
A Comparison of RDF Query Languages

Peter Haase1, Jeen Broekstra2, Andreas Eberhart1, Raphael Volz1

1Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany
{haase, eberhart, volz}@aifb.uni-karlsruhe.de

2Vrije Universiteit Amsterdam, The Netherlands
jbroeks@cs.vu.nl

Abstract. The purpose of this paper is to provide a rigorous compari-
son of six query languages for RDF. We outline and categorize features
that any RDF query language should provide and compare the individ-
ual languages along these features. We describe several practical usage
examples for RDF queries and conclude with a comparison of the expres-
siveness of the particular query languages. The usecases, sample data and
queries for the respective languages are available on the web1.

1 Introduction

The Resource Description Framework (RDF) is considered to be the most rele-
vant standard for data representation and exchange on the Semantic Web. The
recent recommendation of RDF has just completed a major clean up of the
initial proposal [9] in terms of syntax [1], along with a clarification of the un-
derlying data model [8], and its intended interpretation [5]. Several languages
for querying RDF documents and have been proposed, some in the tradition of
database query languages (i.e. SQL, OQL), others more closely inspired by rule
languages. No standard for RDF query language has yet emerged, but the dis-
cussion is ongoing within both academic institutions, Semantic Web enthusiasts
and the World Wide Web Consortium (W3C). The W3C recently chartered a
working group2 with a focus on accessing and querying RDF data.

We present a comparison of six representative query languages for RDF,
highlighting their common features and differences along general dimensions for
query languages and particular requirements for RDF.

Related Work Two previous tool surveys [10,4] and diverse web sites3 have
collected and compared RDF query languages and their associated prototype
implementations. The web sites are usually focused on collecting syntactic ex-
ample queries along several usecases. We follow this approach of illustrating a
language but instantiate general categories of orthogonal language features to
avoid the repetitiveness of use cases and capture a more extensive range of lan-
guage features. Two tool surveys [10],[4] were published in 2002 and focused
mainly only the individual prototype implementations comparing criteria like
quality of documentation, robustness of implementation and to a minor extent

1 http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/
2 http://www.w3.org/2001/sw/DataAccess/
3 http://www.w3.org/2001/11/13-RDF-Query-Rules/#implementations

http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/
http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/2001/11/13-RDF-Query-Rules/#implementations

the query language features4 which changed tremendously in the past two years.
We detail the feature set and illustrate supported features through example
queries.

It should be stressed that our comparison of RDF query languages does not
involve performance figures, since these intersection of the individual languages
is quite small and of few interest.

The paper is organized as follows. Section 2 elicits several dimensions that
are important for designing and comparing RDF query languages. Section 3
introduces the six languages that are compared in this paper along with the im-
plementations that we have used. Section 4 demonstrates RDF query use cases,
which are grouped into several categories. This use cases are used to compare the
individual languages and expose the set of features supported by each language.
Section 5 presents a wish list for further important but yet unsupported query
language features. We conclude in Section 6 with a summary of our results.

2 Language Dimensions

2.1 Support for RDF data model

The underlying data model directly influences the set of operations that should
be provided by a query language. We therefore recapitulate the basic concepts of
RDF and make note of their implications for the requirements on a RDF query
language.
RDF abstract data model The underlying structure of any RDF document is
a collection of triples. This collection of triples is usually called the RDF graph.
Each triple states a relationship (aka. edge, property) between two nodes (aka.
resource) in the graph. This abstract data model is independent of a concrete
serialization syntax. Therefore query languages usually do not provide features
to query serialization-specific features, e.g. order of serialization.
Formal semantics and Inference RDF has a formal semantics which pro-
vides a dependable basis for reasoning about the meaning of an RDF graph.
This reasoning is usually called entailment. Entailment rules state which im-
plicit information can be inferred from explicit information. Hence, RDF query
languages can consider such entailment and might convey means to distinguish
implicit from explicit data.
Support for XML schema data types XML data types can be used to repre-
sent data values in RDF. XML Schema also provides an extensibility framework
suitable for defining new datatypes for use in RDF. Data types should therefore
be supported in a RDF query language.
Free support for making statements about resources In general, it is not
assumed that complete information about any resource is available in the RDF
query. A query language should be aware of this and should tolerate incomplete
or contradicting information.

