
Multimedia Technology

Section # 19: Streaming

Instructor: George Xylomenos

Department: Informatics



Contents

• Classic media streaming

• RTSP

• Adaptive HTTP streaming

• MPEG DASH

2



Classic media streaming

Class: Multimedia Technology, Section # 19: Streaming

Instructor: George Xylomenos, Department: Informatics



Streaming components (1 of 2)

• Media streaming

– Media playback in parallel with media reception

• As opposed to downloading the entire stream first

– Can be implemented with various protocols

• Originally RTP over UDP/IP

• Media server

– Hosts the media files

– Corresponds with the media player

– Exchanges control and sync info

4



Streaming components (2 of 2)

• Web server

– First point of contact with the user

– Directs the user to the media

• Media player

– Decompresses data

– Buffers data to hide jitter

– Recovers from losses (retransmission or FEC)

– May be embedded in the web browser

5



From web to media server (1 of 4)

• Getting media from a web page

– Treats media as any other file

– Media stored on the web server

• HTTP-based

– Requests for pages and objects

– Responses with pages and objects

6



From web to media server (2 of 4)

• Communication via web browser

– Media player does not directly talk to server

– High delay until media get to the player

– Use of inappropriate protocol

• Web uses HTTP over TCP

• TCP is fully reliable

• Transmission rate is variable

• No way to bypass TCP behavior

7



From web to media server (3 of 4)

• Communication with media player

– Metafile indicates type and address of media

• Passed from browser to media player

• The player can now bypass the web browser

– Data still exchanged over HTTP and TCP

8



From web to media server (4 of 4)

• Communication with media server

– The web server only hosts the metafile

– The media player talks directly to the server

• Using info from the metafile

– Can switch to more appropriate protocol
9



RTSP

Class: Multimedia Technology, Section # 19: Streaming

Instructor: George Xylomenos, Department: Informatics



RTSP (1 of 5)

• Interaction during media streaming

– Pause and resume playback

– Move backwards or forwards

• The Real Time Streaming Protocol (RTSP)

– RTSP is a control protocol

• Used between media player and server

– Media are streamed separately

• For example, with RTP over UDP/IP

11



RTSP (2 of 5)

• We start with media stream info
– A web page includes media links

– These are URLs in the form rtsp://w.x.y.z

– RTSP is then used with this URL

• Media stream control
– RTSP is transmitted “out of band”

• Separate port used for RTSP (TCP/UDP 554)

– Media are transmitted “in band”

• Usually via RTP/UDP/IP

12



RTSP (3 of 5)

13



RTSP (4 of 5)

• RTSP usage

– DESCRIBE: Describes media in the stream

• Response encapsulated in SDP

• Can include various media and variants

– SETUP: Session establishment

• Returns a session ID

• Messages are numbered within the session

• The server maintains state for the client

14



RTSP (5 of 5)

• RTSP usage

– PLAY: Starts media flow

• Indicates which variant we want

• Indicates starting point

– PAUSE: Temporary media pause

• We resume with PLAY

– TEARDOWN: Session termination

• Server removes state about client

15



Adaptive HTTP streaming

Class: Multimedia Technology, Section # 19: Streaming

Instructor: George Xylomenos, Department: Informatics



Issues with classic streaming

• Disadvantages of RTSP/RTP/RTCP

– Requires media server in addition to web server

• And the media server is not stateless

– Distribution is not easy

• Firewalls block UDP by default

• There is no state as in TCP

– Incompatible with CDNs and Web caching

• Which are widely used

17



Issues with HTTP streaming

• Classic HTTP-based streaming

– We can do progressive downloads

• Using HTTP GET with byte ranges

– Compatible with existing servers and CDNs

– But it is very inflexible

• TCP can get stuck on a lost packet

– Cannot work with live content

• The media file must exist before we start

18



Adaptive HTTP streaming (1 of 4)

• Solution: Adaptive HTTP streaming

– Relies on multiple media variants

• For devices with different resolutions

• For devices with different network capabilities

– All variants described in a metafile

– Dynamically changes media variant

• To adapt to current network conditions

– But what if TCP gets stuck?

19



Adaptive HTTP streaming (2 of 4)

• Media broken in smaller pieces

– One piece for each variant

– The pieces have a fixed duration

• Example: 2 seconds

– Pieces are named systematically

• Example: stream0_0, stream0_1, …

– We ask for the correct next piece

• We can switch every 2 seconds

20



Adaptive HTTP streaming (3 of 4)

• Bypasses TCP policies

– We ask for new pieces all the time

– If we get stuck, we can create a new connection

• And ask for the appropriate variant

• But: tons of files and HTTP GETs

– One file for each 2 second variant

• The files can be virtual

– Client sends new GETs every 2 seconds

21



Adaptive HTTP streaming (4 of 4)

• Operation of adaptive HTTP streaming

– The client first downloads a metafile

• Describes the available media variants

• Includes parameters and naming scheme

– The it chooses a variant and starts fetching

• Can start with lowest quality to test the network

• Adapts the quality depending on conditions

– The server is not involved at all!

