

Tutorial Series

How to write

F–Logic - Programs

covering OntoBroker® Version 5.2

September 2008

F-Logic 5.2 Manual ___ 3

1. Introduction ___ 4

2. Example __ 5

3. Basic Syntax___ 6
3.1. Terms__ 6
3.2. Lists__ 7

4. Basic Syntax -- Statements __ 9
4.1. Schema level statements___ 9
4.2. Instance Level Statements __ 12
4.3. F-Molecules __ 12
4.4. Predicates __ 13

5. Namespaces in F-Logic __ 14
5.2. Declaring Namespaces __ 14
5.2. Using Namespaces in F-Logic Expressions _________________________ 15
5.3. Querying for Namespaces ___ 16
5.4. Default Namespace __ 17

6. Built-in Features ___ 17
6.1. Numbers, Comparisons and Arithmetics ___________________________ 17
6.2. String handling __ 18
6.3. Aggregations ___ 20

7. Rules and Queries__ 20
7.1. Rules__ 23
7.2. Queries ___ 24
7.3. Range Restriction __ 25
7.4. Quantifier Scoping ___ 25

8. Modules___ 26

9. References ___ 28

Imprint __ 29

 2

F-Logic 5.2 Manual

No part of this publication may be reproduced or transmitted in any form or for any
purpose without the express permission of ontoprise GmbH. The information contained in
this document may be changed without any previous notice. These materials are subject
to change without notice. These materials are provided by ontoprise GmbH for
informational purposes without representation or warranty of any kind. ontoprise GmbH
shall not be liable for errors or omissions with respect to the materials. The only
warranties for ontoprise GmbH products and services are those that are set forth in the
express warranty statements accompanying such products and services, if any. Nothing
herein should be construed as constituting an additional warranty.

This documentation and its content is copyright of ontoprise GmbH® ontoprise GmbH
2008. All rights reserved.

 3

1. Introduction

F-Logic [KLW95] is a deductive, object oriented database language which combines the
declarative semantics and expressiveness of deductive database languages with the rich
data modeling capabilities supported by the object oriented data model. The theoretical
foundations of F-Logic have been described in the F-Logic report [KLW95].

The present manual describes how to apply F-Logic in the OntoBroker system. Therefore,
this document explains the various features of F-Logic by example and shows how to use
them for typical problems. It covers the features of the OntoBroker version V5.x. The F-
Logic variant of ontoprise slightly differs from the versions in [KLW95] and [FHK] in using
a slightly different syntax (e.g. <- is used instead of :-) and in providing a lot of
extensions (like built-ins, name spaces etc.). In the OntoBroker variant of F-Logic
additionally arbitrary logical formulas can be used in the bodies of rules.

We assume that the reader of this tutorial is familiar with the basic concepts of deductive
databases, e.g. Datalog [AHV95, CGT90, Ull89], and the principles of object oriented
database systems [ABD + 89].

 4

http://127.0.0.1:8081/help/topic/com.ontoprise.flogic.help/html/references.html
http://127.0.0.1:8081/help/topic/com.ontoprise.flogic.help/html/references.html
http://127.0.0.1:8081/help/topic/com.ontoprise.flogic.help/html/references.html
http://127.0.0.1:8081/help/topic/com.ontoprise.flogic.help/html/references.html
http://127.0.0.1:8081/help/topic/com.ontoprise.flogic.help/html/references.html

2. Example

Before explaining the syntax and semantics in detail, we will give a first impression of F-
Logic by presenting an F-Logic-program using F-Logic syntax. We will refer to the
contents of this model in later sections of the documentation.

 /* schema facts */
 Car:Vehicle.
 Boat:Vehicle.
 Bike:Vehicle.

 Person[
 name => xsd#string;
 age => xsd#integer;
 friend =>> Person].
 Vehicle[
 owner => Person;
 admissibleDriver =>> Person].
 Car[
 passenger =>> Person;
 seats => xsd#integer].

 /* facts */
 peter:Person[
 name -> "Peter";
 age -> 17].
 paul:Person[
 name -> "Paul";
 age -> 21;
 friend->peter].
 mary:Person[
 name -> "Mary";
 age -> 17].
 bike26:Bike[
 owner -> paul].
 car74:Car[
 owner -> paul].

 /* rules consisting of a rule head and a rule body */
 FORALL X,Y X[friend->>Y] <- Y:Person[friend->>X].
 FORALL X,Y X[admissibleDriver->>Y] <- X:Vehicle[owner->Y].
 FORALL X,Y,Z X[admissibleDriver->>Z] <- X:Vehicle[owner->Y] AND
Y:Person[friend->>Z].

 /* query */
 FORALL X,Y <- X[admissibleDriver->>Y] AND X:Vehicle[owner->paul].

The first section of this example consists of a set of schema facts. The schema represents
in an object-oriented way the classes and their relationships, e.g. to indicate that car and
bike are subclasses of vehicle. It also describes that every vehicle has an owner and
potentially multiply admissible drivers, which are persons. The schema also defines
that each person has a name and an age of type, string and int, respectively.

The second section titled "facts", describes that some people belong to the class person
and gives information about them, such as their name and age. Also it defines a
relationship between the objects namely that peter is the friend of paul. According to
the object-oriented paradigm, relationships between objects are represented as methods,
e.g. applying the method friend to the object paul yields the result object peter. All
these facts may be considered as the extensional database of the F-Logic program.

 5

Hence, they form the framework of an object base which is completed by some closure
properties.

The rules in the third section of the example derive new information from the given
object base. Evaluating these rules in a bottom-up way, new relationships between the
objects, denoted by the methods friend and admissibleDriver, are added to the object
base as intentional information.

