ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 21: Quality of service Instructor: George Xylomenos Department: Informatics

Contents

- Requirements
- Classification
- Scheduling
- Monitoring
- Integrated and differentiated services

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Requirements

Class: Multimedia Technology, **Section # 21:** Quality of service **Instructor:** George Xylomenos, **Department:** Informatics

- Example of multimedia communication
 - FTP flow: A2->A1
 - Conferencing flow: B1<->B2
 - LANs connected at 512 Kbps
 - LANs are 100 Mbps
 - Routers $\Delta 1$ and $\Delta 2$

Quality of service (2 of 3)

- Focus on router $\Delta 2$
 - If offered load > 512 Kbps
 - High delay and packet loss
- Conferencing requirements
 - H.261 at 320 Kbps and G.711 at 64 Kbps
 - Total: 384 Kbps for audio/video
 - Ideally, FTP should take up the rest (128 Kbps)
 - Whatever remains from conferencing

Quality of service (3 of 3)

- Best effort environment
 - Packets are mixed in $\Delta 2$ queue
 - Scheduling is (usually) FIFO
 - FTP does not have a fixed transmission rate
 - TCP tries to grab as much as possible!
 - Possible delay and loss for AV packets
 - First delay grows as queue fills up
 - Then packets are dropped

- Easy solution: introduce priorities
 - AV packets sent before FTP packets
 - FTP packets sent when line is free
 - Every packet must be classified
 - To impose priorities

QoE requirements (2 of 7)

- In general: say we have different services
 - Maybe with different costs (net neutrality?)
 - The FTP user may have bought the better service
 - In this case AV packets should not have priority
 - Priorities can be based on different criteria
- Packets must be classified
 - Classification is a differentiation mechanism
 - What differentiation, is a matter of policy

QoE requirements (3 of 7)

- What if the conferencing app misbehaves?
 - For example, send more than 384 Kbps
 - Due to errors in the implementation
 - Or to take advantage of priority
 - This will starve the FTP flow
- Flow isolation is needed for protection
 - We want 384 and 128 Kbps virtual flows
 - With each flow protected from the other ones

QoE requirements (4 of 7)

- Isolating flows leads to another issue
 - What should we do when one flow pauses?
 - For example, no speech transmission during pauses
 - Resource usage should be efficient
 - If the line is free, we should use it
 - We can service the other flows
 - They end up transmitting more than expected
 - This is good for elastic flows (FTP is elastic)

QoE requirements (5 of 7)

- Monitoring: does a flow behave as it should?
 - When it does not, we have two options
 - Either drop or delay additional packets
 - Traffic monitoring and marking
 - At the endpoints and/or at the routers
- What is marking for?
 - If there is no congestion, just mark packets
 - They will be dropped if they face congestion later

QoE requirements (6 of 7)

- Say that we have two conferencing apps
 - Fairness means giving each half the bandwidth
 - But they need 384 Kbps each
 - They will both suffer 25% loss!
- Some flows require a minimum service
 - Without it, they just cannot work
 - Admitting them is bad for everyone
 - The do not work, and take resources from others
 - Flows should ask or resources first

QoE requirements (7 of 7)

- Call admission
 - Term comes from telephony
 - Flows need to specify their requirements
 - Acceptance
 - The network may reserve resources
 - Rejection
 - The resources needed are not available
 - This makes sure everything works
 - As long as it is accepted!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Classification

Class: Multimedia Technology, **Section # 21:** Quality of service **Instructor:** George Xylomenos, **Department:** Informatics

Classification (1 of 2)

- Classification in IPv4
 - Based on header fields
 - Mask used to cover unimportant fields
 - The result is hashed
 - We lookup the hash in a table

Classification (2 of 2)

- Classification in IPv6
 - In IPv4 we normally look at TCP/UDP ports
 - Had to distinguish flows
 - IPv6 has a field for that!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Scheduling

Class: Multimedia Technology, **Section # 21:** Quality of service **Instructor:** George Xylomenos, **Department:** Informatics

- Packet scheduling
 - Packets enter a queue on arrival
 - How do we select the next packet to sen?
- FIFO: the simplest option
 - Packets added to the tail of the queue
 - Packets sent from the head of the queue
 - Packets transmitted in order of arrival

FIFO (2 of 4)

- Packet drop policy
 - What happens when the queue is full?
 - Latest packet dropped (drop tail)
 - No changes to already queued packets
 - Most common on the internet
 - Oldest packet dropped
 - Prefers newer packets
 - Drops packets that are already late

FIFO (3 of 4)

- Packet drop policy
 - Random early detection (RED)
 - We set a watermark for the queue
 - When we pass it, we start dropping packets
 - Drop probability depends on queue length
 - Probability grows with queue length
 - Sends a signal (loss) to transmitters early
 - Signals more transmitters

- Example of FIFO
 - Two packet flows
 - Top: arrival times
 - Bottom: departure times
 - In FIFO, only arrival times matter

Priority queues (1 of 3)

- Priority queues
 - Two or more per output link
 - Requires classifier to assign packets to queues
- Packet selected from highest priority

– We get to priority n if 1, ..., n-1 are empty

Priority queues (2 of 3)

- Priority queue example
 - Flow 1 has higher priority than flow 2
 - As long as flow 1 has packets, it is served first
 - Arrival time in only important within the queue
 - Flow 2 may starve (no service)

