

Multimedia Technology

Section # 18: IPTV

Instructor: George Xylomenos

Department: Informatics

Contents

- Traditional TV
- IPTV services
- IPTV implementation
- IPTV issues

Traditional TV

Class: Multimedia Technology, Section # 18: IPTV

Instructor: George Xylomenos, **Department:** Informatics

What is Television? (1 of 2)

- A set of channels is transmitted
 - Each with video, audio, subtitles (and teletext!)
- The user selects a channel
 - Can change it at any time
 - Small delay during channel change
- Channels do not depend on users
 - Everyone watches the same content
 - Ideal for broadcast (or multicast)

What is Television? (2 of 2)

- Service characteristics
 - Within a service area
 - Number of available channels
 - Media quality (video / audio)
 - Analog or digital transmission
 - Analog or digital encoding
 - Channel change time
 - This is the bane of digital encoding!

Service types (1 of 3)

- Terrestrial TV
 - Uses UHF band (previously, VHF)
 - DVB-T for digital transmission
 - One antenna (or two) at some high point
 - Otherwise, TV tower needed
 - Limited number of channels
 - Channels use up precious bandwidth
 - UHF is ideal for mobile telephony!

Service types (2 of 3)

- Satellite TV
 - SHF bands (C-band, 4-8 GHz)
 - DVB-S for digital transmission
 - TV satellites cover large areas
 - Hard to reuse frequencies
 - Competition from other applications
 - Requires extra reception equipment
 - Satellite dish, amplifier, decoder

Service types (3 of 3)

- Cable TV
 - HFC network (Hybrid Fiber Coax)
 - Large costs to lay down cable
 - Does not take up radio frequencies
 - May have very large number of channels
 - DVB-C for digital transmission (in Europe)
 - Requires simple equipment (just a tuner)
 - Often, embedded in the TV

IPTV services

Class: Multimedia Technology, Section # 18: IPTV

Instructor: George Xylomenos, **Department:** Informatics

Why IPTV? (1 of 3)

- Disadvantages of terrestrial and satellite
 - Competition for radio frequencies
 - Limited number of channels
 - Requires special equipment (antennas, dishes)
- Disadvantages of cable
 - Requires laying our cable
 - Can also be used for Internet
 - Combines two networks (like DSL)

Why IPTV? (2 of 3)

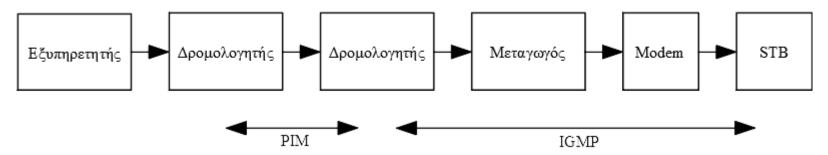
- IPTV services
 - TV transmission over the Internet
 - Media sent inside IP packets
 - Can be combined with HFC or DSL
 - Can coexist with VoIP telephony
 - One network for everything
 - IP routers
 - Ethernet switches

Why IPTV? (3 of 3)

- Exploits well-known technologies
 - IP for routing
 - RTP/RTCP for media transport
 - HTTP for additional services
 - Web-based program guide
 - Allows encrypted content
 - Pay per view channels
 - Decoded in a set-top box (STB)

Problems to solve

- IP does not guarantee anything!
 - Fluctuating traffic -> fluctuating quality
 - Same problems as for VoIP telephony
- Needs a "special" network
 - Differentiating IPTV data
 - Applying priorities
 - Normally, limited to a single ISP
 - Example: Cosmote TV



IPTV implementation

Class: Multimedia Technology, Section # 18: IPTV

Instructor: George Xylomenos, **Department:** Informatics

Network overview

- IPTV relies on IP multicast
 - The server sends each channel to a class D address.
 - Constant bit rate per channel
 - Routers use PIM for multicast
 - Limited to ISP's core network
 - Users rely on IGMP for channel selection
 - Requires some extensions to the access network

Servers (1 of 2)

- Normally, two separate servers used
- Media server
 - Sends each channel to separate address
 - Uses multicast to cover all users
 - Does not get any feedback from users
 - Typically, all channels sent all the time
 - May be replicated for reliability
 - But, due to multicast, it has a constant load

Servers (2 of 2)

- Program server
 - Plain web server
 - Shows a web page with the channels
 - STBs are connected to this server
 - To get the IP address of the channel
 - Load depends on the number of users
 - Normally, a server farm for scaling
 - Load balancer assigns users to servers

Core network (1 of 2)

- Transport from media server to POP
 - Accepts one media stream per address
 - Each channel corresponds to one address
 - Each POP asks for the channels it wants
 - PIM used to route streams to the POPs
 - Alternatively, MPLS may be used
 - Bandwidth reserved to ensure service
 - Channels need a constant bitrate

Core network (2 of 2)

- Do we actually need multicast?
 - That depends on the network
 - Networks are usually simple
 - Simple mesh with few nodes
 - Most of the time, each POP wants all channels
 - Say that a POP handles 10,000 subscribers
 - Most likely, at least one user will want each channel
 - We could just use broadcast!