The final section of the example contains a query to the object base. It is asking for all
vehicles that are owned by paul. For each such vehicle it also retrieves the
admissible drivers.

3. Basic Syntax

The F-Logic language allows formulating logic programs that represent knowledge about
objects, about their relationships and also about the classes they belong to. In addition
to this factual knowledge rules and queries can be modeled that represent implicit,
intensional knowledge. The basic knowledge representation is based on the notion of
terms and predicates as known from the logic-programming world.

Terms represent all the differente entities of a F-Logic program, i.e. objects, classes,
methods and method values. Because all these "first-class citizens" have names, we can
query for them, which gives F-Logic the appeal and partially also the power of a second-
order language.

Of course, a logic program must make assertians about the objects. These assertions are
made with logical predicate. Refer to the "Statements" section below.

3.1. Terms

In F-Logic all objects have names. This includes classes and instances, values but also
methods. The names of objects are formed by logical terms, known from datalog or
prolog. Essentially, there are three types of terms:

1. constants, like Person, car74 or admissibleDriver

Each constant starts with a letter followed by (uppercase or lowercase) letters,
digits or the underscore symbol "_" of the ASCII character set.

2. functions, like f(X), maximumSpeed(germany, autobahn)

Functions are complex terms that consist of a function symbols (which follows the
same grammar as the constants above) and a list of one or more terms (enclosed
in parenthesis) representing the arguments.

3. variables, like X or Y

Variables follow the same grammar as the constants above. To distinguish
constants from variables, the latter are always declared using logical quantifiers
FORALL and EXISTS. Variables are only used in the context of rules and queries.

 6

Additionally, there are three special types of constants: numbers and strings and
symbols.

 Every positive or negative number may be used as a term, e.g., 17, -2.7, or 1E100.
 String constants are enclosed by "quotation marks" and may contain any legal

printable character.
 Alternatively, strings can be enclosed in a pair of single quotes in order to use

otherwise illegal characters, e.g. 'Müller' is a legal term while Müller is not. Note: the
terms 'Müller' and "Müller" are different and do not unify (in logical sense).

In addition to the basic function introduced above two special functions can be used in F-
Logic.

 Lists
 namespace terms

These special cases deserve more attention and are described in more detail below.

Following the object oriented paradigm, objects may be organized in classes.
Furthermore, methods represent relationships between objects. This information about
objects is expressed by F-atoms (cf. the Statements-section below).

3.2. Lists

A special kind or terms are lists. In F-Logic lists of terms can be represented as in Prolog.
A list containing the constants a to e looks like this:

 [a, b, c, d, e]

Internally a list is represented by recursively nesting the binary function symbol l_(). Its
first argument represents the first element of the list and its second argument represents
the rest of the list (i.e. head and tail in Prolog-speak, or car and cdr in Lisp-speak). The
example list presented above looks like this in its functional representation.

 l_(a, l_(b, l_(c, l_(d, l_(e, nil_)))))

Note the 0-ary function symbol nil_ to represent the end of the list. This symbol can be
used to represent an empty list outside of l_() terms as well. Due to the canonical
mapping even open lists with no fixed length can be represented, e.g.

 [a, b, c, d | Tail]

The variable Tail represents the currently not bound list, following the fourth element of
this list. Note the "|"-symbol after d. This symbol separates the remainder of the list of
the lists firsts element. When replacing "|" by "," (yielding) represents a list of exactly
five elements, whose first elements are fixed and whose fifth element is not yet bound.

 l_(a, l_(b, l_(c, l_(d, Tail))))

In this case Tail may even also represent a list, but then the two example lists would still
be different, since in this case the list Tail is the fifth element not the cdr. Assume Tail
to be [X, Y]. Then the two lists would be

 7

[a, b, c, d| Tail] = l_(a,l_(b,l_(c,l_(d, Tail))))
 = l_(a,l_(b,l_(c,l_(d, l_(X,l_(Y,nil_))))))
 [a, b, c, d, Tail] = l_(a,l_(b,l_(c,l_(d, l_(Tail, nil_)))))
 = l_(a,l_(b,l_(c,l_(d, l_(l_(X,l_(Y,nil_)),
 nil_)))))

In particular, these two lists do not unify.

Examples

For list operations you may use the built-in features concat and inlist (see chapter
"Built-in Features").

Define a new list:

 p([a,b,c])

Separate a list:

 FORALL Head,Tail <- p([Head | Tail]).

The result will be:

 Head=a, Tail=[b,c]

All elements of the list:

 FORALL X <- inlist(X,[a,b,c]).

The result will be:

 X=a, X=b, X=c

Merge lists:

 FORALL X <- concatlists([a,b],[c,d],X).

The result will be:

 X=[a,b,c,d]

Add elements to a list:

 FORALL L q([a | L]) <- p(L).
 FORALL X <- q(X).

The result will be:

 X=[a,a,b,c]

 8

An extended example calculating a graph using lists is this:

 // the edges of a graph between two knots
 edge(a,b).
 edge(b,c).
 edge(a,d).
 edge(d,e).
 edge(e,f).

 // add each edge to a path containing two knots
 FORALL X,Y path([Y,X]) <- edge(X,Y).

 // add every new edge to the appropriate path
 FORALL L,H1,H2,T path([H1|L]) <- path(L) and unify(L,[H2,T]) and
edge(H2,H1).

This query outputs all paths of the graph:

FORALL L <- path(L)

4. Basic Syntax -- Statements

According to the logic-programming paradigm, F-Logic also provides the notion of
predicates which represent the atomic pieces of knowledge (statements), which can be
true or false. Since F-Logic is also based on the object-oriented paradigm it not only
provides plain predicates (as e.g. known from Prolog) but also offers epistemological
primitives for modeling in an object-oriented way, i.e. subclass, and instance-of relations
but also specification of the signatures for methods or the definition of the values for
method applications.