2.2 Query Language Properties

In addition to eliciting the support for the above RDF language features we will
discuss the following properties for each language.

4 cf. [10][Table 2 on page 16] for the most extensive summary

– Expressiveness Expressiveness indicates how powerful queries can be formu-
lated in a given language. Typically, a language should at least provide the
means offered by relational algebra, i.e. be relationally complete. Usually,
expressiveness is restricted to maintain other properties such as safety and
to allow an efficient (and optimizable) execution of queries.

– Closure The closure property requires that the results of an operation are
again elements of the data model. This means that if a query language
operates on the graph data model, the query results would again have to be
graphs.

– Adequacy A query language is called adequate if it uses all concepts of the
underlying data model. This property therefore complements the closure
property: For the closure, a query result must not be outside the data model,
for adequacy the entire data model needs to be exploited.

– Orthogonality The orthogonality of a query language requires that all oper-
ations may be used independent of the usage context.

– Safety A query language is considered safe, if every query that is syntactically
correct returns a finite set of results (on a finite data set). Typical concepts
that cause query languages to be unsafe are recursion, negation and built-in
functions.

3 Query Languages

This section briefly introduces the query languages and actual systems that were
used in our comparison.

3.1 RQL

RQL [6] is a typed language following a functional approach, which supports
generalized path expressions featuring variables on both nodes and edges of
the RDF graph. RQL relies on a formal graph model that captures the RDF
modeling primitives and permits the interpretation of superimposed resource
descriptions by means of one or more schemas. The novelty of RQL lies in its
ability to smoothly combine schema and data querying while exploiting the
taxonomies of labels and multiple classification of resources. RQL follows an
OQL-like syntax: select Pub from {Pub} ns3:year {y} where y = "2004"

using namespace ns3 = ... RQL is orthogonal, but not closed, as queries re-
turn variable bindings instead of graphs. However, RQL’s semantics is not com-
pletely compatible with the RDF Semantics: a number of additional restrictions
are placed on RDF models to allow querying with RQL5.

RQL is implemented in ICS-FORTH’s RDF Suite6, and an implementation
of a subset of it is available in the Sesame system7. For our evaluation we used
Sesame version 1.0, which was released on March 25, 2004.

5 An example of such a restriction is that every property must have exactly one domain
and range specified.

6 http://139.91.183.30:9090/RDF/
7 http://www.openrdf.org/

http://139.91.183.30:9090/RDF/
http://www.openrdf.org/

3.2 SeRQL

SeRQL [3] stands for Sesame RDF Query Language and is a querying and tran-
formation language loosely based on several existing languages, most notably
RQL, RDQL and N3. Its primary design goals are unification of best practices
from query language and delivering a light-weight yet expressive query language
for RDF that addresses practical concerns.

SeRQL syntax is similar to that of RQL though modifications have been
made to make the language easier to parse. Like RQL, SeRQL is based on a
formal interpretation of the RDF graph, but SeRQL’s formal interpretation is
based directly on the RDF Model Theory.

SeRQL supports generalized path expressions, boolean constraints and op-
tional matching, as well two basic filters: select-from-where and construct-from-
where. The first returns the familiar variable-binding/table result, the second re-
turns a matching (optionally transformed) subgraph. As such, SeRQL construct-
from-where-queries fulfill the closure and orthogonality property and thus allow
composition of queries. SeRQL is not safe as it provides various recursive built-in
functions.

SeRQL is implemented and available in the Sesame system, which we have
used for our comparison in the version 1.0. A number of querying features are still
missing from the current implementation. Most notable of these are functions
for aggregation (minimum, maximum, average, count) and query nesting.