Priority queues (3 of 3)

- Non-preemptive scheduling
 - A task is not interrupted after starting
 - Common in packet scheduling
 - Stopping a packet transmission would waste resources
- Preemptive scheduling
 - A task is interrupted by a higher priority one
 - Common in process scheduling
 - The interrupted process can be resumed later

Round robin (1 of 3)

- Round robin queues
 - Packets are classified into queues
 - The queues do not have a strict priority
 - Instead, we service them round robin
 - Simplest case: one packet from each queue
 - No queue can starve

Round robin (2 of 3)

- Example of round robin
 - We constantly move from queue to queue
 - Each one gets half of the bandwidth
 - Arrival time matters only within a queue
 - What if a queue is empty?

Round robin (3 of 3)

- Work conserving scheduling
 - If a queue is empty, switch to the next
 - If there is any load, the line is never idle
- Non-work conserving scheduling
 - On empty queue, line goes idle
 - Wastes transmission resources
 - But it offers tighter delay guarantees
 - Can avoid waiting in some cases
 - Example: packet arrives just after we skipped its queue

Fair queues (1 of 2)

- Fair (weighted) queues
 - Generalization of round robin
 - Queues served in round robin manner
 - Usually with work conserving scheduling
 - But each queue gets different service
 - A fraction of the lines capacity

Fair queues (2 of 2)

- How is fair queueing implemented?
 - Ideally, we emulate fluid flow
 - Each flow is a pipe going to a larger pipe
 - In practice, we transmit entire packets
 - Fluid flow requires transmitting bits
 - If all packets same size, rather easy
 - If not, we approximate fluid flow
 - We emulate an ideal queue
 - And try to keep close to it in the long run

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Monitoring

Class: Multimedia Technology, **Section # 21:** Quality of service **Instructor:** George Xylomenos, **Department:** Informatics

Monitoring criteria (1 of 2)

- Goals of monitoring
 - Limit packet transmission rate
 - Which time scale are we looking at?
- Average rate
 - Measured over a period of time
 - The period is critical!
 - 100 packets per second?
 - 6000 packets per minute?

Monitoring criteria (2 of 2)

- Maximum rate
 - Maximum rate in a smaller period
 - Average 6000 packets / min
 - Maximum 1500 packets / sec
 - Limits the burstiness of the source
- Maximum burst
 - Maximum number of back-to-back packets

- Shapes traffic to average rate
 - Packets are inserted to the bucket on arrival
 - The bucket empties at rate ρ (average)
 - The bucket has size β (max arrival burst)
 - But we always send no more than $\boldsymbol{\rho}$

- Shapes traffic to average rate and burst
 - Each packet needs tokens to go
 - Tokens are gathered at rate ρ (average)
 - Can hold up to β tokens (max output burst)
 - Can send these at top speed

Combined buckets

- The two buckets connected in series
 - We first have a token bucket
 - Limits average (ρ) and burst (β)
 - We then have a leaky bucket
 - Limits maximum (C > ρ)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Integrated and differentiated services

Class: Multimedia Technology, **Section # 21:** Quality of service **Instructor:** George Xylomenos, **Department:** Informatics

Integrated (1 of 3)

- Integrated services (IntServ)
 - Three classes of service
 - Implemented at each router
 - Guaranteed: limited by token bucket
 - Must go through admission control
 - Guarantees end to end delay
 - Controlled load: statistical guarantees
 - Best effort: Everything else

Integrated (2 of 3)

- Resource Reservation Protocol (RSVP)
 - Resource reservation in one direction
 - Phase 1: sender sends probe to receiver
 - Packet gathers resource info on the way
 - Phase 2: receiver sends reservation to sender
 - This packet reserves resources in routers
 - Reservations periodically refreshed
 - Adaptation to routing changes
 - Can have shared reservations for multicast

Integrated (3 of 3)

- IntServ issues
 - Must be implemented everywhere
 - At least in a large part of the Internet
 - Same services implemented everywhere
 - But nobody wants to start first!
 - Not scalable
 - Resources are reserved per flow
 - The core network handles millions of flows
 - Only three classes of service
 - Who wants controlled load?

Differentiated (1 of 3)

- Differentiated services (DiffServ)
 - Flows are groups into classes
 - On entering the network
 - On moving to a different AS
 - Flow shaping only at these points
 - Other routers only implement something simple
 - Long term resource reservations
 - Based on agreements between ASes
 - Complexity only at the edges of the network

Differentiated (2 of 3)

- Per hop behavior (PHB)
 - How each class is handled
 - Looks at DSCP field (ToS or TC)
 - Set when entering the network/AS
- Expedited forwarding PHB (EF)
 - Reserved bandwidth at each router
 - Flow limited when entering the network
 - Very low delay and loss

Differentiated (3 of 3)

- Assured forwarding PHB (AF)
 - Fraction of bandwidth for each service class
 - Different drop priorities within each class
 - Flows marked when sending more
 - Dropped if congestion appears
- DiffServ issues
 - There are no Internet-wide services
 - Had to create end-to-end services
 - Appropriate for long term traffic shaping

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 21

Class: Multimedia Technology, Section # 21: Quality of service Instructor: George Xylomenos, Department: Informatics