ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 15: Video coding: H.264 Instructor: George Xylomenos Department: Informatics

Contents

- Introduction
- Network support
- Video coding: prediction
- Video coding: transform, quantization, entropy
- Profiles, levels and recovery
- Scalable coding

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Introduction

Class: Multimedia Technology, **Section # 15:** Video coding: H.264 **Instructor:** George Xylomenos, **Department:** Informatics

What is H.264 (1 of 3)

- Common standard from two organizations
 - ITU-T H.264/AVC (2004)
 - ISO/IEC MPEG-4 Part 10
 - Very different from MPEG-4 Part 2!
- More efficient compressions
 - Twice as much as MPEG-2
 - But with triple the computation load
 - Despite a simplified DCT!

What is H.264 (2 of 3)

- More friendly to different networks
 - Applicable to conferencing (like H.263)
 - Applicable to distribution (like MPEG-4 Part 2)
 - More resilient to errors
- More flexible
 - Random access and chapters
 - Fast/slow motion forwards/backwards

What is H.264 (3 of 3)

- Evolution of previous standards
 - Concepts from both MPEG-4 Part 2 and H.263
 - Unifies the previous MPEG and H.26x standards
 - Next: H.265/HEVC (2013), H.266/VVC (2020)
- Applications
 - Bluray disks
 - HDTV (e.g. in DVB-T)
 - Web Video

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Network support

Class: Multimedia Technology, **Section # 15:** Video coding: H.264 **Instructor:** George Xylomenos, **Department:** Informatics

Network support (1 of 5)

- Standard split in two layers
 - Video Coding Layer (VCL)
 - Network Abstraction Layer (NAL)
- NAL: adaptation to various transports
 - RTP/UDP/IP for IP networks
 - MPEG-2 TS for HDTV
 - Files for storage and exchange
 - H.32x standards for conferencing

Network support (2 of 5)

- Bit stream broken into NAL Units (NALU)
 - Each starts with a 1 byte header
 - Adaptation for packet network
 - Direct encapsulation in packets (e.g., RTP)
 - Fragmentation or packing of NALUs
 - Adaptation for byte stream networks
 - Each NALU starts with 3 framing bytes
 - Byte stuffing to avoid erroneous frames

Network support (3 of 5)

- Two NALU types
 - VCL: contain video info
 - Non-VCL: parameter sets, timing info
- Parameter sets
 - Common parameters for many VCL NALUs
 - Sent before image data
 - Can be transmitted with enhanced resilience
 - Either using a separate reliable channel
 - Or with additional protection (e.g., repetition coding)

Network support (4 of 5)

- Parameter sets
 - Two levels: sequence or frame
 - Frame parameters: reference sequence parameters
 - VCL NALU: reference frame parameters
- Access unit
 - All NALUs related to a video frame
 - Timing and location info
 - Coded image data
 - Image data encoded at lower quality

Network support (5 of 5)

- Video sequence
 - A sequence of access units
 - Using the same parameter set
 - Starting with frame that does not reference others
 - Can be independently decoded
 - Similar to GOPs in MPEG-2

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Video coding: prediction

Class: Multimedia Technology, **Section # 15:** Video coding: H.264 **Instructor:** George Xylomenos, **Department:** Informatics

Slices (1 of 4)

- Video Coding Layer (VCL)
 - Based on known coding techniques
 - Extensions of H.263 and MPEG-4 Part 2
 - Plus, many small improvements
 - That all contribute to improved coding
- Breaking down a frame into MBs
 - The MBs are organized into slices
 - The number of MBs per slice is arbitrary
 - Not one slice per row of MBs as in MPEG-2

Slices (2 of 4)

- What are slices used for?
 - Slices are autonomously decoded
 - They allow sync after errors
 - They start with a known bit sequence
 - They adapt to the packet size
 - Ideally: one slice per packet
 - Packet loss→slice loss
 - More important slices can be repeated

Slices (3 of 4)

- Flexible Macroblock Ordering (FMO)
 - Slices where MBs are NOT consecutive
 - Map used to assign MBs to slice
 - Different types of ordering
 - MB interleaving to increase reliability
 - Separation of important MBs for extra resilience

Slices (4 of 4)

- Adaptive Slice Ordering (ASO)
 - Transmission of slices in any order
- Slice types
 - I Slice: only non predicted MBs
 - P Slice: adds MBs with single prediction
 - B Slice: adds MBs with double prediction
 - SP/SI Slices: used for random access

