ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 23: Conferencing Instructor: George Xylomenos Department: Informatics

Contents

- H.320 and H.324
- H.323
- SIP and SDP
- ICE, STUN and TURN
- Multiparty conferencing

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

H.320 and H.324

Class: Multimedia Technology, **Section # 23:** Conferencing **Instructor:** George Xylomenos, **Department:** Informatics

H.320 (1 of 4)

- H.32x conferencing standards series
 - Standardized by the ITU-T
 - Initially: circuit switching (PSTN or ISDN)
 - Later: packet switching (Internet)
 - Limited compatibility between standards
- H.320: conferencing over ISDN
 - Exchange of audio, video, images and text
 - Incorporates other standards

H.320 (2 of 4)

- H.320 components: control plane
 - H.221: Multiplexing of audio and video
 - Based on ISDN B channels (64 kbps)
 - H.230: Multiplexing of sync and control
 - H.231: Multiparty conferencing
 - Q.931: Call establishment
 - H.233/4: Data encryption
 - H.242/3: Negotiation with two/more terminals

H.320 (3 of 4)

- H.320 components: media
 - H.261: Video compression at CIF/QCIF
 - CIF: 352x288, QCIF: 176x144
 - G.711: 3.7 KHz audio at 64 Kbps
 - G.722: 7.5 KHz audio at 64 Kbps
 - G.728: 3.7 KHz audio at 16 Kbps
 - Only G.711 is mandatory

H.320 (4 of 4)

- Bandwidth: p x 64 Kbps
 - Video requires at least p=2 (128 Kbps)
 - Either an ISDN BRI (2 B channels)
 - H.261 with QCIF and low frame rates
 - Ideally, 384 Kbps (6 B channels)
 - 3 BRI lines or part of a PRI line
 - H.261 with CIF and/or higher frame rates

H.324 (1 of 3)

- ISDN should succeed PSTN
 - Making circuits digital
- B-ISDN should succeed ISDN
 ATM: Cell (tiny packet) switching
- H.320 was extended for ATM
 - H.321: variant for ATM WANs
 - H.322: variant for ATM LANs
 - Little use, like ATM!

H.324 (2 of 3)

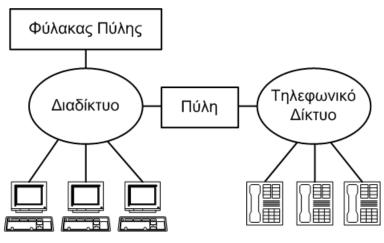
- H.324: variant for PSTN (56 Kbps)
 - After it became clear that ISDN was dead
 - Video: H.263 for reduced bitrates
 - Audio: G.723.1 (5.3 and 6.3 Kbps)
 - Alternatively, G.729 (8 Kbps)
- Adaptation of protocols to PSTN
 - PSTN lines are very noisy
 - Their bandwidth can fluctuate

H.324 (3 of 3)

- H.245: negotiation of codecs
 - Can add extra delay to audio
 - Allows changing the bitrates
- H.223: media multiplexing
 - Error detection and recovery
 - Multiple was of multiplexing media
- V.25: call establishment via PSTN modems

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS


H.323

Class: Multimedia Technology, **Section # 23:** Conferencing **Instructor:** George Xylomenos, **Department:** Informatics

H.323 (1 of 5)

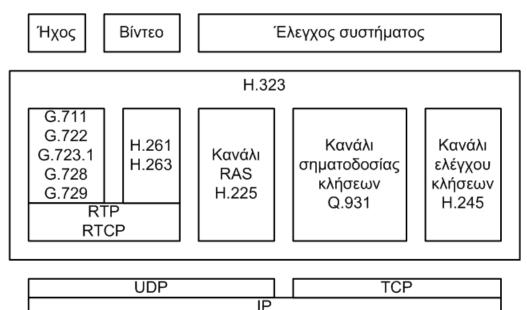
- H.323: Conferencing over the Internet
 - Compatibility between different terminals
- H.323 terminals
 - User devices (hardware)
 - Software applications
- H.323 gateways
 - Interconnection with telephony
 - Analog or digital

H.323 (2 of 5)

- H.323 gatekeepers
 - Conversion between addresses
 - Access control to conferences
 - Bandwidth management
 - Charging and billing

H.323 (3 of 5)

• Required protocols


– RTP: media transport over UDP

- RTCP for media control (optional)
- H.245: codec negotiation
- Q.931: call establishment
 - Also used in ISDN
- H.225 (RAS): communication with gatekeeper
 - Registration, admission and state protocol

H.323 (4 of 5)