• Only the client monitors the connection state

22



Working with CDNs (1 of 2)

• CDN: Content Distribution Network

– Set of co-operating web servers (or caches)

– Strategically located around the network

– Content actively pushed to CDN servers

• CDN goals

– Reduced latency (use a nearby server)

– Load balancing (many servers)

– Traffic reduction (many clients)

23



Working with CDNs (2 of 2)

• CDN and adaptive streaming

– Can use different strategies

– Different pieces can come from different servers

• Reduces latency visible to user

– Different variants located in different servers

• Depending on the network

– Different content in different servers

• Depending on language and area

24



Working with web caches

• Pieces can be cached

– Each piece is an independent file

• It has (some) unique name

• It can be fetched independently

– A web proxy can easily cache it

• To serve subsequent requests

• No need to store all pieces

• No need to store all variants

25



Proprietary solutions (1 of 3)

• Microsoft Smooth Streaming (Silverlight)

– Metafile listing the variants

– Single file per variant

• Coded with H.264+AAC

– Dynamic fragmentation in 2 sec pieces

• HTTP GET with byte ranges to ask for right piece

• No need to know different file names

• Allows live streaming (file gets extended)

26



Proprietary solutions (2 of 3)

• Adobe HTTP Dynamic Streaming (Flash)

– One file per variant coded with H.264+AAC

– Uses MP4 fragment format

• File broken down into segments

• Segments broken down into fragments

• We ask for each fragment separately

• Fragments can be 2-5 sec

– Metafile maps fragments to time

27



Proprietary solutions (3 of 3)

• Apple HTTP Live Streaming (iOS/Android)

– One file per piece per variant

• Segments are 10 sec

• Uses MPEG-2 TS file format

• Coded with H.264+AAC

– Metafile describes pieces

• For live content the metafile is updated

• Delays mandate the larger piece length

28



MPEG-DASH

Class: Multimedia Technology, Section # 19: Streaming

Instructor: George Xylomenos, Department: Informatics



What is MPEG-DASH?

• DASH: Direct Adaptive Streaming over HTTP

– Created by the MPEG consortium

– Adopted by 3GPP for mobiles

– Supported by the DASH Industry Forum

– Attempt to standardize an existing practice

• Use a single encoding instead of three

• Prevent incompatibilities

• Combine existing approaches

30



Capabilities (1 of 3)

• Two file formats allowed

– MPEG-4 (ISO): Compatible with Adobe/MS

– MPEG-2 TS: Compatible Apple

– Allows reusing existing media

• Just needs a new metafile!

• Many encodings possible

– Encoding with H.264+AAC for compatibility

– Adds MPEG-2, MPEG-4, even H.265

31



Capabilities (2 of 3)

• Pieces can be 1-20 sec

– Interleaved audio/video

– Independent audio/video

• Allows different adaptation strategies

• Works better with multilingual content

• Two metafile types

– Description file for all variants

– Initialization file for each variant

32



Capabilities (3 of 3)

• Many ways to provide content

– Different file formats and codecs

– Different number and type of variants

– Different piece durations

– Different media multiplexing options

• Client has significant flexibility

– Policy for requesting pieces

– Policy for changing variants

33



Profiles (1 of 3)

• Profiles in MPEG DASH

– Similar concept to MPEG profiles

• Which capabilities are allowed

• Each profile is a compatibility point

• Different apps need different profiles

– The media player supports some profiles

– Content explicitly lists its profile

• The same content can be available in multiple profiles

34



Profiles (2 of 3)

• ISO Base media file format On Demand

– Stored (not live) content

– MPEG-4 (ISO) file format with two options

– Single file per variant

• Relies on HTTP GET with byte ranges

– Independent files per piece

• Each file has its own name

– Metafile maps pieces to time

35



Profiles (3 of 3)

• ISO Base media file format Live

– Dynamic creation of pieces for live content

– Metafile describes a naming scheme

• How pieces are named

• How long pieces last

• MPEG-2 main, simple

– Similar to ISO but with MPEG-2 TS

• More profiles exist

36



Hierarchical structure (1 of 3)

• Each metafile describes one “presentation”

– MPD type (Media Presentation Description)

– Can have different MPDs for the same content

• Different piece durations

• Different profiles

• A presentation is divided into periods

– Parts of the program and/or advertisements

– Allows dynamic insertion (for advertisements)

37



Hierarchical structure (2 of 3)

• Each period has adaptation sets

– Adaptation sets group related media

– Example: video, English audio, Greek audio

– Each set has a single encoding

– Video: H.264 or H.265, Audio: 2 or 5 channels

• The adaptation set is chosen by the user

– Example: Greek audio, 2 channels

38



Hierarchical structure (3 of 3)

• Each adaptation set has representations

– Different variants of the same content

• Video in different bit rates

– The client switches between representations

• Depending on network conditions

• Each representation consists of pieces

– Initialization part at the beginning

– Media pieces (lots!)

