 
 #me:cars#Person[cars#age -> 28]. 
 #myBank:finance#Bank[finance#location ->> karlsruhe]. 

The semantics of a namespace-qualified object is always a pair of strings, i.e. each object 
is represented by a URI (its namespace) and a local name. Thus finance#Person and 
cars#Person become clearly distinguishable. During parsing of the F-Logic program the 
aliases are resolved, such that the following pairs are constructed. 

 finance#Person stands for ns_("http://www.financeWorld.tv/", Person)  
 cars#Person stands for ns_("http://www.cars-r-us.tv/", Person)  

In case no declared namespace URI is found for a used alias, the alias itself is assumed 
to represent the namespace of an F-Logic object. URIs can also be used directly in 
namespace terms, i.e. the use of aliases is optional. Because the URI syntax greatly 
conflicts with the F-Logic grammar, literal namespaces must be quoted, e.g.  

 "http://www.cars-r-us.tv/"#Person is equivalent to cars#Person  

As described above, the ending character of namespaces is important for compatibility 
with RDF and OWL. In case where the namespace does not end with one of the 
characters "/", "#" or ":" the F-Logic parser automatically adds a "#" at the end of the 
namespace. This patch is applied to literal namespaces as well as to the namespace 
declaration. 
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5.3. Querying for Namespaces  

This mechanism enables users even to query for namespaces (URIs not aliases) and to 
provide variables in namespaces. For instance, the following query asks for all 
namespaces X that contain a concept person.  

 FORALL X <- X#Person[]. 

The following inference rule integrates knowledge from different ontologies using the 
namespace mechanism (and a so called Skolem-function). 

 FORALL Name,Attr,Value 
  person(Name)[Attr ->> Value] <-  
   EXISTS X 
    X:finance#Person[Attr ->> Value; finance#name 
-> Name] OR  
    X:cars#Person[Attr ->> Value; cars#name -> 
Name]. 
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5.4. Default Namespace  

Objects that start with a #-symbol (i.e. do not use a declared namespace alias) refer to 
objects in the default namespace, in the example above the URI 
http://www.myDomain.tv/private#. The default mechanism is used when a large 
number of objects, concepts, or methods from the same namespace are used, e.g.  

 #me stands for ns_("http://www.myDomain.tv/private#", me)  

Objects with an explicit reference to the current default namespace (i.e. starting with a 
#) must be clearly distinguished from objects without the leading #. The latter explicitly 
are defined to belong to no namespace, i.e. the two terms #me and me do not unify.  

6. Built-in Features  

The ontoprise implementation of F-Logic provides some built-in features which greatly 
extends the expressivitiy and versatility of the language. OntoBroker supports procedural 
attachements that can be used to do operations that are not really suitable for a logics-
based mechanism, such as arithmetics or string-operations. Additionally, this 
mechanisms allows to access external data sources at run time and to integrate data 
external to the knowledge base into the reasoning and query-answering process.  

The procedural attachments are integrated into the logic framework in the shape of built-
in predicates. These predicates cannot be syntactically distinguished from ordinary 
predicates. The inference engine calls some external Java code to compute the extension 
of the predicates instead of executing its normal logics-based reasoning.  

An overview of all built-ins provided by OntoBroker is given in the OntoBroker 
documentation. Here, we only describe a few built-ins briefly.  

6.1. Numbers, Comparisons and Arithmetics  

Objects denoting numbers or strings are different from other objects because the usual 
comparison operators are defined for them, as well as several arithmetic functions. 
Within a query or a rule body, relations between numbers or strings may be tested with 
the comparison predicates less, lessorequal, greater, greaterorequal. For example, 
the following query asks for all car owners younger than 22: 

 FORALL X,P,A <- X:Car[owner->P] AND P[age->A] AND less(A,22). 

The arithmetic operations addition +, subtraction -, multiplication * and division / 
are also implemented. Arithmetic expressions may be constructed in the usual way. Even 
complex expressions, e.g. 3 + 5 + 2 or 3 + 2 * 3 are supported. By default, 
multiplication and division have a higher precedence than addition and subtraction. As 
usual, the evaluation order may be changed by using parentheses, e.g. (3 + 2) * 3. The 
following example contains the query that computes the average age of peter and paul.  