3.3 TRIPLE

The term Triple denotes both a query and rules language as well as the actual
runtime system [14]. The language is derived from F-Logic [7]. RDF triples
(S,P,O) are represented as F-Logic expressions S[P->O], which can be nested.
For example, the expression S[P1->O1, P2->O2[P3->O3]] corresponds to three
RDF triples (S,P1,O1), (S,P2,O2), and (O2,P3,O3).

Triple does not distinguish between rules and queries, which are simply head-
less rules, where the results are bindings of free variables in the query. For ex-
ample, FORALL X <- (X[rdfs:label->"foo"])@default:ln. returns all re-
sources which have a label ”foo”.

Since the output is a table of variables and possible bindings, Triple does not
fulfill the closure property. Similarly, Triple is not safe in the sense that it allows
unsafe rules such as FORALL X (X[rdfs:label->"foo"] <- (a[rdfs:label->"foo"]

)@default:ln.. While Triple is adequate and closed for its own data model, the
mapping from RDF to Triple is not lossless. For example, anonymous RDF nodes
are made explicit. Triple is able to deal with several RDF models simultaneously,
which are identified via a suffix @model.

Triple does not encode a fixed RDF semantics. The desired semantics have
to be specified as a set of rules along with the query. Triple does not support
datatypes, and updates to the fact base are also not possible. For the comparison,
we used Triple in the latest version from March 14th, 2002 along with XSB 2.5
for Windows.

3.4 RDQL

RDQL currently has the status of a W3C submission [13].

The syntax of RDQL follows a SQL-like select pattern, where a from clause
is omitted. For example, select ?p where (?p, <rdfs:label>, "foo") col-
lects all resources with label ”foo” in the free variable p. The select clause at the
beginning of the query allows projecting the variables. Namespace abbreviations
can be defined in a query via a separate ”using” clause. RDF Schema information
is not interpreted. Since the output is a table of variables and possible bindings,
RDQL does not fulfill the closure and orthogonality property. RDQL is safe and
offers preliminary support for datatypes.

For the comparison, we worked with Jena 2.0 of August 2003.

3.5 N3

Notation3 (N3) provides a text-based syntax for RDF. Therefore the data model
of N3 conforms to the RDF data model. Additionally, N3 allows to define rules,
which are denoted using a special syntax, for example: ?y rdfs:label "foo"

=> ?y a :QueryResult Such rules, whilst not a query language per se, can
be used for the purpose of querying. For this purpose queries have to be stored
as rules in a dedicated file, which is used in conjunction with the data. The
CWM filter command allows to automatically select the data that is generated
by rules. Even though N3 fulfills the orthogonality, closure and safety property,
using N3 as a query language is cumbersome.

N3 is supported by two freely available systems, i.e. Euler [12] and CWM [2].
None of these systems do automatically adhere to the RDF semantics. The
semantics has to be provided by custom rules. For our comparison, we worked
with CWM in the version of March 21, 2004.

3.6 Versa

Versa takes an interesting approach in that the main building block of the lan-
guage is a list of RDF resources. RDF triples play a role in the so-called traversal
operations, which have the form ListExpr - ListExpr -> BoolExpr. These
expressions return a list of all objects of matching triples. For instance, the
traversal expression all() - rdfs:label -> * would return a list containing
all labels. Within a traversal expression, we can alternatively select the subjects
as well by placing a vertical bar at the beginning of the arrow symbol. Thus,
all() |- rdfs:label -> eq("foo") would yield all resources having the label
”foo”. The fact that a traversal expression is again a list expression, allows us
to nest expressions in order to create more complex queries.

The given data structures and expression tree make it hard to project several
values at once. Versa uses the distribute operator to work around this limitation.
It creates a list of lists, which allows selecting several properties of a given list
of resources.

Versa offers some support for rules since it allows traversing predicates tran-
sitively. Custom built-ins, views, multiple models, and data manipulation are
not implemented. However, Versa fulfills the orthogonality and safety criteria.

The Versa language is supported by 4Suite, which is a set of XML and RDF
tools8. We used 4Suite version 1.0a3 for Windows from July 4, 2003 along with
Python 2.3.

