
Huffman Algorithm
for Data Compression

Multimedia Technology
Tutorial 1, section 4b

Huffman Theory Reminder

• Huffman coding is a lossless data compression algorithm for
multimedia.
oNo data is lost during this compression.

• It assigns codes to characters based on their frequencies,
ensuring no code is a prefix of another to avoid ambiguity during
decoding.
oCode length is closely related to the information content (or entropy) of

each symbol.

• The algorithm involves building a Huffman Tree and traversing it to
assign efficient binary codes to each character.

Huffman Algorithm

Create a leaf node for each character and build a min-heap based on
their frequencies.

Step 1:

Extract the two nodes with the lowest frequencies from the heap.

Create an internal node with a frequency equal to the sum of the two
extracted nodes. Set the first as the left child and the second as the right
child. Insert this new node back into the heap.

Repeat steps 2 and 3 until only one node remains in the heap, which
becomes the root of the Huffman Tree.

Step 2:

Step 3:

Step 4:

Huffman Coding Tree Exercise

Let the alphabet {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’}, with the following character
probabilities: P(a) = 0.05, P(b) = 0.25, P(c) = 0.25, P(d) = 0.15,
P(e) = 0.10, and P(f) = 0.20.
Construct a Huffman coding tree corresponding to this alphabet
and calculate the average length of the resulting code.

Note: In Huffman coding, the
nodes are sorted again at

each step!

Huffman Algorithm

a 0.05 b 0.25 c 0.25 d 0.15 e 0.10 f 0.20

Create a leaf node for each character and build a min-heap based on
their frequencies.

Step 1:

a 0.05 e 0.10 d 0.15 f 0.20 b 0.25 c 0.25

Create an internal node with a frequency equal to the sum of the two
extracted nodes. Set the first as the left child and the second as the right
child. Insert this new node back into the heap.

Step 3:

0.15

Extract the two nodes with the lowest frequencies from the heap.Step 2:

0 1

Huffman Algorithm

a 0.05 b 0.25 c 0.25 d 0.15 e 0.10 f 0.20

Create a leaf node for each character and build a min-heap based on
their frequencies.

Step 1:

a 0.05 e 0.10 d 0.15 f 0.20 b 0.25 c 0.25

Create an internal node with a frequency equal to the sum of the two
extracted nodes. Set the first as the left child and the second as the right
child. Insert this new node back into the heap.

Step 3:

0.15

0.30

Extract the two nodes with the lowest frequencies from the heap.Step 2:

0

0

1

1

Huffman Algorithm
a 0.05 e 0.10 d 0.15 b 0.25 c 0.25f 0.20

Create an internal node with a frequency equal to the sum of the two
extracted nodes. Set the first as the left child and the second as the right
child. Insert this new node back into the heap.

Step 3:

0.15

0.30

Extract the two nodes with the lowest frequencies from the heap.Step 2:

0.45

00

0

1

1
1

Huffman Algorithm
a 0.05 e 0.10 d 0.15 b 0.25c 0.25 f 0.20

Create an internal node with a frequency equal to the sum of the two
extracted nodes. Set the first as the left child and the second as the right
child. Insert this new node back into the heap.

Step 3:

0.15

0.30

Extract the two nodes with the lowest frequencies from the heap.Step 2:

0.45

00

0

1

1
1

0.55
0

1

Huffman Algorithm
a 0.05 e 0.10 d 0.15 b 0.25c 0.25 f 0.20

Create an internal node with a frequency equal to the sum of the two
extracted nodes. Set the first as the left child and the second as the right
child. Insert this new node back into the heap.

Step 3:

0.15

0.30

Extract the two nodes with the lowest frequencies from the heap.Step 2:

0.45

00

0

1

1
1

0.55
0

1

1
0

1

Huffman Algorithm
a 0.05 e 0.10 d 0.15 b 0.25c 0.25 f 0.20

0.15

0.30

0.45

00

0

1

1
1

0.55
0

1

1
0

1

Huffman codes for every symbol:
a : 0000
b : 11
c : 01
d : 001
e : 0001
f : 10

To find the Huffman code
for each symbol, start

from the root to the leaf.
The code for d is 111.

Average length of the resulting code

P(a)*4bit + P(b)*2bit + P(c)*2bit + P(d)*3bit + P(e)*4bit + P(f)*2bit =

0.05 * 4 + 0.25 * 2 + 0.25 * 2 + 0.15 * 3 + 0.10 * 4 + 0.20 * 2 =

4 * 0.15 + 3 * 0.15 + 2 * 0.70 = 0.60 + 0.45 + 1.4 = 2.45

Average Length = Σ p(si) * number_of_bits,
for i={0, 1,.., N}, where N the total number

of symbols

Huffman codes for every symbol:
w(a) = 0000
w(b) = 11
w(c) = 01
w(d) = 001
w(e) = 0001
w(f) = 10

	Slide 1: Huffman Algorithm for Data Compression
	Slide 2: Huffman Theory Reminder
	Slide 3: Huffman Algorithm
	Slide 4: Huffman Coding Tree Exercise
	Slide 5: Huffman Algorithm
	Slide 6: Huffman Algorithm
	Slide 7: Huffman Algorithm
	Slide 8: Huffman Algorithm
	Slide 9: Huffman Algorithm
	Slide 10: Huffman Algorithm
	Slide 11: Average length of the resulting code