39



MPD files (1 of 4)

• MPDs describe the presentation

– XML scheme used for description

– Can be updated for live content

• The new MPD must extend (not change) the old one

• MPD: presentation attributes

– Profile used

– Presentation duration

– Minimum buffer size required

40



MPD files (2 of 4)

• BaseURL: main content prefix

• Period: when this period starts

• AdaptationSet: properties of set

– Can have different sets per period

– Shows what we can choose from

– Interleaved or independent media streams

– ContentComponent: many components in the set

41



MPD files (3 of 4)

• Representation: one variant of the set

– id: identifier

– codecs: encoders used (many for interleaved)

– mimeType: media type according to MIME

– bandwidth: bitrate expected

– Type-specific properties

• width and height: video resolution

• numChannels: audio channels

42



MPD files (4 of 4)

• Representation: one variant of the set

– SegmentBase: initialization data

• Independent files or pieces of a large file

– SegmentList: first the duration

• Then an explicit list of names

– SegmentUrl: single file name

– SegmentTemplate: template for names

43



What MPEG-DASH is not (1 of 3)

• It does not constrain the provider

– The provider chooses the parameters

• Can have one quality per resolution

• Or many qualities per resolution

– The provider chooses the file format

• Can have one file per variant

• Can have one file per piece

– The server is a regular web server

44



What MPEG-DASH is not (2 of 3)

• It does not constrain the client

– The client chooses what and when to ask

• Estimates bandwidth

• Switches resolution, quality or both

– The client can be anything

• Independent media player

• JavaScript code in the browser

– All state resides at the client

45



What MPEG-DASH is not (3 of 3)

• No changes to the web server

– The server just stores files

– Only need to support HTTP methods

– There are no “MPEG-DASH servers”

• No changes to the CDNs

– Provider chooses how to push content

– DNS used to redirect the client

• Often by using small TTL

• Which puts a lot of load on DNS

46



End of Section # 19

Class: Multimedia Technology, Section # 19: Streaming

Instructor: George Xylomenos, Department: Informatics


	Slide 1: Multimedia Technology
	Slide 2: Contents
	Slide 3: Classic media streaming
	Slide 4: Streaming components (1 of 2)
	Slide 5: Streaming components (2 of 2)
	Slide 6: From web to media server (1 of 4)
	Slide 7: From web to media server (2 of 4)
	Slide 8: From web to media server (3 of 4)
	Slide 9: From web to media server (4 of 4)
	Slide 10: RTSP
	Slide 11: RTSP (1 of 5)
	Slide 12: RTSP (2 of 5)
	Slide 13: RTSP (3 of 5)
	Slide 14: RTSP (4 of 5)
	Slide 15: RTSP (5 of 5)
	Slide 16: Adaptive HTTP streaming
	Slide 17: Issues with classic streaming
	Slide 18: Issues with HTTP streaming
	Slide 19: Adaptive HTTP streaming (1 of 4)
	Slide 20: Adaptive HTTP streaming (2 of 4)
	Slide 21: Adaptive HTTP streaming (3 of 4)
	Slide 22: Adaptive HTTP streaming (4 of 4)
	Slide 23: Working with CDNs (1 of 2)
	Slide 24: Working with CDNs (2 of 2)
	Slide 25: Working with web caches
	Slide 26: Proprietary solutions (1 of 3)
	Slide 27: Proprietary solutions (2 of 3)
	Slide 28: Proprietary solutions (3 of 3)
	Slide 29: MPEG-DASH
	Slide 30: What is MPEG-DASH?
	Slide 31: Capabilities (1 of 3)
	Slide 32: Capabilities (2 of 3)
	Slide 33: Capabilities (3 of 3)
	Slide 34: Profiles (1 of 3)
	Slide 35: Profiles (2 of 3)
	Slide 36: Profiles (3 of 3)
	Slide 37: Hierarchical structure (1 of 3)
	Slide 38: Hierarchical structure (2 of 3)
	Slide 39: Hierarchical structure (3 of 3)
	Slide 40: MPD files (1 of 4)
	Slide 41: MPD files (2 of 4)
	Slide 42: MPD files (3 of 4)
	Slide 43: MPD files (4 of 4)
	Slide 44: What MPEG-DASH is not (1 of 3)
	Slide 45: What MPEG-DASH is not (2 of 3)
	Slide 46: What MPEG-DASH is not (3 of 3)
	Slide 47: End of Section # 19