Intraframe coding (1 of 3)

- Intraframe coding: I-macroblocks
- Allow prediction from areas in the same frame
 - As long as they have already been encoded
 - But: these areas may be interframe coded!
 - No prediction outside the slice allowed
- Limited intraframe coding
 - Prediction only from intraframe coded areas
 - An I-frame can only have this type of MBs

Intraframe coding (2 of 3)

- Prediction in 4x4 or 16x16 areas
- 4x4 for higher detail
 - Multiple prediction types
 - Always within the same slice!
 - Average value of pixels above / left
 - Corresponding pixels above the block
 - Corresponding pixels left of the block
 - Generalized with diagonals

Intraframe coding (3 of 3)

- 16x16 for background or simpler areas
 - Fewer prediction types
 - Average, pixels above / left
- Ends with a DCT transform
 - Of the differences from the prediction
- Uncompressed MBs (PCM)
 - Pixel values without any compression
 - For very complex blocks or very high detail

Interframe coding (1 of 6)

- Interframe coding: P-macroblocks
- Different block sizes possible
 - Sized 16x16, 16x8, 8x16 or 8x8
 - Variations of the 16x16 MB
 - 8x8 blocks can be divided into 8x4, 4x8 or 4x4
 - Further divisions of the 8x8 block
 - Each block has its own motion vector

Interframe coding (2 of 6)

- Various prediction types
 - Regular GOP with IPB frames
 - No B-frames for conferencing
 - Multiple reference frames
 - The motion vectors include the reference
 - Hierarchical prediction
 - Gradual decoding and prediction
 - Allows prediction from B-blocks to B-blocks

Interframe coding (3 of 6)

- Non integer motion vectors
 - 1, ½ or ¼ pixel resolution
- References with ½ pixel accuracy
 - The reference is formed via a filter
 - Linear combination of +/-3 neighboring pixels
- References with ¼ pixel accuracy
 - Average of neighboring pixels
 - Pixels in integer and ½ pixel distance

Interframe coding (4 of 6)

- Motion vectors outside the frame
 - Assumes that the edge values are repeated
- Differential coding of motion vectors
 - Prediction only within a slice
 - May be directional or average
- Simple prediction (P_Skip)
 - Nearly nothing transmitted!
 - Same pixel values as reference
 - Same motion vector as previous block

Interframe coding (5 of 6)

- Interframe coding: B-macroblocks
 - Generalization of B-frames
 - Can be used as references for prediction
 - Based on a combination of predictors
 - Four prediction types
 - Two frame lists, combination and direct
 - Direct is based on simple prediction
 - Allows different block sizes

Interframe coding (6 of 6)

- Combination of predictors
 - Motion vectors also have weights
 - We find the reference area
 - We combine the areas based on the weights

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Video coding: transform, quantization, entropy

Class: Multimedia Technology, **Section # 15:** Video coding: H.264 **Instructor:** George Xylomenos, **Department:** Informatics

Transform (1 of 2)

• Integer DCT used

– Matrix multiplication with integer values

- Large speedup of calculations
- No rounding errors
- Reversible without any loss
- Based on 16 bit arithmetic
 - Previous methods used 32 bit arithmetic
 - Less space and smaller computational cost

Transform (2 of 2)

- Optionally in 4x4 instead of 8x8 blocks
 - Allows more ways to predict a block
 - Which leads to smaller differences
 - Improves quality at the edges of blocks
 - Simpler calculations with smaller numbers
- DC coefficients are transformed again
 - New matrix with the DCs of each 4x4 block
 - Improves compression in simple areas

Quantization

- Based on a single scaling value
 - 52 different values (0-51)
 - Each value is a quantization step
 - The matrix is generated from the scaling value
- Logarithmic rather than linear quantization
 - Every 6 steps the quantizer is doubled
 - Each step increases the quantizer by 12%

Entropy coding (1 of 3)

- Option 1: variable length coding
- ExpGolomb code for simple data
 - Can encode any number
 - Fewer bits for smaller numbers
 - Format: prefix1suffix
 - The prefix (zeroes) encodes the length
 - The suffix encodes the value

Entropy coding (2 of 3)

- Adaptive (CAVLC) code for the coefficients
 - Multiple tables for each type
 - Depending on the value of the block
 - How many non-zero values
 - How many ones at the end
 - What other numbers exist
 - How many zeroes between them
 - Better compression compared to single table