8 http://www.4suite.org

http://www.4suite.org

4 Usecases

In this section we present usecases for the querying of RDF data and evaluate
how the six query languages support them. In the following tables, “-” indicates
no support, “•” full support and “◦” partial support.

4.1 Sample Data

For our comparison, we have used a sample data set9. It describes a simple sce-
nario of the computer science research domain, modelling persons, publications
and a small topic hierarchy. The data set covers the main features of the RDF
data model. It includes a class hierarchy with multiple inheritance, data types,
resources with multiple instantiations, reification, collections of resources, etc.
These variety of features are exploited in the following usecases.

N3 Triple

{ ?y s:author ?z. FORALL C,X,A,N <-

?z ?p ?x. (s:Paper[s:author->C] AND

?x a s:Person; s:name ?result. C[X->A] AND

} => { ?result a :QueryResult.}. A[s:name->N])@rdfschema(s:ln).

RDQL Versa

SELECT ?n WHERE QUERY=((s:Paper

<s:Paper>, <s:author>, ?c), - s:author -> *) - properties(.) -> *)

(?c, ?collection, ?a), (?a, <s:name>, - s:name -> *

?n) USING s FOR ...

SeRQL RQL

select PersonName select PersonName

from {X} <s:author> {} <rdfs:member> from {X} s:author {y}. rdfs:member

{} <s:name> {PersonName} {z}. s:name {PersonName}
using namespace using namespace

s = <!...> s = ...

rdfs = ...

The namespace s is bound to that of the sample data.

Table 1. Path expression query in all languages

4.2 Usecase Graph

Due to RDF’s graph-based nature, a central feature of most query languages is
the support for graph matching.

Path Expressions The central feature used to achieve this matching of graphs
is a so-called path expression, which is typically used to traverse a graph. A
path expression can be decomposed into several joins and is often implemented
by joins. It comes at no surprise that path expressions are offered - in various
syntactic forms (cf. Table 1) - by all RDF query languages.

9 Available at http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/sample.rdf

http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/sample.rdf

Return the names of the authors of publication X

Query RDQL Triple SeRQL Versa N3 RQL
Path • • • • • •

Optional Path Expressions The RDF graph represents a semi-structured
data model. Its weak structure allows to represent irregular and incomplete
information. Therefore RDF query languages should provide means to deal with
irregularities and incomplete information. A particular irregularity, which has to
be accounted for in the following query, is that a given value may or may not be
present.

What are the name and, if known, the e-mail of the authors of all avail-
able publications ?

Query RDQL Triple SeRQL Versa N3 RQL
Optional Path - - • • - ◦

Unfortunately, only two languages - namely Versa and SeRQL - provide built-
in means for dealing with incomplete information. For example, the SeRQL lan-
guage provides so-called optional path expressions (denoted by square brackets)
to match paths whose presence is irregular:

SELECT PersonName, Email FROM

{X} <ns3:author> {} <rdfs:member>

{p} <ns3:name> {PersonName};

[<ns3:email> {Email}]

USING NAMESPACE

ns3 = <!...>

Usually, such optional path expressions can be simulated, if a language pro-
vides set union and negation. For example, the following RQL query provides
a correct answer by unifying the results of two select-queries, where the first
argument of the union retrieves all persons with an e-mail address, the second
those without an e-mail address.

(select PersonName, Email

from {X} s:author {y}. rdfs:member {z}.

s:name {PersonName}, {z} s:email {Email}

) union (

select PersonName, NULL

from {X} s:author {y}. rdfs:member {z}.

s:name {PersonName}

where not (z in select X from {X}

s:email {e}))

using namespace

s = ... , rdfs = ...

The reader may note, that N3, Versa and Triple provide other operators,
which achieve a similar result that contains duplicate answers.

4.3 Usecase Relational

RDF is frequently used to model relational structures. In fact, n-ary tables such
as found in the the relational data model can easily be encoded in RDF triple.