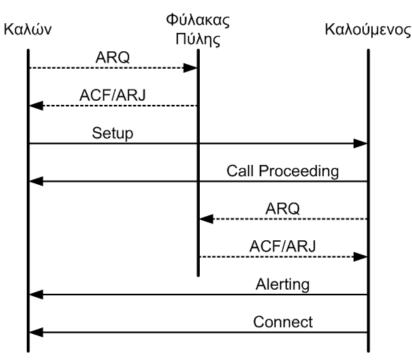
- Video coding
 - Not required by the standard
 - Cheaper terminals are voice only
 - Minimum (if video supported): H.261
 - Required: QCIF (176x144 luma pixels)
 - Compatibility with older standards
 - Optional: H.263
 - Optional resolutions: CIF, 4CIF and 16CIF

H.323 (5 of 5)

- Audio encoding
 - G.711 is required
 - All other options of H.320/H.324 are optional

H.323 Channels

- Multiple media channels: RTP/UDP
 - One channel per medium (per direction)
- Call signaling channel: Q.931/TCP
 - Dialtones (before dialing)
 - Ringing (after dialing)
- Call control channel: H.245/TCP
 - Exchanges terminal capabilities
 - Opens and closes media channels


H.323 Gatekeeper (1 of 2)

- The gatekeeper manages a zone
 - Example zone: an organization
 - If there is a gatekeeper, it must be used
 - Checks if calls are allowed
 - Similar to a PBX (private branch exchange)
 - Uses the RAS protocol over TCP
- Bandwidth management
 - Limits the number of concurrent conferences

H.323 Gatekeeper (2 of 2)

- Terminals register to the gatekeeper
 - During initialization (power up)
 - IP address and caller alias
- Address translation
 - Translates aliases to IP addresses
 - Gathered during terminal initialization
 - May require connection with other gatekeepers
- Gatekeeper approves individual calls

H.323 Signaling (1 of 2)

• RAS: connection request (ARQ)

– May be accepted or rejected (ACF or ARJ)

• Q.931: call setup, call proceeding (routed)

H.323 Signaling (2 of 2)

- Gatekeeper must approve incoming call
- The two gatekeepers may need to talk
 - If they are in different zones
 - This allows translating callee's alias to IP
- Alerting (ringing)
- Call establishment
- Media negotiation follows

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

SIP and SDP

Class: Multimedia Technology, **Section # 23:** Conferencing **Instructor:** George Xylomenos, **Department:** Informatics

What is SIP? (1 of 2)

- SIP (Session Initiation Protocol)
 - Standardized by the IETF
 - Establishment of multimedia session
 - Codec negotiation
 - Modification of session parameters
 - Session teardown
 - Other protocols used for media exchange

What is SIP? (2 of 2)

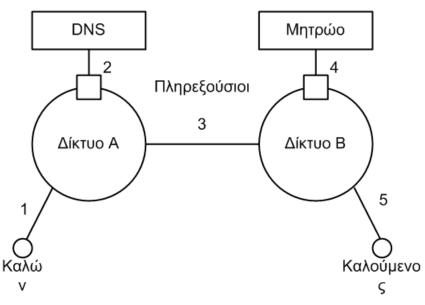
- SIP differs from telephony protocols
 - Simple and easy to implement
 - Messages are coded in plain text
 - Covers functionality of Q.931 and RAS
 - Works with other Internet protocols
 - RTP for media transport
 - SDP for media description

SIP Addresses (1 of 2)

- URI (uniform resource identifier)
 - Describes a communication resource
 - Similar to e-mail or web address (URL)
 - Can be used as a hyperlink
- SIP URI for a physical person
 - Location independent
 - Terminal independent
 - sip:name@organization

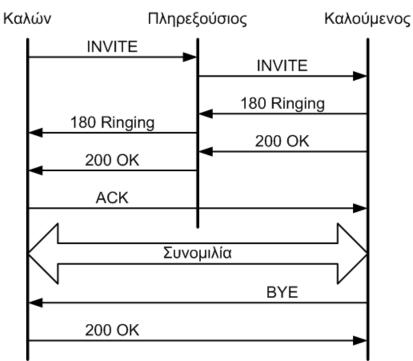
SIP Addresses (2 of 2)

- Telephone number
 - sip:+302108203693@PSTN-provider
- Group
 - sip:helpdesk@organization
- Media server
 - sip:gameserver@microsoft.com
- All these need to be translated!
- Terminal at fixed IP address
 - sip:225.251.234.1


SIP Methods

- Six types of messages (methods)
 - Session establishment: INVITE and ACK
 - Session teardown: BYE
 - Cancelation during establishment: CANCEL
 - Terminal registration: REGISTER
 - Allows address translation
 - Works with dynamic addresses (from DHCP)
 - Information exchange: OPTIONS

SIP Entities


- SIP User Agent
 - The user's terminal
- SIP Proxy
 - The PBX
 - First point of contact
- SIP registrar
 - May be combined with proxy
- Software or hardware implementation
- Gateways used to talk to telephones

SIP Signaling (1 of 3)