 FORALL A,P1,P2<-  
  peter[age->P1] AND 
  paul[age->P2] AND 
  (A is (P1+P2)/2.0) .  

Additionally the following mathematical functions are implemented: 

 sin,cos,tan,asin,acos,ceil,floor,exp,rint,sqrt,round,max,min,pow 
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6.2. String handling  

Analogously to numbers, there are several predefined operations for strings. These built-
in predicates all have a fixed arity and (as all built-in predicate) must not be used in the 
head of rule. 

 isString(<arg>)  

is true, if <arg> is a string. 

 concat(<string 1> , <string 2> , <string 3>) 

succeeds if <string 3> is the concatenation of <string 1> and <string 2>, e.g., 

 FORALL X <- concat("a","b",X).  

returns the binding X = "ab" whereas 

 FORALL X <- concat("a",Y,"ab"). 

leads to Y = "b" 

 cut(<string>,<n>,<variable>) 

returns the <string> n characters shorter 

 tokenize(<string>,<delimiters>,<variable>) 

breaks string into tokens at the delimiters 

 tokenizen(<string>, <n>,<delimiters>,<variable>) 

breaks string into maximal n tokens at the delimiter 

 tolower(<string>,<variable>) 

transforms all characters into lower characters 

 toupper(<string>,<variable>) 

transforms all characters into upper characters 

 regexp("<regular expression>",<string1>,<string2>) 

Regular expressions may be used to search in strings with this predicate. The first 
parameter defines the search string as regular expression. Regular expressions are 
defined as PERL regular expressions. The second parameter defines the string to 
search in, and the last parameter defines the resulting string, i.e. the region that 
matched the pattern, e.g.  

  married("peter").   
  married("tom").  
  married("mary"). 
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The query "search for all married people with a "p" or "t" in their name": 

 FORALL X <- married(X) and regexp("[pt]",X,Y). 

delivers  

 X = "peter", Y = "p" 
 X = "peter", Y = "t"  
 X = "tom", Y="t" 
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6.3. Aggregations  

Aggregations are built-ins which have a set of values as a domain. Aggregations must 
not occur in rule cycles and the tackled values must not occur in the head of rules.  
 
xsum(<groupingkey>,<key>,<input value>,<result>)  
 
<groupingkey> the grouping key groups the results to a group. Given the following 
example: 
 Given the values: g1, k1, 5 
    g2, k2, 10 
    g1, k3, 2 
 results in the following values: 
    g1, 7 
    g2, 10 
 
 
<key> The key is a UNIQUE key for each input value which has to be considered. If two 
input values with the same key are given one of them is filtered out. In some cases every 
DIFFERENT value has to be considered only, in other cases every value (independent 
whether they are unique have to be considered. Let’s have a look at an example. We 
want to sum up the revenue values from different countries grouped by the country: 
 
 FORALL C,V,R <- C:Country[revenue->V] and xsum(C,f(C,V),V,R). 
 
The unique key is given by the value and the country. The reason for this is that during 
the inference process sometimes values are generated more than once and with the key 
it is determined what are duplicates and what are values which have to be considered. 
 
<input value> These are the input values. 
 
<result> This is either the result variable or it may be a constant to check the truth. 
 
For a list of available aggregations see builtindescript.html. 
 
Some executable examples: 
Part 1: 
 
p(gid1,key1,1.0). 
p(gid1,key2,1.0). 
p(gid1,key3,1.0). 
p(gid1,key4,1.0). 
p(gid2,key1,1.0). 
p(gid2,key2,1.0). 
p(gid2,key3,1.0). 
p(gid2,key4,1.0). 
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QUERY q1: FORALL X,Y,Z,C  
<- p(X,Y,Z)  
and xcount(X,Y,Z,C). orderedby X,C 

q1 counts for every gid (gid1 and gid2) all existing values, eleminating identical keys: 
"gid1,4.0","gid2,4.0" 
 
QUERY q2: FORALL X,Y,Z,C  
<- p(X,Y,Z)  
and xcount(X,Z,Z,C). orderedby X,C 

counts for every gid (gid1 and gid2) all existing values that differ from each other: 
"gid1,1.0","gid2,1.0" 

Caution: If you use 

p(gid1,key1,1.0). 
p(gid1,key1,2.0). 

with query q1, you have not consistent data. You cannot know which value will be used 
and which one will be ignored. This is irrelevant for xcount, but for other aggregations 
like xsum it will make a difference. 