Access network (1 of 8)

- From POP to user, we turn to switching
 - The network is quite simple
 - Basically, a tree!
 - Some extra links for reliability
 - It is derived by the telephone network
 - IP routers are expensive
 - Ethernet switches are cheaper
 - And with very high port density

Access network (2 of 8)

- But: Ethernet does not do routing!
- In IP, addresses are not random
 - Each router handles a range of addresses
 - Its parent handles a larger range
 - Essentially, routing is hierarchical
- In Ethernet, addresses are random
 - They start with a manufacturer prefix
 - Then, just a production sequence number
 - In practice, inside a LAN they seem totally random

Access network (3 of 8)

- How do we know where to forward a frame?
 - Say that a frame was received from port i
 - We mark down who the sender was
 - The sender must be reachable via port i
 - If we have not seen the receiver before
 - Broadcast to all other ports
 - If we have seen the receiver before
 - Unicast via the appropriate port
 - Gradually, the switch learns the addresses

Access network (4 of 8)

- The Spanning Tree Protocol (STP)
 - Ethernet must be a tree
 - Otherwise, packets will keep getting broadcast
 - What can we do with the extra links?
 - STP protocol creates a LAN map
 - A root is elected for a LAN tree
 - Some links are disabled to make it a tree
 - If a link goes down, we enable them again

Access network (5 of 8)

- Multicasting changes this picture
 - The group address is virtual
 - Special Ethernet address
 - No packets ever come from there
 - Packets are <u>always</u> sent via broadcast
 - To all ports except the incoming one
 - All channel packets reach every user!
 - But we do not have that kind of bandwidth

Access network (6 of 8)

- The solution: IGMP Snooping
 - IGMP operates at the network layer (IP)
 - Some switches "snoop" inside the frames
 - They monitor IGMP packets
 - A REPORT on port i means forward the channel on i
 - A LEAVE on port i means drop the channel on i
 - These messages do not get always forwarded
 - Only the first REPORT and the last LEAVE
 - This basically truncates the broadcast tree

Access network (7 of 8)

- Client modem
 - And router/firewall/switch
 - Receives all data from the Internet
 - Splits other data from IPTV (and VoIP)
 - They reside in different VLANs
 - Applies priorities
 - IPTV (and VoIP) are prioritized for quality
 - Just forwards the IGMP message

Access network (8 of 8)

- STB (Set Top Box)
 - Provided and programmed by the ISP
 - Connects to the internal LAN/WLAN
 - Part of the IPTV VLAN
 - Connects to program server
 - To find the IP address for each channel
 - Depending on channel choice, sends a message
 - IGMP REPORT for the new channel
 - IGMP LEAVE for the old channel

IPTV issues

Class: Multimedia Technology, Section # 18: IPTV

Instructor: George Xylomenos, **Department:** Informatics

Channel changes (1 of 3)

- Channel change in analog TV
 - Must tune to new channel
 - And wait for the next field
 - Delay of up to 1/50 or 1/60 sec
- Channel change in digital TV
 - May need to tune to new channel
 - And wait for next I-frame
 - We cannot start decoding without it!

Channel changes (2 of 3)

- Channel change in IPTV
 - Send REPORT (new) and LEAVE (old)
 - Sent by the STB
 - Forwarded towards tree root
- REPORT stops at a node receiving the channel
 - Someone already watches the channel downstream
 - This allows the data stream to flow
 - Channel must be decoded at the receiver
 - Which also requires an I-frame

Channel changes (3 of 3)

- LEAVE stops when other ports are live
 - Someone still watches the channel downstream
 - Data flow stops from that point
 - Some bandwidth wasted up to then
- Speeding up channel change
 - Unicast new channel to user
 - Stops when multicast arrives
 - Some bandwidth wasted

Routing changes

- Say that a link fails
 - If there is an alternative link, it is enabled
 - It was previously disabled by STP
 - The distribution tree changes
 - Some port states will be wrong!
 - The source frames will come from other ports
 - Specifically, REPORT/LEAVE frames!
 - Network needs to fall back to broadcast

Customers in other networks

- IPTV relies on a custom network
 - With priorities, multicasting, IGMP snooping
 - Normally, be restricted within an ISP
 - What happens if the customer is elsewhere?
 - For example, on a cell phone
 - We either do not provide the service
 - Of offer it OTT (over the top)
 - See next section on streaming

End of Section #18

Class: Multimedia Technology, Section # 18: IPTV

Instructor: George Xylomenos, **Department:** Informatics