- Call establishment with two parties
 - INVITE with URI of callee sent to caller's proxy
 - Forwarded to the callee's proxy
 - Message forwarded to the callee

SIP Signaling (2 of 3)

- INVITE received (180 Ringing)
- Caller picked up (200 OK)
- Call parameters finalized (ACK)

SIP Signaling (3 of 3)

- Message path
 - Initial signaling
 - Goes through the proxies
 - Allows locating the callee
 - Remaining signaling
 - Can be transmitted directly
 - Or via the proxy, to control the call
 - Media are always transmitted directly

SDP (1 of 2)

- SDP (Session Description Protocol)
 - Describes codecs and ports to be used
 - Encapsulated inside SIP messages
- Example: INVITE and OK messages
 - From/To: SIP URI of caller and callee
 - o (originator): user and connection
 - c (connection data): address to receive data
 - m (media description): codec, port, profile

SDP (2 of 2)

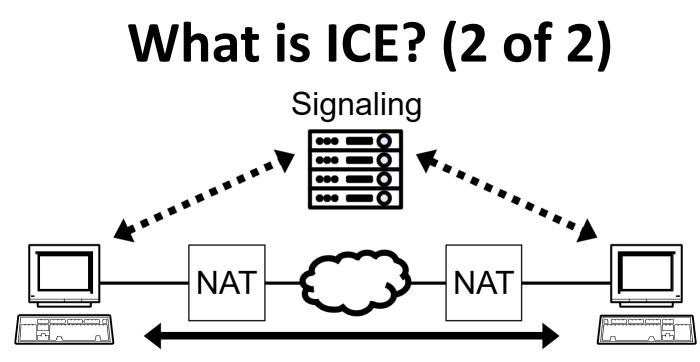
Αίτηση	Απόκριση
INVITE sip:UserB@there.com SIP2/0	SIP/2.0 2000K
Via:SIP/2.0/UDP here.com:5060	Via:SIP/2.0/UDP here.com:5060
From:sip:UserA@here.com	From:sip:UserA@here.com
To:sip:UserB@there.com	To:sip:UserB@there.com;tag=65a35
Call-ID:12345600@here.com	Call-ID:12345600@here.com
CSeq:1 INVITE	CSeq:1 INVITE
Contact:sip:userA@here.com	Contact:sip:userB@there.com
Content-type:application/sdp	Content-type:application/sdp
v=0	v=0
o=UserA 289084 2890 IN IP here.com	o=UserB 493834 462 IN IP there.com
c=IN IP4 100.101.102.103	c=IN IP4 110.111.112.113
m=audio 49172 RTP/AVP0	m=audio 3456 RTP/AVP0

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

ICE, STUN and TURN

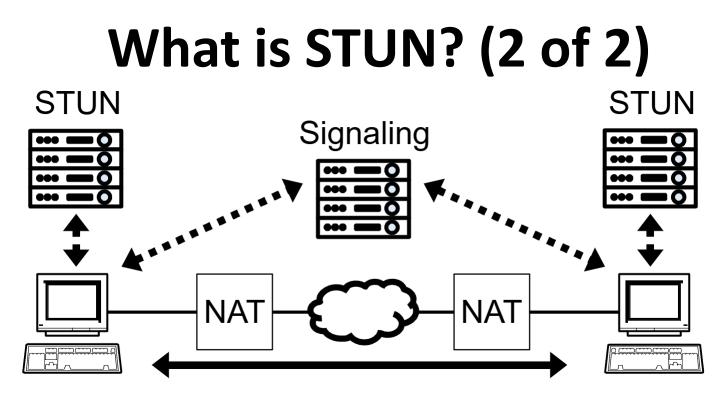
Class: Multimedia Technology, **Section # 23:** Conferencing **Instructor:** George Xylomenos, **Department:** Informatics


The need for ICE, STUN and TURN

- Conferencing was initially over telephony

 H.320 and H.324 assumed custom equipment
- Then it moved to the Internet
 - Initially with H.323 and custom equipment
 - Then came SIP and software endpoints
- But this does not work from our home!
 - NATs change public addresses to private
 - Firewalls block most traffic (ports and protocols)

What is ICE? (1 of 2)