 

Part 2: 

A[ref=>>A]@m1. 
A[ref1=>A]@m1. 
a:A@m1. 
b:A@m1. 
c:A@m1. 
d:A@m1. 
a[ref->{a,b}]@m1. 
a[ref->d]@m1. 
a[ref1->d]@m1. 
c[ref1->d]@m1. 

 

To see, which instance X has how many values ATTVAL, use: 

QUERY q1: FORALL X,ATT,ATTVAL,C  
<- X[ATT->ATTVAL]@m1  
and xcount(X,f(ATT,ATTVAL),ATTVAL,C). orderedby X,C 
results: "a,4.0", "c,1.0" 

Within this query the key contains ATT, too. xcount(X,ATTVAL,ATTVAL,C) would just 
count the different values, seeing a[ref->d]@m1. as a duplicate of a[ref1->d]@m1. This 
is not necessary if ATT is a part of the grouping id. 

 

To see, which instance X has how many values ATTVAL for which attribute ATT, use 
f(X,ATT) as gid: 

QUERY q2: FORALL X,ATT,ATTVAL,C  
<- X[ATT->ATTVAL]@m1  
and xcount(f(X,ATT),ATTVAL,ATTVAL,C). orderedby X,ATT,C 
results: "a,ref,3.0", "a,ref1,1.0", "c,ref1,1.0" 

Within this query the grouping id contains ATT, too. For this example it is not necessary 
to use X or ATT as a key. ATTVAL, f(X,ATTVAL), f(ATT,ATTVAL) and f(X,ATT,ATTVAL) 
as key will work to filter duplicates, as X and ATT both are used for the grouping id. 

7. Rules and Queries  
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An F-Logic knowledge base consists of a number of (extensional) ground facts. In order 
to formulate more complex knowledge F-Logic provides the notion of rules, which allows 
to specify dependencies between known facts and the creation of new, additional facts 
based the existing ones.  

Queries are similar to SQL-queries and can be used to retrieve facts from the F-Logic 
knowledge base. Since we usually are interested in the entailment of applied rules to the 
basic facts, queries actually return facts from the derived model, which is built from the 
closure of all facts and rules.  
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7.1. Rules  

Based on a given object base (which can be considered as a set a facts), rules offer the 
possibility to derive new information, i.e. to extend the object base intensionally. Rules 
encode generic information of the form:  

Whenever the precondition is of a rule is satisfied, the conclusion of the rule is also true.  

The precondition is called rule body and is formed by an arbitrary logical formula 
consisting of P-Atoms (predicates) or F-molecules, which are combined by OR, NOT, 
AND, <-, -> and <->.  

 A -> B in the body is an abbreviation for NOT A OR B,  
 A <- B is an abbreviation for NOT B OR A and  
 A %lt;-> B is an abbreviation for (A->B) AND (B<-A).  

Variables in the rule body may be quantified either existentially or universally. The 
conclusion, the rule head, is a conjunction of P-Atoms and F-molecules. Syntactically, the 
rule head is separated from the rule body by the symbol <- and every rule ends with a 
dot. Non-ground rules use variables for passing information between sub-goals and to 
the head. Every variable in the head of the rule must also occur in a positive F- or P-
Atom in the body of the rule.  

Assume an object base defining the methods friend and owner for some persons. The 
rules below compute the reflexive closure of friend and define a new method 
admissibleDriver based on friend- and owner-facts.  

 FORALL X,Y X[friend->>Y] <- Y:Person[friend->>X].  
 FORALL X,Y X[admissibleDriver->>Y] <- X:Vehicle[owner->Y]. 
 FORALL X,Y,Z X[admissibleDriver->>Z] <- X:Vehicle[owner->Y] AND 
Y:Person[friend->>Z].  

Partial logical formulae in the rule body may be negated. E.g. the following rule computes 
for every car X all persons Y that are prohibited as drivers for X: 

 FORALL X,Y  
  X[prohibitedDriver->>Y] <-  
   X:Car AND  
   Y:Person AND  
   NOT X[admissibleDriver ->> Y]. 

The following rule computes all persons X that do have (at least one) friend: 

 FORALL X  
  personWithFriends(X) <-  
   X:Person AND 
   EXISTS Y X[friend ->> Y]. 

