ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 14: Video coding: MPEG-4 Instructor: George Xylomenos Department: Informatics

Contents

- The MPEG-4 standard
- Scenes in MPEG-4
- Natural object coding
- Synthetic object coding
- Textures and sprites
- Error recovery and evaluation

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

The MPEG-4 standard

Class: Multimedia Technology, **Section # 14:** Video coding: MPEG-4 **Instructor:** George Xylomenos, **Department:** Informatics

What is MPEG-4? (1 of 2)

- The MPEG-4 standard
 - Goal: reduce (not increase!) bit rates
 - 10x improvement over H.261
- Specific MPEG-4 goals
 - Allow interaction with content
 - Downloading of new algorithms/applications
 - Support scalable coding
 - Independence from underlying network

What is MPEG-4? (2 of 2)

- Differentiation from MPEG-1/2
 - Emphasis on content structure
 - Each frame is a scene consisting of objects
 - Interaction with users
 - Modification of content structure
- Two types of coding
 - Audio-visual object coding
 - Scene coding

MPEG-4 and H.264

- MPEG-4 part 2 (1999, this section)
 - Original video coding standard
 - Emphasis on scene structure
- MPEG-4 part 10 (2003, next section)
 - Totally different from part 2!
 - Same standard as H.264/AVC
 - Emphasis on coding efficiency
 - Not backwards compatible with part 2

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Scenes in MPEG-4

Class: Multimedia Technology, **Section # 14:** Video coding: MPEG-4 **Instructor:** George Xylomenos, **Department:** Informatics

Scenes (1 of 3)

- Scene: a sequence of frames
 - Audio-Visual Objects (AVO)
 - AVO composition using VRML-like language
 - Binary format for scenes (BIFS)
- Video Object Plane (VOP)

- Representation of visual AVO: shape, texture, motion

Scenes (2 of 3)

- Multiplexer (MUX)
 - Multiplexes all the info into a single bit stream
 - Position, depth and orientation of AVOs
 - Audio and scene description

Scenes (3 of 3)

- Demultiplexer (DEMUX)
 - Recovers AVO shape, texture and motion from stream
 - Decodes AVOs and composes the scene
 - Optional: scene modification (via BIFS)

Scene composition (1 of 2)

- Scene composed from object hierarchy
 - First, the hierarchy is transmitted
 - Then, we can send modifications to nodes
 - May also change the hierarchy
- Interaction options
 - Change of observation point
 - Drag objects to different places
 - Start a sequence of events

Scene composition (2 of 2)

- Representation of new objects
 - Download new object classes
 - Initialize classes and data structures
 - Demultiplexing, synchronization, decoding
- Full hierarchy of a scene
 - Video Sequence (VS): a complete video clip
 - Video Object (VO): consists of layers (for scalability)
 - Video Object Layer (VOL): consists of planes
 - Video Object Planes (VOP): shape/texture/motion

MPEG-4 peculiarities

- Requires structuring a scene
 - Instead of MBs we have irregular areas
 - Each object has a shape (a mask)
 - The texture is what the object looks like
 - Each object can move independently
 - Objects can overlap
- Without objects, it becomes MPEG-2

With some additional coding tools

Video planes

- What a scene is really composed of
 - Natural or synthetic
 - Different coding approaches
 - May only have a single object (entire frame!)
- Sprites: background objects
 - Simple movement and distortion
- Textures: projected onto objects

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Natural object coding

Class: Multimedia Technology, **Section # 14:** Video coding: MPEG-4 **Instructor:** George Xylomenos, **Department:** Informatics

Natural objects (1 of 7)

- Coded with MBs and blocks
 - Uses 4:2:0 subsampling (always)
 - Coding of shape, texture and motion
- Shape coding
 - An object is enclosed in a rectangular box
 - Consists of one or more MBs
 - A bitmap shows the exact shape
 - Which part of the MBs is part of the object

Natural objects (2 of 7)

- Binary shape bitmap
 - 1: pixel in object, 0: pixel not in object
 - Dissected into 16 x 16 pixel areas (like an MB)
 - Each area coded separately
 - Special coding for areas with all 1s or 0s
 - Areas completely in or out of the object
 - Prediction from previous and neighboring areas
 - Each prediction has a probability
 - Arithmetic coding of the result

Natural objects (3 of 7)

- Grayscale shape bitmap
 - Similar to binary, but with intermediate values
 - 0 to 255 for each pixel
 - Corresponds to object transparency
 - Transform coded
 - Similar to textures (see below)
 - Lossy coding

Natural objects (4 of 7)

- Motion coding
 - As in MPEG-2 but at the VOP level
 - We can have I-VOPs, P-VOPs and B-VOPs
 - Half pixel accuracy motion vectors
 - Matching based only on pixels inside the shape
 - Differences are only coded for those
 - Pixels outside shape ignored
 - Differential coding of motion vectors
 - Prediction from three neighboring vectors

Natural objects (5 of 7)

- Texture coding
 - Like MPEG-2 but with some additions
 - DCT used in each block
 - The standard defines the accuracy level
 - What about pixels outside the shape?
 - DCT always transforms and entire block
 - In P-VOP/B-VOP we use zeros
 - In I-VOP we use padding values

Natural objects (6 of 7)

- Texture coding
 - Padding values for pixels outside shape
 - For blocks partially inside the object
 - First, horizontal fill with neighboring or average value
 - Then, vertical fill with neighboring or average value
 - For blocks fully outside the object
 - Use values from boundary blocks