Basic algebraic operations In the relational data model several basic alge-
braic operations are considered, i.e. (i) selection, (ii) projection, (iii) cartesian
product, (iv) set difference and (v) set union. These operations can be combined
to express other operations such as set intersection, several forms of joins, etc.
The importance of these operations is accounted by the definition of relational
completeness. In the relational world, a given query languages is known to be
relationally complete, if it supports the full range of basic algebraic operations
mentioned above.

The three basic algebraic operations selection, projection, product are sup-
ported by all languages and have been used in the path expression query of
the previous usecase Graph. We therefore concentrate on the other two basic
operations mentioned above, i.e. union and difference, in this section.

Union As we have seen in the previous section, union is provided by RQL.
Versa contains an explicit union operator as well. N3 and Triple can simulate
union with rules.

Return the labels of all topics that and (union) the titles of all publications

Query RDQL Triple SeRQL Versa N3 RQL
Union - • - • • •

Difference Difference is a special form of negation:

Return the labels of all topics that are not titles of publications

Query RDQL Triple SeRQL Versa N3 RQL
Difference - - - ◦ - •

While difference is described in the Versa documentation (but not imple-
mented) RQL also provides an implementation of this algebraic operator.

The following RQL query provides the correct answer:

(select title

from s:Topic{T}. rdfs:label {title}

) minus (

select title

from s:Publication{P}. s:title {title})

using namespace

s = ... , rdfs = ...

Quantification An existential predicate over a set of resources is satisfied if at
least one of the values satisfies the predicate. Analogously, a universal predicate
is satisfied if all the values satisfy the predicate. As any selection predicate
implicitly has existential bindings, we here consider universal quantification.

Return the persons who are authors of all publications.

Query RDQL Triple SeRQL Versa N3 RQL
Universal - - - - - •

RQL is the only system providing the universal quantification need to answer
this query:

SELECT person

FROM s:Person\{person}

WHERE FORALL z IN

(SELECT x FROM s:Publication\{x})

SUCH THAT EXISTS p IN

(SELECT Y FROM \{z} s:author \{}. rdfs:member \{y})

SUCH THAT person = p

USING NAMESPACE s = ..., rdfs = ...

4.4 Usecase Aggregation and Grouping

Aggregate functions compute a scalar value from a multi-set of values. These
functions are regularly needed to count a number of values. For example, they
are needed to identify the minimum or maximum of a set of values. Grouping
additionally allows aggregates to be computed on groups of values.

Aggregation A special case of aggregation tested in the following query is a
simple counting the number of elements in a set:

Count the number of authors of a publication.

Query RDQL Triple SeRQL Versa N3 RQL
Counting - - - • • •

Counting is supported by N3, Versa and RQL. The following N3 rule gives the
appropriate answer:

{?y.sam:author math:memberCount ?result .} =>

{:Query :Result ?result}.

Grouping None of the compared query languages allows to group values, such
as provided with the SQL GROUP BY clause10.

10 The RQL query language allows the computation of global aggregate values such as
required for a query such as selecting the publication with the maximum number of
authors.

4.5 Usecase Recursion

Recursive queries appear often in information systems, typically if the underlying
relationship is transitive in nature. Assuming that ontological definitions such as
relationships being symmetric or transitive are not natively supported in RDF,
the respective denotation of a property has to be given in queries.

In the sample dataset used for our comparison, topics are defined along with
their subtopics, where the subtopic property can be considered as being transi-
tive:

Return all subtopics of topic “Information Systems”, recursively.

Query RDQL Triple SeRQL Versa N3 RQL
Recursion - • - • • -

Triple (and N3), being rule-based systems, naturally can support the required
recursion through the definition of auxiliary rules:

FORALL O,P,V O[acm:SubTopic->V] <-

EXISTS W (O[acm:SubTopic->W] AND W[acm:SubTopic->V])@default:ln.

FORALL Y <-

(’...#ACMTopic/’:Information_Systems[acm:SubTopic->Y])@default:ln.

