ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 19: Streaming Instructor: George Xylomenos Department: Informatics

Contents

- Classic media streaming
- RTSP
- Adaptive HTTP streaming
- MPEG DASH

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Classic media streaming

Class: Multimedia Technology, **Section # 19:** Streaming **Instructor:** George Xylomenos, **Department:** Informatics

Streaming components (1 of 2)

- Media streaming
 - Media playback in parallel with media reception
 - As opposed to downloading the entire stream first
 - Can be implemented with various protocols
 - Originally RTP over UDP/IP
- Media server
 - Hosts the media files
 - Corresponds with the media player
 - Exchanges control and sync info

Streaming components (2 of 2)

- Web server
 - First point of contact with the user
 - Directs the user to the media
- Media player
 - Decompresses data
 - Buffers data to hide jitter
 - Recovers from losses (retransmission or FEC)
 - May be embedded in the web browser

From web to media server (1 of 4)

- Getting media from a web page
 - Treats media as any other file
 - Media stored on the web server
- HTTP-based
 - Requests for pages and objects
 - Responses with pages and objects

From web to media server (2 of 4)

- Communication via web browser
 - Media player does not directly talk to server
 - High delay until media get to the player
 - Use of inappropriate protocol
 - Web uses HTTP over TCP
 - TCP is fully reliable
 - Transmission rate is variable
 - No way to bypass TCP behavior

From web to media server (3 of 4)

- Communication with media player
 - Metafile indicates type and address of media
 - Passed from browser to media player
 - The player can now bypass the web browser
 - Data still exchanged over HTTP and TCP

From web to media server (4 of 4)

- Communication with media server
 - The web server only hosts the metafile
 - The media player talks directly to the server
 - Using info from the metafile
 - Can switch to more appropriate protocol

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

RTSP

Class: Multimedia Technology, **Section # 19:** Streaming **Instructor:** George Xylomenos, **Department:** Informatics

RTSP (1 of 5)

- Interaction during media streaming
 - Pause and resume playback
 - Move backwards or forwards
- The Real Time Streaming Protocol (RTSP)
 - RTSP is a control protocol
 - Used between media player and server
 - Media are streamed separately
 - For example, with RTP over UDP/IP

RTSP (2 of 5)

- We start with media stream info
 - A web page includes media links
 - These are URLs in the form rtsp://w.x.y.z
 - RTSP is then used with this URL
- Media stream control
 - RTSP is transmitted "out of band"
 - Separate port used for RTSP (TCP/UDP 554)
 - Media are transmitted "in band"
 - Usually via RTP/UDP/IP

RTSP (4 of 5)

- RTSP usage
 - DESCRIBE: Describes media in the stream
 - Response encapsulated in SDP
 - Can include various media and variants
 - SETUP: Session establishment
 - Returns a session ID
 - Messages are numbered within the session
 - The server maintains state for the client

RTSP (5 of 5)

RTSP usage

- PLAY: Starts media flow

- Indicates which variant we want
- Indicates starting point
- PAUSE: Temporary media pause
 - We resume with PLAY
- TEARDOWN: Session termination
 - Server removes state about client

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Adaptive HTTP streaming

Class: Multimedia Technology, **Section # 19:** Streaming **Instructor:** George Xylomenos, **Department:** Informatics

Issues with classic streaming

- Disadvantages of RTSP/RTP/RTCP
 - Requires media server in addition to web server
 - And the media server is not stateless
 - Distribution is not easy
 - Firewalls block UDP by default
 - There is no state as in TCP
 - Incompatible with CDNs and Web caching
 - Which are widely used

Issues with HTTP streaming

- Classic HTTP-based streaming
 - We can do progressive downloads
 - Using HTTP GET with byte ranges
 - Compatible with existing servers and CDNs
 - But it is very inflexible
 - TCP can get stuck on a lost packet
 - Cannot work with live content
 - The media file must exist before we start

Adaptive HTTP streaming (1 of 4)

- Solution: Adaptive HTTP streaming
 - Relies on multiple media variants
 - For devices with different resolutions
 - For devices with different network capabilities
 - All variants described in a metafile
 - Dynamically changes media variant
 - To adapt to current network conditions
 - But what if TCP gets stuck?