Natural objects (7 of 7)

- Texture coding
 - Quantization
 - Fixed quantizer for DC
 - Either table or single value for AC
 - Coefficient scanning
 - Zig-zag, per line or per column
 - Depends on how we predict the DC coefficient
 - Entropy coding
 - Two coding tables, depending on quantization

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Synthetic object coding

Class: Multimedia Technology, **Section # 14:** Video coding: MPEG-4 **Instructor:** George Xylomenos, **Department:** Informatics

Synthetic objects (1 of 6)

- Synthetic objects
 - Grids (2D)
 - Human bodies and faces (3D)
- Representing objects with grids
 - Polygonal 2D areas
 - Broken down into triangles
 - Encoding of vertices and their motion
 - Textures projected over the triangles

Synthetic objects (2 of 6)

- Uniform grids
 - Four types of uniform grids
 - Specific ways of arranging triangles
 - Simple description due to uniformity
 - Number of vertices in each dimension
 - Horizontal and vertical edge length
 - Arrangement of triangles
 - Insufficient for complex objects

Synthetic objects (3 of 6)

- Non-uniform grids
 - Based on Delaunay triangulation
 - Each triangle is embedded into a circle
 - Does not contain vertices of other triangles
 - Edge nodes: periphery of the grid
 - Internal nodes: vertices of the triangles
 - Individual coding of the first node
 - Differential coding of subsequent nodes

Synthetic objects (4 of 6)

- Grid motion
 - In each triangle, the vertices (nodes) move
 - But the triangle structure does not change
 - We start with the first triangle
 - We encode the motion of the two nodes
 - And predict the motion of the third
 - We continue with the either triangles
 - Only need to predict the third node

Synthetic objects (5 of 6)

- Face coding
 - Uses a standardized face model
 - Only specific areas can change
- Face Description Parameters (FDP)
 - Changes to approximate different faces
- Face Animation Parameters (FAP)
 - Changes to approximate different movements
 - Library of changes for speech and expressions
 - Differential encoding of FAPs

Synthetic objects (6 of 6)

- Body coding
 - Variation on face coding
 - Use of standardized body model
 - Only specific areas can change
- Body Description Parameters (BDP)
- Body Animation Parameters (BAP)
- Use of a grid for the surface
 - Textures can be projected to it

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Textures and sprites

Class: Multimedia Technology, **Section # 14:** Video coding: MPEG-4 **Instructor:** George Xylomenos, **Department:** Informatics

Static textures

- Coding of static textures
 - Projected on static objects (2D/3D)
 - Based on wavelet transform
 - Separate coding of each sub-band
 - Recursive division of each sub-band for scalability
 - DC sub-band: prediction from neighbors
 - AC sub-band: prediction from other levels
 - Similar coefficients across levels

Sprites

- Sprites: static images, mostly backgrounds
 - Composed of simpler images
 - Static image coding
 - Transmitted in the beginning
 - A panorama is created in memory
 - Then, only part of it is shown
 - Essentially we have a window over the background

Global motion compensation (1 of 2)

- Some changes modify everything
 - Rotation, zoom, camera movement
 - Some cause identical motion vectors (pan)
 - Some cannot be expressed this way (zoom)
- Encoding global changes for sprites
 - Based on an image distortion model
 - Solves an optimization problem
 - Finds the best rotate/pan/zoom parameters

Global motion compensation (2 of 2)

- Warping and blending
 - Modify the image according to model
 - Blends it with sprite to produce a new one
- Motion trajectory coding
 - Motion of key points in the sprite
- Global vs local motion compensation
 - Both options are examined
 - The most economical one is chosen

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Error recovery and evaluation

Class: Multimedia Technology, **Section # 14:** Video coding: MPEG-4 **Instructor:** George Xylomenos, **Department:** Informatics

Error recovery (1 of 2)

- Low speed/high error rate channels
 - Example: cellular telephony
- Fixed size video packets
 - Easy to resync after errors
 - Size depends on the channel
- Additional control information
 - Separation of motion vectors in packets
 - Frame information in packets

Error recovery (2 of 2)

- Reversible code words
 - Variant on Huffman (VLC->RVLC)
 - Variable length code words
 - Can also be read from end to beginning
 - When we lose sync due to bit errors
 - We start reading from the end of the packet
 - We recover both beginning and end of packet

Did MPEG-4 succeed? (1 of 3)

- MPEG-4 added many new tools
 - New encoding techniques
 - Dynamic extensions
 - Synthetic objects
- Not everything got adopted!
 - Only the encoding techniques were kept
 - And they were not as good as expected

Did MPEG-4 succeed? (2 of 3)

- New coding techniques
 - Improved error resilience: passed to H.264
 - Global motion compensation: too complex
- Dynamic extensions
 - Very ambitious!
 - Introduces security issues
 - Lack of use cases

Did MPEG-4 succeed? (3 of 3)

- Synthetic objects
 - Essentially, encodes animation
 - Can use very low bit rates
 - Many options offered
 - Faces, bodies, grids
 - Did not get a lot of traction
 - Abandoned in H.264
 - But worked fine in Shockwave Flash!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 14

Class: Multimedia Technology, Section # 14: Video coding: MPEG-4 Instructor: George Xylomenos, Department: Informatics