Versa does not support general recursion, but provides a keyword ”traverse”,
which effects a transitive interpretation of a specified property. This suffices to
answer our recursive query:

traverse(@"...#ACMTopic/Information_Systems",

acm:SubTopic, vtrav:forward, vtrav:transitive)

4.6 Usecase Reification

Reification is a unique feature of RDF. It adds a meta-layer to the graph and
allows treating RDF statements as resources themselves, such that statements
can be made about statements. In the sample data reification is used to state
who entered publication data. Hence, the following query is of interest:

Return the person who has classified the publication X.

Query RDQL Triple SeRQL Versa N3 RQL
Reification ◦ ◦ • ◦ - ◦

Only Triple natively supports reification with a special syntax, where state-
ments can be reified by placing them in angle brackets and using this within
another statement: FORALL V,W,X,Y,Z <- (V[W-><X[Y->Z]>]). However, we
were only able to use this feature in the native F-Logic syntax, since the reified
statements in the RDF sample data were not parsed correctly.

One can express the query in Versa and RDQL by using the rdf:subject
property of reified statements. This allows treating the reification usecase like
any other query. We show the Versa example below:

(all() |- rdf:subject ->

@"../versa-sample.rdf#Paper") - dc:creator -> *

Similarly, SeRQL and RQL treat reified statements as nodes in the graph,
which can be addressed through normal path expressions by relying on the RDF
normalization of reification. N3, however, cannot syntactically represent reifica-
tion.

4.7 Usecase Collections and Containers

RDF allows to define groups of entities using collections (a closed group of en-
tities) and containers, namely Bag, Sequence and Container, which provide an
intended meaning of the elements in the container. A query language should be
able to retrieve the individual and all elements of these collections and contain-
ers, along with order information, if applicable, as in the following query:

Return the first author of Publication X

Query RDQL Triple SeRQL Versa N3 RQL
Sequences ◦ ◦ ◦ ◦ ◦ ◦

Although none of the query languages provide explicit support for the processing
of containers (as known for example from the processing of sequences in XQuery).
in all query languages it is possible to query for a particular element in a container
with the help of the special predicate <rdf: n>, which allows to address the nth
element in a container. However, this approach would not work to retrieve the
last element of a container (unless its size is known before).

None of the query languages provide explicit support for ordering or sorting
of elements, except for Versa which features a special sort operator.

4.8 Usecase Namespaces

Namespaces are an integral part of any query language for web-based data. The
various examples presented so far showed how the systems allow introducing
namespace abbreviations in order to keep the queries concise. This usecase eval-
uates which operations are possible on the namespaces themselves. Given a set of
resources, it might be interesting to query all values of properties from a certain
namespace or a namespace with a certain pattern. The following query addresses
this issue. Pattern matching on namespaces is particularly useful for versioned
RDF data, as many versioning schemes rely on the namespace to encode version
information.

Return all resources whose namespace starts with “http://www.aifb.uni-
karlsruhe.de/”.

Query RDQL Triple SeRQL Versa N3 RQL
Namespace ◦ - • - • •

SeRQL, RQL and N3 allow for pattern matching predicates on URIs in the
same manner as for literals, which allows to realize the query as shown in the
following for RDQL:

select ?x, ?y, ?z

where (?x, ?y, ?z)

AND ?x =~ "http://www.aifb.uni-karlsruhe.de/*"

For RDQL, the string match operator is defined in the grammar, however the
implementation is incomplete. Versa has a contains operator, which apparently
only works for string literals, not URIs.

4.9 Usecase Language

RDF allows to use XML-style language tagging. The XML tag enclosing an RDF
literal can optionally carry an xml:lang attribute. The respective value identified
the language used in the text of the literal. Possible values include en for english
or de for german. This usecase examines, whether the various languages support
this RDF feature.