In this section we will present the different kinds of statements available in F-Logic.

 Schema level statements
 Instance level statements
 Plain predicates

Later in this documentation we will also discuss rules, which from a logical point of view
also represent statements.

The object-oriented statements of F-Logic comprise F-Atoms and F-Molecules and are
syntactically distinguished from plain predicates.

4.1. Schema level statements

Subclass-of statements

In order to define the class hierarchy in F-Logic the language provides the so-called
subclass-F-atoms. The subclass relationship between two classes is denoted by a double
colon. In the following example we present two subclass-F-atoms that state that the
classes car and bike are subclasses of the class vehicle:

 Car:Vehicle.
 Bike:Vehicle.

In subclass-F-atoms, the classes are denoted by id-terms. Hence, classes may have
methods defined on them and may be instances of other classes, which serve as a kind

 9

of metaclass. Furthermore, variables are also permitted in all positions of subclass-F-
atoms.

A class may have several incomparable direct superclasses. Thus, the subclass
relationship specifies a partial order on the set of classes, so that the class hierarchy may
be considered as a directed acyclic (but not reflexive) graph with the classes as its nodes.

Note that in analogy to HiLog [CKW93] a class name does not denote the set of objects
that are instances of that class.

Signature statements

In F-Logic signature-F-atoms define which methods are applicable for instances of certain
classes. In particular, a signature-F-atom declares a method on a class and gives type
restrictions for parameters and results. These restrictions may be viewed as typing
constraints. Signature-F-atoms together with the class hierarchy form the schema of an
F-Logic database. Syntactically signature-F-atoms use an equals character and one or
two greater-than characters. Here are some examples for signature-F-atoms:

 Person[name => xsd#string].
 Person[friend =>> Person].
 Vehicle[owner@(xsd#integer) => Person].

The first one states that the single-valued method name is defined for members of the
class person and the corresponding result object has to belong to the datatype string.
The second one defines the multi-valued method friend for members of the class
person restricting the result objects to the class person. Finally, the third signature-F-
atom allows the application of the single-valued method owner to objects belonging to
the class vehicle with parameter objects that are values of the datatype integer. The
result objects of such method applications will be instances of the class person. By using
a list of result classes enclosed by parentheses, several signature-F-atoms may be
combined in an F-molecule. This is equivalent to the conjunction of the atoms, i.e. the
result of the method is required to be in all of those classes:

 Vehicle[owner =>> {Person, Adult}].

is equivalent to

 Vehicle[owner =>> Person].
 Vehicle[owner =>> Adult].

F-Logic also supports method overloading. This means that methods denoted by the
same object name may be applied to instances of different classes. Methods may even be
overloaded according to their arity, i.e. number of parameters. For example, the method
owner applicable to instances of the class vehicle can be used as a method without
parameter or as a method with one parameter. The corresponding signature-F-atoms
look like this:

 Vehicle[owner => Person].
 Vehicle[owner@(xsd#integer) => Person].

Classes without any methods

As a special case, if we want to represent an object without giving any properties, we can
attach an empty specification list to the object name, e.g.
 thing[].

 10

In this example a class thing is "created" that does not have any properties (yet).

If we use a similar expression that consists solely of an object name (without the empty
pair of brackets, i.e. thing.), it is treated as a 0-ary predicate symbol (see the section
below).

 11

4.2. Instance Level Statements

To assert that an object is an instance of a certain class F-Logic provides so-called isa-F-
atoms. The class membership is denoted by a single colon separating two id-terms,
representing the instance and the class. The following example lists three isa-F-atoms
express that peter and paul are members of the class person, whereas car74is a
member of the class car.

 peter:Person.
 paul:Person.
 car74:Car.

In contrast to other object-oriented languages, where every object instantiates exactly
one class, F-Logic permits that an object is an instance of several classes that are not
necessarily linked via the subclass relationship.

In F-Logic, the application of a method on an object is expressed by data-F-atoms which
consist of a host object, a method and a result object, denoted by id-terms.

Variables may also be used at all positions of a data-F-atom, which allows queries about
method names like

 FORALL X,Y <- paul[X->>Y].

Methods may either be single-valued (->), i.e. can have one value only or they may be
multi-valued (->>), i.e. can have more values. If more values are given for multi-valued
attributes the values must be enclosed in curly brackets:

 peter[friend->>{paul, mary}].

Sometimes the result of the invocation of a method on a host object depends on other
objects, too, i.e. methods can also have parameters. For example, the paul might sell
the car74 to peter, which means that for different dates the car has different owners.

 car74[owner@(2007)-> paul].
 car74[owner@(2008)-> peter].

The syntax extends straightforwardly to methods with more than one parameter.

4.3. F-Molecules

Instead of giving several individual atoms, information about an object can be collected
in F-molecules, which combine multiple F-atom statements in a concise way. For
example, the following F-molecule denotes that car74 is a car whose owner is paul and
whose admissible drivers are peter and mary.

 car74:Car[owner->paul; admissibleDriver->>{peter, mary}].

This F-molecule may be split into several F-atoms:

 car74:Car.
 car74[owner->paul].
 car74[admissibleDriver->>peter].
 car74[admissibleDriver->>mary].

 12

For F-molecules containing multi-valued methods, the set of result objects can be divided
into singleton sets (recall that the F-Logic semantics is multi-valued, not set-valued). For
singleton sets, it is allowed to omit the curly bracket enclosing the result set, so that the
two variants above are equivalent, which means that they yield the same object base.