Adaptive HTTP streaming (2 of 4)

- Media broken in smaller pieces
 - One piece for each variant
 - The pieces have a fixed duration
 - Example: 2 seconds
 - Pieces are named systematically
 - Example: stream0_0, stream0_1, ...
 - We ask for the correct next piece
 - We can switch every 2 seconds

Adaptive HTTP streaming (3 of 4)

- Bypasses TCP policies
 - We ask for new pieces all the time
 - If we get stuck, we can create a new connection
 - And ask for the appropriate variant
- But: tons of files and HTTP GETs
 - One file for each 2 second variant
 - The files can be virtual
 - Client sends new GETs every 2 seconds

Adaptive HTTP streaming (4 of 4)

- Operation of adaptive HTTP streaming
 - The client first downloads a metafile
 - Describes the available media variants
 - Includes parameters and naming scheme
 - The it chooses a variant and starts fetching
 - Can start with lowest quality to test the network
 - Adapts the quality depending on conditions
 - The server is not involved at all!
 - Only the client monitors the connection state

Working with CDNs (1 of 2)

- CDN: Content Distribution Network
 - Set of co-operating web servers (or caches)
 - Strategically located around the network
 - Content actively pushed to CDN servers
- CDN goals
 - Reduced latency (use a nearby server)
 - Load balancing (many servers)
 - Traffic reduction (many clients)

Working with CDNs (2 of 2)

- CDN and adaptive streaming
 - Can use different strategies
 - Different pieces can come from different servers
 - Reduces latency visible to user
 - Different variants located in different servers
 - Depending on the network
 - Different content in different servers
 - Depending on language and area

Working with web caches

- Pieces can be cached
 - Each piece is an independent file
 - It has (some) unique name
 - It can be fetched independently
 - A web proxy can easily cache it
 - To serve subsequent requests
 - No need to store all pieces
 - No need to store all variants

Proprietary solutions (1 of 3)

- Microsoft Smooth Streaming (Silverlight)
 - Metafile listing the variants
 - Single file per variant
 - Coded with H.264+AAC
 - Dynamic fragmentation in 2 sec pieces
 - HTTP GET with byte ranges to ask for right piece
 - No need to know different file names
 - Allows live streaming (file gets extended)

Proprietary solutions (2 of 3)

- Adobe HTTP Dynamic Streaming (Flash)
 - One file per variant coded with H.264+AAC
 - Uses MP4 fragment format
 - File broken down into segments
 - Segments broken down into fragments
 - We ask for each fragment separately
 - Fragments can be 2-5 sec
 - Metafile maps fragments to time

Proprietary solutions (3 of 3)

- Apple HTTP Live Streaming (iOS/Android)
 - One file per piece per variant
 - Segments are 10 sec
 - Uses MPEG-2 TS file format
 - Coded with H.264+AAC
 - Metafile describes pieces
 - For live content the metafile is updated
 - Delays mandate the larger piece length

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

MPEG-DASH

Class: Multimedia Technology, **Section # 19:** Streaming **Instructor:** George Xylomenos, **Department:** Informatics

What is MPEG-DASH?

- DASH: Direct Adaptive Streaming over HTTP
 - Created by the MPEG consortium
 - Adopted by 3GPP for mobiles
 - Supported by the DASH Industry Forum
 - Attempt to standardize an existing practice
 - Use a single encoding instead of three
 - Prevent incompatibilities
 - Combine existing approaches

Capabilities (1 of 3)

- Two file formats allowed
 - MPEG-4 (ISO): Compatible with Adobe/MS
 - MPEG-2 TS: Compatible Apple
 - Allows reusing existing media
 - Just needs a new metafile!
- Many encodings possible
 - Encoding with H.264+AAC for compatibility
 - Adds MPEG-2, MPEG-4, even H.265

Capabilities (2 of 3)

- Pieces can be 1-20 sec
 - Interleaved audio/video
 - Independent audio/video
 - Allows different adaptation strategies
 - Works better with multilingual content
- Two metafile types
 - Description file for all variants
 - Initialization file for each variant

Capabilities (3 of 3)