Return the German label of the topic whose English label is “Database
Management”

Query RDQL Triple SeRQL Versa N3 RQL
Language - - • - - -

Out of the compared languages, SeRQL is the only one that has explicit support
to query language specific information. SeRQL provides a special function to
retrieve the language information from a literal:

select deLabel

from {} <rdfs:label> {deLabel, enLabel}
where lang(deLabel) = "de" and lang(enLabel) = "en" and

label(enLabel) = "Database Management"

4.10 Usecase Literals and Datatypes

Literals are used to identify values such as numbers and dates by means of a
lexical representation. In addition to plain literals, RDF supports the type system
of XML Schema to create typed literals. An RDF query language should support
the XML Schema datatypes. A datatype consists of a lexical space, a value space
and lexical to value mapping. This distinction should also be supported by an
RDF query language. The sample data contains for example contains a typed
integer literal to represent the page number of a publication, with the following
two queries we will query both the lexical space and the value space:

Return all publications where the page number is the lexical value ’08’

Query RDQL Triple SeRQL Versa N3 RQL
Lexical Space • • • • • •

Return all publications where the page number is the integer value 8

Query RDQL Triple SeRQL Versa N3 RQL
Value Space ◦ - • - - -

All query languages are able to query the lexical space, but most query lan-
guages have no or only preliminary support for datatypes and do not support
the distinction between lexical and value space. RDQL and SeRQL provide sup-
port for datatypes using a special syntax to indicate the datatype. However, the
RDQL query did not work correctly in the implementation.

4.11 Usecase Entailment

RDF Schema vocabulary supports the entailment if implicit information. Two
typical usecases in the context of RDF are:

– Subsumptions between classes and properties that are not explicitly stated
in the RDF Schema,

– Classification of resources: For a resource having a property for which we
know its domain – or analogously the range – is restricted to a certain class,
we can infer the resource to be an instance of that class.

With the following query we evaluate the support of the query languages for
RDF Schema entailment. The query is expected to return not only the resources
for which the class membership is provided explicitly, but also those whose class
membership can be inferred based on the entailment rules:

Return all instances of that are members of the class Publication

Query RDQL Triple SeRQL Versa N3 RQL
Entailment - ◦ • - ◦ •

Discussion Regarding the support for RDF Schema entailment, the query lan-
guages can be classified into three groups: RDQL and Versa provide no support,
SeRQL and RQL provide direct support, whereas N3 and Triple require an ax-
iomatization of the RDFS semantics, i.e. a set of rules. Although SeRQL supports
RDFS semantics through its specification, in the implementation in Sesame the
inferencing is realized by the repository rather than by the query engine itself.

The following sample shows how the query is realized in RQL:

select publications

from ns3:Publication{publications}
using namespace

ns3 = <!http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/sample.rdf#>

5 Wishlist

In the previous sections we have seen that the currently available query languages
for RDF support a wide variety of operations. However, several important fea-
tures - listed in the following text - are not well supported, or even not supported
at all.

Grouping and Aggregation Many of the existing proposals support very little
functionality for grouping and aggregation. Functions such as min, max, average
and count provide important tools for analysing data.
Sorting Perhaps surprisingly, except for Versa, no language is capable to do
sorting and ordering on the output. Related to this seems to be that many
query languages do not support handling of ordered collections.
Optional matching Due to the semi-structured nature of RDF, support for op-
tional matches is crucial in any RDF query language and should be supported
with a dedicated syntax.
Adequacy Overall, the languages’ support for RDF-specific features like contain-
ers, collections, XML Schema datatypes, language tags, and reification is quite
poor. Since these are features of the data model, the degree of adequacy among
the languages is low. For instance, it would be desirable for a query language to
support operators on XML Schema datatypes, as defined in [11], as built-ins.

6 Conclusion

We believe that defining a suitable RDF query language should be a top pri-
ority in terms of standardization. Querying is a very fundamental functionality
required in almost any Semantic Web application. Judging from the impact of
SQL to the database community, standardization will definitely help the adop-
tion of RDF query engines, make the development of applications a lot easier,
and will thus help the Semantic Web in general.

We have evaluated six query language proposals with quite different ap-
proaches, goals, and philosophies. Consequently, it is very hard to compare the
different proposals and come up with a ranking. From our analysis, we identify
a small set of key criteria, which differ vastly between the languages.