The same can be done for schema-level statements such as subclass-F-atoms or
signature-F-atoms. For that purpose, a subclass relationship may follow after the host
object. Then, a specification list of signatures separated by semicolons, may be given. If
a signature contains more than one class, those can be collected in parentheses,
separated by commas:

 Car::Vehicle[
 passenger =>> Person;
 seats => xsd#integer].

The following set of F-atoms is equivalent to the above F-molecule:

 Car::Vehicle.
 Car[passenger =>> Person].
 Car[seats => xsd#integer].

More complex nesting is also possible in F-Logic f-molecules. Besides collecting the
properties of the host object, the properties of other objects appearing in an F-molecule,
e.g. method objects or result objects may be inserted, too. Thus, a molecule may not
only represent the properties of one single object but can also include nested information
about different objects, even recursively:

 car74:Car[owner->paul:Person[friend->peter:Person[age->17]].

This complex f-molecule is equivalent to the following set of f-atoms.

The equivalent set of F-atoms is:

 peter:Person.
 peter[age -> 17].
 paul:Person.
 paul[friend->peter].
 car74:Car.
 car74[owner -> paul].

4.4. Predicates

In F-Logic, predicates are used in the same way as in predicate logic, e.g. in Datalog.
Thus, preserving upward-compatibility from Datalog to F-Logic. A predicate symbol
followed by one or more terms separated by commas and included in parentheses is
called a P-atom to distinguish it from F-atoms. The example below shows some P-atoms.
The last P-atom consists solely of a 0-ary predicate symbol. Those are always used
without parentheses.

 owner(car74, paul).
 adult(paul).
 true.

 13

Information expressed by P-atoms can usually also be represented by F-atoms, thus
obtaining a more natural style of modeling. For example, the information given in the
first two P-atoms could also be expressed as follows:

 car74[owner->paul].
 paul:adult.

Note that the expressions in the two examples above are alternative but disjoint
representations. They cannot be used in a mixed manner, i.e. a query for owner(X,Y)
does not retrieve any results for facts represented in the object-oriented way with F-
Atoms.

5. Namespaces in F-Logic

Without namespaces in F-Logic the names in different ontologies can not be distinguished
from each other. For instance, a concept named "person" in ontology "car" is the same
concept as the concept "person" in ontology "finance". Handling more than one ontology
thus needs a mechanism to distinguish these concepts. Thus, ontoprise introduced the
notion of namespaces to F-Logic, which enabled RDF-like identifiers for objects, classes
or properties.

5.2. Declaring Namespaces

Since OntoBroker Version 5.0 a new syntax for declaring namespace in F-Logic was
introducd. The F-Logic file can contain namespace declarations that associate namespace
URIs with aliases, that can be used to formulate namespace terms in a more concise
way.

 :- prefix cars="http://www.cars-r-us.tv/".
 :- prefix finance="http://www.financeWorld.tv/".
 :- prefix xsd="http://www.w3.org/2001/XMLSchema#".
 :- prefix ="http://www.myDomain.tv/private#".

The code above declares four namespaces. It associates three of them with shortcuts (or
aliases) and the last is declared as the default-namespace. Each namespace must
represent a valid URI according to RFC 2396 and must end with either "#", "/" or ":".
This is essential since these characters mark the separator between the namespace and
the local part of an identifier. Esp. when exporting to RDF/OWL or reading from these
formats, this convention is important.

 14

5.2. Using Namespaces in F-Logic Expressions

In F-Logic expressions every concept, method, object, and function may be qualified by a
namespace. To separate the namespace from the name the "#"-sign is used (as
conventionally used in the RDF world and in HTML to locate local links inside a web
page). The following examples use the name space declaration from above:

 cars#Car[
 cars#driver => cars#Person;
 cars#passenger =>> cars#Person;
 cars#seats => xsd#integer].
 cars#Person[
 cars#name => xsd#string;
 cars#age => xsd#integer;
 cars#drivingLicenseId => xsd#string].

 finance#Bank[
 finance#customer => finance#Person;
 finance#location =>> finance#City].
 finance#Person[
 cars#name => xsd#string;
 finance#monthlyIncome => xsd#integer].

 FORALL X,Y
 Y[finance#hasBank ->> X] <-
 Y:finance#Person AND
 X:finance#Bank[finance#customer ->> Y].

 #me:cars#Person[cars#age -> 28].
 #myBank:finance#Bank[finance#location ->> karlsruhe].

The semantics of a namespace-qualified object is always a pair of strings, i.e. each object
is represented by a URI (its namespace) and a local name. Thus finance#Person and
cars#Person become clearly distinguishable. During parsing of the F-Logic program the
aliases are resolved, such that the following pairs are constructed.

 finance#Person stands for ns_("http://www.financeWorld.tv/", Person)
 cars#Person stands for ns_("http://www.cars-r-us.tv/", Person)

In case no declared namespace URI is found for a used alias, the alias itself is assumed
to represent the namespace of an F-Logic object. URIs can also be used directly in
namespace terms, i.e. the use of aliases is optional. Because the URI syntax greatly
conflicts with the F-Logic grammar, literal namespaces must be quoted, e.g.

 "http://www.cars-r-us.tv/"#Person is equivalent to cars#Person

As described above, the ending character of namespaces is important for compatibility
with RDF and OWL. In case where the namespace does not end with one of the
characters "/", "#" or ":" the F-Logic parser automatically adds a "#" at the end of the
namespace. This patch is applied to literal namespaces as well as to the namespace
declaration.