Entropy coding (3 of 3)

- Option 2: arithmetic coding
 - Also adaptive (CABAC)
 - We first turn everything to an integer
 - Then we choose a prediction model
 - Essentially, a model for the probabilities
 - Encoding based only on integer arithmetic
 - Uses scaling to avoid floating point
 - Improves compression by 5-15%

Deblocking filter

- At low bit rates, artefacts appear
 - The edges of the block tend to the average value
 - Visible changes at block ends
- The filter reduces these artefacts
 - Looks at pixels in neighboring blocks
 - Differences > quantizer are not changed
 - Smaller differences are filtered (smoothed)
 - Allows 5-10% more encoding for the same quality

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Profiles, levels and recovery

Class: Multimedia Technology, **Section # 15:** Video coding: H.264 **Instructor:** George Xylomenos, **Department:** Informatics

Capability sets (1 of 2)

- Capability sets of H.264/AVC
 - 0: I and P blocks, Huffman coding
 - 1: non continuous slices, slice repetition
 - 2: SP/SI blocks, data partitioning
 - 3: B blocks , weighted prediction
 - 4: arithmetic coding

Capability sets (2 of 2)

- Profile: which capability sets are allowed
 - Baseline: sets 0 and 1 (reliability)
 - Main: sets 0, 3 and 4 (performance)
 - Extended: sets 0, 1, 2 and 3
- Level: values of basic parameters
 - 15 levels, applicable to all profiles
 - Resolution, MB rate, bit rate

Error recovery (1 of 4)

- The encoder provides many tools
- Two types of intracoded MBs

- Restricted MBs: prediction only from I-MBs

• Packet-sized slices

– Limits the damage from packet loss

• Selection of the reference frame

Allows bypassing lost blocks

Error recovery (2 of 4)

- Parameter sets
 - Can be sent with additional error correction
- Flexible MB ordering

Interleaving spreads the effect of errors

- Slice repetition
 - Important parts of the frame can be repeated
 - They can even be re-sent at lower quality

Error recovery (3 of 4)

- Data are split in three sets
 - A: MB types used, motion vectors, quantizer
 - B: intraframe-coded MBs
 - C: interframe-code MBs
 - Descending order of importance
 - Set A is required for B and C
 - Set A allows error concealment
 - Can be handled differently by the network

Error recovery (4 of 4)

- NALU marking
 - Each NALU has a priority in the header
 - The network can select what to drop
 - Works very well with data splitting!
 - Forbidden bit: erroneous data
 - For example, packets with bit errors
 - Allows the decoder to act accordingly
 - Recover whatever possible, conceal errors

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Scalable coding

Class: Multimedia Technology, **Section # 15:** Video coding: H.264 **Instructor:** George Xylomenos, **Department:** Informatics

Scalability (1 of 5)

- Scalable Video Coding (SVC) extensions
 - Three scalable levels
 - Multiple resolutions/qualities/frame rates
 - Full or partial transmission and decoding
 - Easy extraction of non-scalable bit stream
 - Small bitrate overhead for scalability
 - Small processing overhead for scalability
 - Compared to MPEG-2 and MPEG-4 part 2

Scalability (2 of 5)

- SVC goals
 - Support heterogeneous terminals
 - Support heterogeneous networks
- Scalability options
 - Temporal (frame rate)
 - Supported by baseline H.264/AVC
 - Spatial (resolutions)
 - Multiple resolutions in the same flow
 - Quality (image precision)

Scalability (3 of 5)

- Layered coding
 - The bitstream contains numbered layers
 - Layer 0 does not need special decoding
 - Plain H.264/AVC decoder is enough
 - Layers >0 improve resolution or quality
 - Compared to the previous layers
 - Each frame can have different numbers of layers

Scalability (4 of 5)

- Prediction across layers
 - MB or sub-MB based
 - Simple case: same as in reference layer
 - Intraframe: same as in reference layer
 - Interframe: same prediction as in reference layer
 - Reference areas and motion vectors are scaled
 - Otherwise, encode difference from reference
 - Reference area scaled before calculating difference

Scalability (5 of 5)

- Common decoding for all layers
 - Not separate per layer
- Temporal scaling
 - Increased frame rate in each layer
 - Careful selection of reference frames
 - Limited to lower layers

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 15

Class: Multimedia Technology, Section # 15: Video coding: H.264 Instructor: George Xylomenos, Department: Informatics