A key distinction is the support for RDF Schema semantics. Languages like
N3 and Triple do not make a strict distinction between queries and rules. Thus, a
logic program representing the desired semantics, in this case RDF-S, can option-
ally supplement a query. SeRQL and RQL support RDF-S semantics internally.
Versa takes a pragmatic approach by supporting the transitive closure as a spe-
cial operator. While this is not very flexible, it solves most of the problems like
traversing a concept hierarchy. RDQL ignores RDF-S semantics.

Orthogonality is a very desirable features, since it allows combining a set
of simple operators into powerful constructs. Out of the six candidates, RQL,
SeRQL, N3, and Versa support this property. Versa uses sets of resources as the
basic data structure, whereas RQL, N3 and SeRQL operate on graphs. Triple
can mimic orthogonality via rules, whereas RDQL does not support it.

Furthermore, we consider the extent to which the various use cases are sup-
ported. Obviously, one would have to distinguish between features like the sup-
port for recursive queries that fundamentally cannot be expressed in a language
and a feature that simply has not been implemented in the respective system like
a simple string match operator. However, since this distinction is often hard to
make, we simply add up the queries that could be expressed. If the query could
be formulated with a workaround, we count half a point. Using this metric, RQL
and SeRQL appear to be the most complete languages, covering 9.5 and 8.5 out
of 14 use case queries. Versa and N3 follow with 7.5 and 7. Triple and RDQL
were able to answer the least queries and got 5.5 and 4 points.

Finally, we consider the readability and usability of a language. Obviously,
this depends very much on personal taste. Syntactically, RQL, RDQL, and
SeRQL are very similar due to their SQL / OQL heritage. Triple and N3 share
the rules character. The Triple syntax allows for some nice syntactic variants.
Versa’s style is quite different, since a query directly exposes the operator tree.

References

1. D. Beckett. RDF/XML Syntax Specification (Revised). W3C Working Draft, 2003.
Internet: http://www.w3.org/TR/rdf-syntax/ .

2. T. Berners-Lee. CWM - closed world machine. Internet:
http://www.w3.org/2000/10/swap/doc/cwm.html , 2000.

3. Jeen Broekstra and Arjohn Kampman. SeRQL: An RDF Query and Transforma-
tion Language. Submitted to the International Semantic Web Conference, ISWC
2004, 2004.

4. D. Fensel and A. Perez. A survey on ontology tools. Technical Report OntoWeb
Deliverable 1.3, OntoWeb consortium, May 2002. http://www.ontoweb.org/ down-
load/deliverables/D13 v1-0.zip.

5. Patrick Hayes. Rdf semantics. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rules .
6. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Schol.

RQL: A Declarative Query Language for RDF. In Proceedings of the Eleventh
International World Wide Web Conference (WWW’02), Honolulu, Hawaii, USA,
May7-11 2002.

7. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42, 1995.

8. G. Klyne and J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Data Model. W3C Working Draft, 2003. Internet:
http://www.w3.org/TR/rdf-concepts/ .

9. O. Lassila and R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Working Draft, 1999. Internet:
http://www.w3.org/TR/REC-rdf-syntax/ .

10. A. Maganaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and T. Anh.
Ontology storage and querying. Technical Report 308, Foundation for Research
and Technology Hellas, Institute of Computer Science, Information Systems Lab-
oratory, April 2002.

11. Ashok Malhotra, Jim Melton, and Norman Walsh. Xquery 1.0 and
xpath 2.0 functions and operators, w3c working draft 12 november 2003.
http://www.w3.org/TR/xpath-functions/.

12. J. De Roo. Euler proof mechanism. Internet: http://www.agfa.com/w3c/euler/ ,
2002.

13. Andy Seaborne. Rdql - a query language for rdf, w3c member submission 9 january
2004, 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

14. M. Sintek and S. Decker. TRIPLE - an RDF query, inference and transformation
language. In Deductive Databases and Knowledge Management (DDLP), 2001.

http://www.w3.org/TR/rdf-syntax/
http://www.w3.org/2000/10/ swap/doc/cwm.html
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rules
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.agfa.com/w3c/euler/

	A Comparison of RDF Query Languages
	Peter Haase , Jeen Broekstra , Andreas Eberhart , Raphael Volz