Rules can also be identified by rule names, e.g. MutualFriendship in the following rule: 

 RULE MutualFriendship:  
  FORALL X,Y   
   X[friend ->> Y] <- 
    Y:Person[friend ->> X]. 

The rule name can be an arbitrary ground term.  
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7.2. Queries  

A query can be considered as a special kind of rule with an empty head. The following 
query asks about all admissible drivers of car74:  

 FORALL Y <-  
  car74[admissibleDriver ->> Y]. 

The answer to a query consists of all variable bindings such that the corresponding 
ground instance of the rule body is true in the object base. Considering the object base 
described by the facts and rules of the example from the beginning of this manual the 
above query yields the following variable bindings: 

 Y = paul  
 Y = peter 

Note that variables in a query may only be bound to individual objects, never to sets of 
objects, i.e. the above query does not return X = {paul, peter}.  

In case of a query with a set of ground id-terms at the result position, however, it is only 
checked whether all these results are true in the corresponding object base; there may 
be additional result objects in the database. With the given object base, all the following 
queries yield the answer true.  

 <- car74[admissibleDriver ->> {peter, paul}]. 
 <- car74[admissibleDriver ->> {paul, peter}]. 
 <- car74[admissibleDriver ->> peter]. 
 <- car74[admissibleDriver ->> paul]. 

If we want to know if a set of objects is the exact result of a multi-valued method applied 
to a certain object, we would need to use negation. 

More complex queries can be formulated that also contain arbitrary first-order formulas 
in the (rule) body: The following query computes the maximum value X for which p(X) 
holds. The rule body expresses that all Y for which p(Y) (also) holds must be less or 
equal to the searched X.  

 p(1). 
 p(2). 
 p(3). 
 FORALL X <-  
  p(X) AND  
  FORALL Y (p(Y) -> lessorequal(Y,X)). 

The result will be: 

 X = 3.0 
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7.3. Range Restriction  

All variables in a rule or a query must be range restricted, i.e. for each variable one or 
more of the following conditions must hold: 

1. The variable occurs in a positive (not negated) body literal which is not a built-in-literal 
(simple built-in, connector built-in, or aggregate).  

2. The variable is bound top-down by constants in the query or in connected rules  
3. A variable is bound by the output of a built-in-literal and all input-arguments of the 

built-in are range-restricted or ground. Which arguments are input and output of a 
built-in is defined by the signatures of the built-in.  

Let us illustrate the above topics in examples. For the following rule the variables all 
variables are bound and thus the query is range restricted. Variables X and Y are bound 
because they occur in the positive literal p(X,Y) (condition 1). Built-in add has the 
signature {number,number,variable} which means the first two (input) arguments must 
be bound to numbers and the third can be a variable and is thus an output parameter. 
Thus variable Z is bound because it is the output variable of built-in add and all input 
variables of add are bound (condition 3). 

 FORALL X,Y,Z <- p(X,Y) AND add(X,Y,Z). 

In the next query and rule the variable Y of the rule is bound top-down by the constant 5 
in the query (condition 2). Variable X is again bound by the positive literal q(X) 
(condition 1) and thus Z is bound as an output parameter of the add built-in (condition 
3). 

 FORALL X,Y <- p(X,5). 
 FORALL X,Y,Z p(X,Y) <- q(X) AND add(X,Y,Z). 

In the next rule there is a transitive dependency of variable bindings through built-ins 
given. Thus also U is range-restricted (condition 1 and condition 3). 

 FORALL X,Y,Z,U p(X,Y) <-  
  q(X,Y) AND add(X,Y,Z) and add(Z,Y,U). 

The above mentioned conditions have the consequence that a rule or query is not range 
restricted if a variable occurs in a negated literal only. Rules which have variables 
occurring in the head only are obscure because these variables must be bound top-down 
in every case for the rule to be range restricted. 

7.4. Quantifier Scoping  

The quantifiers FORALL and EXISTS introduce variables in rules and queries. 
Syntactically variables, like X or Y, do not differ to constant symbols in F-Logic, thus, the 
requirement for explicit declaration with quantifiers. In the unusual situation where there 
is a conflict between a used variable and an existing constant, it is important to know the 
scope, i.e. the lifetime of variables. To illustrate the notion of variable scopes we present 
an example formula where all variables are underlined and all constants are not.  