 15

5.3. Querying for Namespaces

This mechanism enables users even to query for namespaces (URIs not aliases) and to
provide variables in namespaces. For instance, the following query asks for all
namespaces X that contain a concept person.

 FORALL X <- X#Person[].

The following inference rule integrates knowledge from different ontologies using the
namespace mechanism (and a so called Skolem-function).

 FORALL Name,Attr,Value
 person(Name)[Attr ->> Value] <-
 EXISTS X
 X:finance#Person[Attr ->> Value; finance#name
-> Name] OR
 X:cars#Person[Attr ->> Value; cars#name ->
Name].

 16

5.4. Default Namespace

Objects that start with a #-symbol (i.e. do not use a declared namespace alias) refer to
objects in the default namespace, in the example above the URI
http://www.myDomain.tv/private#. The default mechanism is used when a large
number of objects, concepts, or methods from the same namespace are used, e.g.

 #me stands for ns_("http://www.myDomain.tv/private#", me)

Objects with an explicit reference to the current default namespace (i.e. starting with a
#) must be clearly distinguished from objects without the leading #. The latter explicitly
are defined to belong to no namespace, i.e. the two terms #me and me do not unify.

6. Built-in Features

The ontoprise implementation of F-Logic provides some built-in features which greatly
extends the expressivitiy and versatility of the language. OntoBroker supports procedural
attachements that can be used to do operations that are not really suitable for a logics-
based mechanism, such as arithmetics or string-operations. Additionally, this
mechanisms allows to access external data sources at run time and to integrate data
external to the knowledge base into the reasoning and query-answering process.

The procedural attachments are integrated into the logic framework in the shape of built-
in predicates. These predicates cannot be syntactically distinguished from ordinary
predicates. The inference engine calls some external Java code to compute the extension
of the predicates instead of executing its normal logics-based reasoning.

An overview of all built-ins provided by OntoBroker is given in the OntoBroker
documentation. Here, we only describe a few built-ins briefly.

6.1. Numbers, Comparisons and Arithmetics

Objects denoting numbers or strings are different from other objects because the usual
comparison operators are defined for them, as well as several arithmetic functions.
Within a query or a rule body, relations between numbers or strings may be tested with
the comparison predicates less, lessorequal, greater, greaterorequal. For example,
the following query asks for all car owners younger than 22:

 FORALL X,P,A <- X:Car[owner->P] AND P[age->A] AND less(A,22).

The arithmetic operations addition +, subtraction -, multiplication * and division /
are also implemented. Arithmetic expressions may be constructed in the usual way. Even
complex expressions, e.g. 3 + 5 + 2 or 3 + 2 * 3 are supported. By default,
multiplication and division have a higher precedence than addition and subtraction. As
usual, the evaluation order may be changed by using parentheses, e.g. (3 + 2) * 3. The
following example contains the query that computes the average age of peter and paul.

 FORALL A,P1,P2<-
 peter[age->P1] AND
 paul[age->P2] AND
 (A is (P1+P2)/2.0) .

Additionally the following mathematical functions are implemented:

 sin,cos,tan,asin,acos,ceil,floor,exp,rint,sqrt,round,max,min,pow

 17

6.2. String handling

Analogously to numbers, there are several predefined operations for strings. These built-
in predicates all have a fixed arity and (as all built-in predicate) must not be used in the
head of rule.

 isString(<arg>)

is true, if <arg> is a string.

 concat(<string 1> , <string 2> , <string 3>)

succeeds if <string 3> is the concatenation of <string 1> and <string 2>, e.g.,

 FORALL X <- concat("a","b",X).

returns the binding X = "ab" whereas

 FORALL X <- concat("a",Y,"ab").

leads to Y = "b"

 cut(<string>,<n>,<variable>)

returns the <string> n characters shorter

 tokenize(<string>,<delimiters>,<variable>)

breaks string into tokens at the delimiters

 tokenizen(<string>, <n>,<delimiters>,<variable>)

breaks string into maximal n tokens at the delimiter

 tolower(<string>,<variable>)

transforms all characters into lower characters

 toupper(<string>,<variable>)

transforms all characters into upper characters

 regexp("<regular expression>",<string1>,<string2>)

Regular expressions may be used to search in strings with this predicate. The first
parameter defines the search string as regular expression. Regular expressions are
defined as PERL regular expressions. The second parameter defines the string to
search in, and the last parameter defines the resulting string, i.e. the region that
matched the pattern, e.g.

 married("peter").
 married("tom").
 married("mary").

 18

The query "search for all married people with a "p" or "t" in their name":

 FORALL X <- married(X) and regexp("[pt]",X,Y).

delivers

 X = "peter", Y = "p"
 X = "peter", Y = "t"
 X = "tom", Y="t"

 19

6.3. Aggregations

Aggregations are built-ins which have a set of values as a domain. Aggregations must
not occur in rule cycles and the tackled values must not occur in the head of rules.

xsum(<groupingkey>,<key>,<input value>,<result>)

<groupingkey> the grouping key groups the results to a group. Given the following
example:
 Given the values: g1, k1, 5
 g2, k2, 10
 g1, k3, 2
 results in the following values:
 g1, 7
 g2, 10

<key> The key is a UNIQUE key for each input value which has to be considered. If two
input values with the same key are given one of them is filtered out. In some cases every
DIFFERENT value has to be considered only, in other cases every value (independent
whether they are unique have to be considered. Let’s have a look at an example. We
want to sum up the revenue values from different countries grouped by the country:

 FORALL C,V,R <- C:Country[revenue->V] and xsum(C,f(C,V),V,R).

The unique key is given by the value and the country. The reason for this is that during
the inference process sometimes values are generated more than once and with the key
it is determined what are duplicates and what are values which have to be considered.