- Many ways to provide content
 - Different file formats and codecs
 - Different number and type of variants
 - Different piece durations
 - Different media multiplexing options
- Client has significant flexibility
 - Policy for requesting pieces
 - Policy for changing variants

Profiles (1 of 3)

- Profiles in MPEG DASH
 - Similar concept to MPEG profiles
 - Which capabilities are allowed
 - Each profile is a compatibility point
 - Different apps need different profiles
 - The media player supports some profiles
 - Content explicitly lists its profile
 - The same content can be available in multiple profiles

Profiles (2 of 3)

- ISO Base media file format On Demand
 - Stored (not live) content
 - MPEG-4 (ISO) file format with two options
 - Single file per variant
 - Relies on HTTP GET with byte ranges
 - Independent files per piece
 - Each file has its own name
 - Metafile maps pieces to time

Profiles (3 of 3)

- ISO Base media file format Live
 - Dynamic creation of pieces for live content
 - Metafile describes a naming scheme
 - How pieces are named
 - How long pieces last
- MPEG-2 main, simple

– Similar to ISO but with MPEG-2 TS

• More profiles exist

Hierarchical structure (1 of 3)

- Each metafile describes one "presentation"
 - MPD type (Media Presentation Description)
 - Can have different MPDs for the same content
 - Different piece durations
 - Different profiles
- A presentation is divided into periods
 - Parts of the program and/or advertisements
 - Allows dynamic insertion (for advertisements)

Hierarchical structure (2 of 3)

- Each period has adaptation sets
 - Adaptation sets group related media
 - Example: video, English audio, Greek audio
 - Each set has a single encoding
 - Video: H.264 or H.265, Audio: 2 or 5 channels
- The adaptation set is chosen by the user
 - Example: Greek audio, 2 channels

Hierarchical structure (3 of 3)

- Each adaptation set has representations
 - Different variants of the same content
 - Video in different bit rates
 - The client switches between representations
 - Depending on network conditions
- Each representation consists of pieces
 - Initialization part at the beginning
 - Media pieces (lots!)

MPD files (1 of 4)

- MPDs describe the presentation
 - XML scheme used for description
 - Can be updated for live content
 - The new MPD must extend (not change) the old one
- MPD: presentation attributes
 - Profile used
 - Presentation duration
 - Minimum buffer size required

MPD files (2 of 4)

- BaseURL: main content prefix
- Period: when this period starts
- AdaptationSet: properties of set
 - Can have different sets per period
 - Shows what we can choose from
 - Interleaved or independent media streams
 - ContentComponent: many components in the set

MPD files (3 of 4)

- Representation: one variant of the set
 - id: identifier
 - codecs: encoders used (many for interleaved)
 - mimeType: media type according to MIME
 - bandwidth: bitrate expected
 - Type-specific properties
 - width and height: video resolution
 - numChannels: audio channels

MPD files (4 of 4)

- Representation: one variant of the set
 - SegmentBase: initialization data
 - Independent files or pieces of a large file
 - SegmentList: first the duration
 - Then an explicit list of names
 - SegmentUrl: single file name
 - SegmentTemplate: template for names

What MPEG-DASH is not (1 of 3)

- It does not constrain the provider
 - The provider chooses the parameters
 - Can have one quality per resolution
 - Or many qualities per resolution
 - The provider chooses the file format
 - Can have one file per variant
 - Can have one file per piece
 - The server is a regular web server

What MPEG-DASH is not (2 of 3)

- It does not constrain the client
 - The client chooses what and when to ask
 - Estimates bandwidth
 - Switches resolution, quality or both
 - The client can be anything
 - Independent media player
 - JavaScript code in the browser
 - All state resides at the client

What MPEG-DASH is not (3 of 3)

- No changes to the web server
 - The server just stores files
 - Only need to support HTTP methods
 - There are no "MPEG-DASH servers"
- No changes to the CDNs
 - Provider chooses how to push content
 - DNS used to redirect the client
 - Often by using small TTL
 - Which puts a lot of load on DNS

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 19

Class: Multimedia Technology, **Section # 19:** Streaming **Instructor:** George Xylomenos, **Department:** Informatics