 FORALL X,Y p(X,Y) <- r(U,Y) AND EXISTS U q(U,Y). 
 FORALL X,Y p(X,Y) <- EXISTS U q(U,Y) AND r(U,Y). 
 FORALL X,Y p(X,Y) <- (EXISTS U q(U,Y)) AND r(U,Y). 

The rule-of-thumb is that each quantifiers binds variables till the end of the complete 
formula. You can overwrite this pattern only by introducing parenthesis and, thus, 
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explicitly introducing a new scope for the quantifier. Note: the semantics of the first and 
third formula above is equivalent (the U in the r predicate is a constant), whereas 
formula two is different (here, the U in the r predicate is bound by the EXISTS 
quantifier). 

8. Modules  

In software engineering modules have been invented to reduce complexity. Closely 
related and interwoven things are packaged in a common module, while loosely coupled 
things reside in different modules. The communication between modules should be 
minimal. These principles have been transferred to knowledge bases. Rules and facts 
describing a closely related part of the domain reside in one module. Thus, an entire 
knowledge base can be split up into different modules each containing closely related 
statements about the domain. In some sense this concept is orthogonal to the concept of 
namespaces. Identifiers with different namespaces may be addressed in one and the 
same module. On the other hand identifiers are global over all modules which means that 
an object with identifier x is the same object in all modules. Thus, modules do not 
separate objects, but statements about objects. Both, ground statements (statements 
without variables) as well as rules and queries are assigned to modules.  

Each F-Logic file must contain ground statements from exactly one module. The (default) 
module can be defined at the beginning of the file: 

 :- module = module1 

The name of a module can be an arbitrary ground term, i.e. a constant, a functional term 
or a namespace term. In the example above we chose a constant. When using a 
namespace term and an appropriate alias exists, it can be used for the declaration of the 
module as well, e.g. 

 :- prefix a="http://www.exmple.org/sample#". 
 :- module =a#sampleModule. 

The (default) module is assumed to for all subsequent ground facts, esp. if they do not 
declare the module explicitly. The notation for explicitly assigning a module to a ground 
fact looks like this. 

 peter:Person@module1. 
 paul:Person@module1. 
 bike26:Bike[ 
  owner -> paul]@module1. 

Since each file can contain only statements from one module the module references can 
be omitted without changing the semantics. 

Module references are more important within rules and queries. As well as ground 
statements can be assigned to modules, rules can be assigned to modules. 

 RULE ancestorHasFather@module1:  
 FORALL X,Y  
  X[hasAncestor ->>Y] <- X[hasFather->Y]. 
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expresses that the rule named ancestorHasFather resides in module1. This implies 
that all body and head literals are also assumed to come from this module (unless 
otherwise specified). The above rule, thus, is equivalent to: 

 RULE MutualFriendship@module1: 
  FORALL X,Y   
   X[friend ->> Y] <- 
    Y:Person[friend ->> X]. 

Each literal in a rule body and rule head can use its own module. For body literals this 
means that the reasoner tries to search for the fact in the mentioned module. For head 
literals this means, that the new fact is asserted to hold true in its module. A complex 
example looks like this: 

 FORALL X,Y   
  friend(X,Y)@module2 <- 
   X:Person[friend ->> Y:Person]@module1. 

This rule expresses that module2 holds the (derived) fact friend(X,Y) if it is true in 
module1 that the X and Y are persons and related via the friend method. 

Since module names are terms, it is even possible to use variables as module names in 
rule bodies. 

 FORALL X,Y,M   
  friend(X,Y) <- 
   X:Person[friend ->> Y:Person]@M. 

This rule searches for statements about friends in every module M and asserts a new 
fact in the default module.  

In our previous examples we used only constants for module names. In addition to that 
complex module names, i.e. module names consisting of functions are allowed too, e.g. 

 module(Arg1,...,Argn) 

If Arg1, ... Argn contain variables each binding leads to a separate module name, e.g. 
module(a,f(b)). 

It is good practice to use namespace terms as module names, and thus creating a 
universally unique identifier for the modules, e.g. with a declaration such as this: 

 :- prefix a="http://www.exmple.org/sample#". 
 :- module =a#sample. 
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