<input value> These are the input values.

<result> This is either the result variable or it may be a constant to check the truth.

For a list of available aggregations see builtindescript.html.

Some executable examples:
Part 1:

p(gid1,key1,1.0).
p(gid1,key2,1.0).
p(gid1,key3,1.0).
p(gid1,key4,1.0).
p(gid2,key1,1.0).
p(gid2,key2,1.0).
p(gid2,key3,1.0).
p(gid2,key4,1.0).

 20

http://otc.ontoprise.com/index.php?id=4

QUERY q1: FORALL X,Y,Z,C
<- p(X,Y,Z)
and xcount(X,Y,Z,C). orderedby X,C

q1 counts for every gid (gid1 and gid2) all existing values, eleminating identical keys:
"gid1,4.0","gid2,4.0"

QUERY q2: FORALL X,Y,Z,C
<- p(X,Y,Z)
and xcount(X,Z,Z,C). orderedby X,C

counts for every gid (gid1 and gid2) all existing values that differ from each other:
"gid1,1.0","gid2,1.0"

Caution: If you use

p(gid1,key1,1.0).
p(gid1,key1,2.0).

with query q1, you have not consistent data. You cannot know which value will be used
and which one will be ignored. This is irrelevant for xcount, but for other aggregations
like xsum it will make a difference.

Part 2:

A[ref=>>A]@m1.
A[ref1=>A]@m1.
a:A@m1.
b:A@m1.
c:A@m1.
d:A@m1.
a[ref->{a,b}]@m1.
a[ref->d]@m1.
a[ref1->d]@m1.
c[ref1->d]@m1.

To see, which instance X has how many values ATTVAL, use:

QUERY q1: FORALL X,ATT,ATTVAL,C
<- X[ATT->ATTVAL]@m1
and xcount(X,f(ATT,ATTVAL),ATTVAL,C). orderedby X,C
results: "a,4.0", "c,1.0"

Within this query the key contains ATT, too. xcount(X,ATTVAL,ATTVAL,C) would just
count the different values, seeing a[ref->d]@m1. as a duplicate of a[ref1->d]@m1. This
is not necessary if ATT is a part of the grouping id.

To see, which instance X has how many values ATTVAL for which attribute ATT, use
f(X,ATT) as gid:

QUERY q2: FORALL X,ATT,ATTVAL,C
<- X[ATT->ATTVAL]@m1
and xcount(f(X,ATT),ATTVAL,ATTVAL,C). orderedby X,ATT,C
results: "a,ref,3.0", "a,ref1,1.0", "c,ref1,1.0"

Within this query the grouping id contains ATT, too. For this example it is not necessary
to use X or ATT as a key. ATTVAL, f(X,ATTVAL), f(ATT,ATTVAL) and f(X,ATT,ATTVAL)
as key will work to filter duplicates, as X and ATT both are used for the grouping id.

7. Rules and Queries

 21

An F-Logic knowledge base consists of a number of (extensional) ground facts. In order
to formulate more complex knowledge F-Logic provides the notion of rules, which allows
to specify dependencies between known facts and the creation of new, additional facts
based the existing ones.

Queries are similar to SQL-queries and can be used to retrieve facts from the F-Logic
knowledge base. Since we usually are interested in the entailment of applied rules to the
basic facts, queries actually return facts from the derived model, which is built from the
closure of all facts and rules.

 22

7.1. Rules

Based on a given object base (which can be considered as a set a facts), rules offer the
possibility to derive new information, i.e. to extend the object base intensionally. Rules
encode generic information of the form:

Whenever the precondition is of a rule is satisfied, the conclusion of the rule is also true.

The precondition is called rule body and is formed by an arbitrary logical formula
consisting of P-Atoms (predicates) or F-molecules, which are combined by OR, NOT,
AND, <-, -> and <->.

 A -> B in the body is an abbreviation for NOT A OR B,
 A <- B is an abbreviation for NOT B OR A and
 A %lt;-> B is an abbreviation for (A->B) AND (B<-A).

Variables in the rule body may be quantified either existentially or universally. The
conclusion, the rule head, is a conjunction of P-Atoms and F-molecules. Syntactically, the
rule head is separated from the rule body by the symbol <- and every rule ends with a
dot. Non-ground rules use variables for passing information between sub-goals and to
the head. Every variable in the head of the rule must also occur in a positive F- or P-
Atom in the body of the rule.

Assume an object base defining the methods friend and owner for some persons. The
rules below compute the reflexive closure of friend and define a new method
admissibleDriver based on friend- and owner-facts.

 FORALL X,Y X[friend->>Y] <- Y:Person[friend->>X].
 FORALL X,Y X[admissibleDriver->>Y] <- X:Vehicle[owner->Y].
 FORALL X,Y,Z X[admissibleDriver->>Z] <- X:Vehicle[owner->Y] AND
Y:Person[friend->>Z].

Partial logical formulae in the rule body may be negated. E.g. the following rule computes
for every car X all persons Y that are prohibited as drivers for X:

 FORALL X,Y
 X[prohibitedDriver->>Y] <-
 X:Car AND
 Y:Person AND
 NOT X[admissibleDriver ->> Y].

The following rule computes all persons X that do have (at least one) friend:

 FORALL X
 personWithFriends(X) <-
 X:Person AND
 EXISTS Y X[friend ->> Y].

Rules can also be identified by rule names, e.g. MutualFriendship in the following rule:

 RULE MutualFriendship:
 FORALL X,Y
 X[friend ->> Y] <-
 Y:Person[friend ->> X].

The rule name can be an arbitrary ground term.