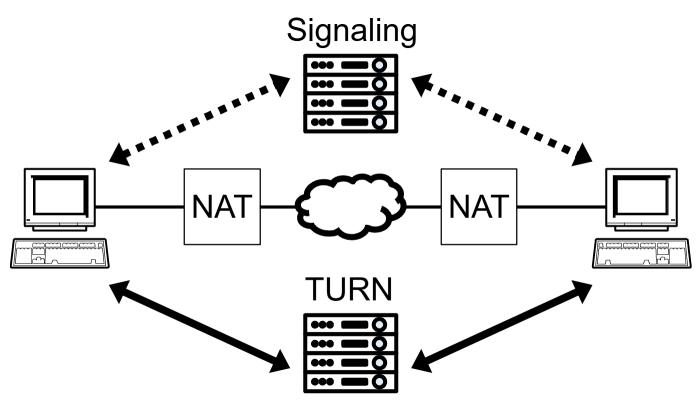

- Interactive Connectivity Establishment (ICE)
 - A protocol for NAT traversal
 - Also, for firewall traversal!
 - Each endpoint has an ICE agent
 - The ICE agent discovers ICE candidates
 - Addresses and ports where endpoint is reachable
 - Then it talks to a signaling server
 - Which has a public IP address

- Signaling can use different protocols
 - For example, SIP can carry SDP and ICE data
- Best case: the hosts have public IPs
 - Then, they can communicate directly

What is STUN? (1 of 2)

- Session Traversal Utilities over NAT (STUN)
 - What if you do not have a public IP?
 - The ICE agent can talk to a STUN server
 - Which has a public IP address
 - The STUN server sends back the public IP
 - As translated by the endpoint's NAT
 - This address is another ICE candidate
 - Which can be exchanged via the signaling server

- The endpoints can try the ICE candidates
 - This works for some types of NATs/firewalls
 - If it does, the endpoints can talk directly


What is TURN? (1 of 2)

• Traversal Using Relays around NAT (TURN)

– What if STUN addresses do not work?

- This is the case with some NATs (and firewalls)
- Then we contact a TURN server
 - Which has a public IP address
- Each endpoint only talks to the TURN server
 - Separate connection / session per endpoint
 - All communication goes through the TURN server

What is TURN? (2 of 2)

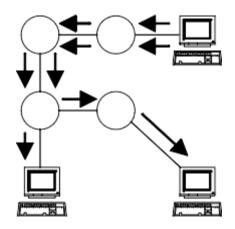
- The TURN server is essentially a relay
 - Reachable by both endpoints

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

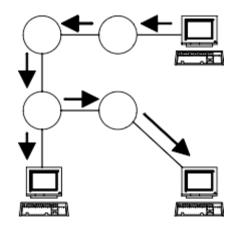
Multiparty conferencing

Class: Multimedia Technology, **Section # 23:** Conferencing **Instructor:** George Xylomenos, **Department:** Informatics

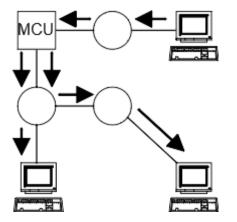

Multiparty conferencing

- How can 3+ endpoints communicate?
 - With 2 endpoints, direct connection
 - Possibly with some intermediates
 - Gateways, gatekeepers, proxies, TURN servers
- Example: conferencing with 3 endpoints
 - With video and audio
 - Every user sees all other users
 - Every uses hears a mix of all other users

Basic topologies


- Peer-to-peer
 - Every user transmits to every other user
 - Ideally, using multicast
 - Low delay but not scalable
- Server-based
 - Everybody connects to a single server
 - The server retransmits media streams
 - Higher delay but only one stream sent

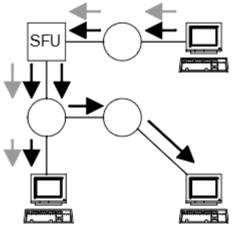
Peer-to-peer (1 of 2)


- Simple P2P topology
 - Everyone sends to everyone else
 - Send/receive n-1 flows for n users
 - Congestion close to the server
 - And the receiver

Peer-to-peer (2 of 2)

- P2P with multicasting
 - All users belong to a group
 - Each sender sends a single flow
 - The network replicates it
 - Congestion only close to the receiver

Server-based (1 of 4)



- MCU: Multipoint Conference (or Control) Unit
 - Central server for conferencing
 - Each sender only transmits to the MCU
 - The MCU creates a single flow for all receivers
 - In principle, can be sent with multicasting

Server-based (2 of 4)

- An MCU mixes the media
 - Small window per participant or speaker only
 - Audio mix or selection of one participant
 - Composes a single outgoing flow
 - This means decoding, transforming, recoding
 - Considerable processing delay
 - Plus, possible network delay
 - Depending on the MCUs location

Server-based (3 of 4)

- SFU: Selective Forwarding Unit
 - Just copies and relays media
 - May drop some of them
 - No processing delays (only copying)
 - Only network delays (depending on location)

Server-based (4 of 4)

- An SFU does not relay everything
 - Otherwise, the receiver will suffer!
 - Use of layered coding in each stream
 - Each receiver chooses what to receive
 - Receiver talks to the SFU
 - Can ask for low resolution video from all
 - Or for high resolution video from speaker
 - Plus audio from speaker

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 23

Class: Multimedia Technology, **Section # 23:** Conferencing **Instructor:** George Xylomenos, **Department:** Informatics