 23

7.2. Queries

A query can be considered as a special kind of rule with an empty head. The following
query asks about all admissible drivers of car74:

 FORALL Y <-
 car74[admissibleDriver ->> Y].

The answer to a query consists of all variable bindings such that the corresponding
ground instance of the rule body is true in the object base. Considering the object base
described by the facts and rules of the example from the beginning of this manual the
above query yields the following variable bindings:

 Y = paul
 Y = peter

Note that variables in a query may only be bound to individual objects, never to sets of
objects, i.e. the above query does not return X = {paul, peter}.

In case of a query with a set of ground id-terms at the result position, however, it is only
checked whether all these results are true in the corresponding object base; there may
be additional result objects in the database. With the given object base, all the following
queries yield the answer true.

 <- car74[admissibleDriver ->> {peter, paul}].
 <- car74[admissibleDriver ->> {paul, peter}].
 <- car74[admissibleDriver ->> peter].
 <- car74[admissibleDriver ->> paul].

If we want to know if a set of objects is the exact result of a multi-valued method applied
to a certain object, we would need to use negation.

More complex queries can be formulated that also contain arbitrary first-order formulas
in the (rule) body: The following query computes the maximum value X for which p(X)
holds. The rule body expresses that all Y for which p(Y) (also) holds must be less or
equal to the searched X.

 p(1).
 p(2).
 p(3).
 FORALL X <-
 p(X) AND
 FORALL Y (p(Y) -> lessorequal(Y,X)).

The result will be:

 X = 3.0

 24

http://127.0.0.1:8081/help/topic/com.ontoprise.flogic.help/html/example.html

7.3. Range Restriction

All variables in a rule or a query must be range restricted, i.e. for each variable one or
more of the following conditions must hold:

1. The variable occurs in a positive (not negated) body literal which is not a built-in-literal
(simple built-in, connector built-in, or aggregate).

2. The variable is bound top-down by constants in the query or in connected rules
3. A variable is bound by the output of a built-in-literal and all input-arguments of the

built-in are range-restricted or ground. Which arguments are input and output of a
built-in is defined by the signatures of the built-in.

Let us illustrate the above topics in examples. For the following rule the variables all
variables are bound and thus the query is range restricted. Variables X and Y are bound
because they occur in the positive literal p(X,Y) (condition 1). Built-in add has the
signature {number,number,variable} which means the first two (input) arguments must
be bound to numbers and the third can be a variable and is thus an output parameter.
Thus variable Z is bound because it is the output variable of built-in add and all input
variables of add are bound (condition 3).

 FORALL X,Y,Z <- p(X,Y) AND add(X,Y,Z).

In the next query and rule the variable Y of the rule is bound top-down by the constant 5
in the query (condition 2). Variable X is again bound by the positive literal q(X)
(condition 1) and thus Z is bound as an output parameter of the add built-in (condition
3).

 FORALL X,Y <- p(X,5).
 FORALL X,Y,Z p(X,Y) <- q(X) AND add(X,Y,Z).

In the next rule there is a transitive dependency of variable bindings through built-ins
given. Thus also U is range-restricted (condition 1 and condition 3).

 FORALL X,Y,Z,U p(X,Y) <-
 q(X,Y) AND add(X,Y,Z) and add(Z,Y,U).

The above mentioned conditions have the consequence that a rule or query is not range
restricted if a variable occurs in a negated literal only. Rules which have variables
occurring in the head only are obscure because these variables must be bound top-down
in every case for the rule to be range restricted.

7.4. Quantifier Scoping

The quantifiers FORALL and EXISTS introduce variables in rules and queries.
Syntactically variables, like X or Y, do not differ to constant symbols in F-Logic, thus, the
requirement for explicit declaration with quantifiers. In the unusual situation where there
is a conflict between a used variable and an existing constant, it is important to know the
scope, i.e. the lifetime of variables. To illustrate the notion of variable scopes we present
an example formula where all variables are underlined and all constants are not.

 FORALL X,Y p(X,Y) <- r(U,Y) AND EXISTS U q(U,Y).
 FORALL X,Y p(X,Y) <- EXISTS U q(U,Y) AND r(U,Y).
 FORALL X,Y p(X,Y) <- (EXISTS U q(U,Y)) AND r(U,Y).

The rule-of-thumb is that each quantifiers binds variables till the end of the complete
formula. You can overwrite this pattern only by introducing parenthesis and, thus,

 25

explicitly introducing a new scope for the quantifier. Note: the semantics of the first and
third formula above is equivalent (the U in the r predicate is a constant), whereas
formula two is different (here, the U in the r predicate is bound by the EXISTS
quantifier).

8. Modules

In software engineering modules have been invented to reduce complexity. Closely
related and interwoven things are packaged in a common module, while loosely coupled
things reside in different modules. The communication between modules should be
minimal. These principles have been transferred to knowledge bases. Rules and facts
describing a closely related part of the domain reside in one module. Thus, an entire
knowledge base can be split up into different modules each containing closely related
statements about the domain. In some sense this concept is orthogonal to the concept of
namespaces. Identifiers with different namespaces may be addressed in one and the
same module. On the other hand identifiers are global over all modules which means that
an object with identifier x is the same object in all modules. Thus, modules do not
separate objects, but statements about objects. Both, ground statements (statements
without variables) as well as rules and queries are assigned to modules.

Each F-Logic file must contain ground statements from exactly one module. The (default)
module can be defined at the beginning of the file:

 :- module = module1

The name of a module can be an arbitrary ground term, i.e. a constant, a functional term
or a namespace term. In the example above we chose a constant. When using a
namespace term and an appropriate alias exists, it can be used for the declaration of the
module as well, e.g.

 :- prefix a="http://www.exmple.org/sample#".
 :- module =a#sampleModule.

The (default) module is assumed to for all subsequent ground facts, esp. if they do not
declare the module explicitly. The notation for explicitly assigning a module to a ground
fact looks like this.

 peter:Person@module1.
 paul:Person@module1.
 bike26:Bike[
 owner -> paul]@module1.

Since each file can contain only statements from one module the module references can
be omitted without changing the semantics.

Module references are more important within rules and queries. As well as ground
statements can be assigned to modules, rules can be assigned to modules.

 RULE ancestorHasFather@module1:
 FORALL X,Y
 X[hasAncestor ->>Y] <- X[hasFather->Y].

 26

expresses that the rule named ancestorHasFather resides in module1. This implies
that all body and head literals are also assumed to come from this module (unless
otherwise specified). The above rule, thus, is equivalent to:

 RULE MutualFriendship@module1:
 FORALL X,Y
 X[friend ->> Y] <-
 Y:Person[friend ->> X].

Each literal in a rule body and rule head can use its own module. For body literals this
means that the reasoner tries to search for the fact in the mentioned module. For head
literals this means, that the new fact is asserted to hold true in its module. A complex
example looks like this:

 FORALL X,Y
 friend(X,Y)@module2 <-
 X:Person[friend ->> Y:Person]@module1.

This rule expresses that module2 holds the (derived) fact friend(X,Y) if it is true in
module1 that the X and Y are persons and related via the friend method.

Since module names are terms, it is even possible to use variables as module names in
rule bodies.

 FORALL X,Y,M
 friend(X,Y) <-
 X:Person[friend ->> Y:Person]@M.

This rule searches for statements about friends in every module M and asserts a new
fact in the default module.

In our previous examples we used only constants for module names. In addition to that
complex module names, i.e. module names consisting of functions are allowed too, e.g.

 module(Arg1,...,Argn)

If Arg1, ... Argn contain variables each binding leads to a separate module name, e.g.
module(a,f(b)).

It is good practice to use namespace terms as module names, and thus creating a
universally unique identifier for the modules, e.g. with a declaration such as this:

 :- prefix a="http://www.exmple.org/sample#".
 :- module =a#sample.

 27

9. References

 [ABD+ 89] Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus Dittrich, David
Maier, and Stanley Zdonik. The object-oriented database system manifesto. In Intl.
Conference on Deductive and Object-Oriented Databases (DOOD), pages 40-57.
North-Holland/Elsevier Science Publishers, 1989.

 [AHV 95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison Wesley, 1995.

 [CGT 90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases.
Springer, 1990.

 [CKW 93] W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-order
logic programming. Journal of Logic Programming, 15(3):187-230, 1993.

 [FLU 94] Juergen Frohn, Georg Lausen, and Heinz Upho . Access to objects by path
expressions and rules. In Intl. Conference on Very Large Data Bases (VLDB), pages
273-284, 1994.

 [FHK] J. Frohn, R. Himmeroeder, P. Kandzia, C. Schlepphorst. How to Write F-logic
Programs in FLORID - A Tutorial for the Database Language F-logic.
http://www.informatik.uni-freiburg.de/~dbis/florid/

 [KLW 95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of
object-oriented and frame-based languages. Journal of the ACM, 42(4):741-843,
1995.

 [LHL+ 98] Bertram Ludaescher, Rainer Himmeroder, Georg Lausen, Wolfgang May,
and Christian Schlepphorst. Managing semistructured data with orid: A deductive
object-oriented perspective. Information Systems, 23(8):589-612, 1998.

 [Liu 96] M. Liu. ROL: A typed deductive object base language. In Intl. Conference on
Database and Expert Systems Applications (DEXA), 1996.

 [Ull 89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 2. Computer Science Press, New York, 1989.

 28

Imprint

Editor

ontoprise GmbH

Amalienbadstraße 36

(Raumfabrik 29)

76227 Karlsruhe (Germany)

Telefon +49 (0) 721 / 509 809 0

Telefax +49 (0) 721 / 509 809 11

Email support@ontoprise.de

Internet http://www.ontoprise.de

 © 2008 by ontoprise GmbH, all rights reserved

No part of this publication may be reproduced or transmitted in any form or for any
purpose without the express permission of ontoprise GmbH. The information contained
herein may be changed without prior notice.

These materials are subject to change without notice. These materials are provided by
ontoprise GmbH for informational purposes only, without representation or warranty of
any kind, and ontoprise GmbH shall not be liable for errors or omissions with respect to
the materials. The only warranties for ontoprise GmbH products and services are those
that are set forth in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an additional
warranty.

Karlsruhe, September 2008

 29

mailto:support@ontoprise.de
http://www.ontoprise.de/

	 F-Logic 5.2 Manual
	 1. Introduction
	 2. Example
	3. Basic Syntax
	3.1. Terms
	3.2. Lists
	Examples

	4. Basic Syntax -- Statements
	4.1. Schema level statements
	Subclass-of statements
	Signature statements
	Classes without any methods

	 4.2. Instance Level Statements
	4.3. F-Molecules
	4.4. Predicates

	5. Namespaces in F-Logic
	5.2. Declaring Namespaces
	 5.2. Using Namespaces in F-Logic Expressions
	 5.3. Querying for Namespaces
	 5.4. Default Namespace

	6. Built-in Features
	6.1. Numbers, Comparisons and Arithmetics
	6.2. String handling
	 6.3. Aggregations

	7. Rules and Queries
	 7.1. Rules
	 7.2. Queries
	 7.3. Range Restriction
	7.4. Quantifier Scoping

	8. Modules
	 9. References
	Imprint

