### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

# **Multimedia Technology**

Section # 10: JPEG Coding Instructor: George Xylomenos Department: Informatics

## Contents

- Introduction
- Image preparation
- Image transform
- Quantization
- Entropy coding
- Image quality
- Other coding modes
- Bitstream

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## Introduction

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# What is JPEG?

- Joint Photographic Experts Group
   Joint between ISO and CCITT (now, ITU)
- Result of a competition
  - The committee set the specifications
  - 10 proposals were selected
  - The best one was modified
  - Similar process followed for MPEG standards
    - Industry progressively plays a bigger role

# JPEG goals

- Application area
  - Continuous tone still images
    - Color or grayscale
  - Targeting natural images
    - As opposed to drawings
  - Basic format for still cameras
    - Ubiquitous in digital photos
  - Spread via the Internet

# **Coding requirements**

- Independent of resolution
- Independent of aspect ratio
- Independent of color encoding
- Random content
  - Random pixel statistics
- User tunable parameters
  - Tradeoff between quality and efficiency

# JPEG modes

- Lossy sequential
  - Baseline DCT
- Lossy extended
  - Progressive DCT
  - Simple extension of lossy sequential
- Lossless: lower compression
- Hierarchical: multiple resolutions

# **Coding flow**



- JPEG has a set of alternative options
  - Each mode uses specific options
  - Prediction or DCT
  - Optional quantization
  - Differential or RLE
  - Huffman or arithmetic

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## Image preparation

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# Image model (1 of 5)

- JPEG supports many different models
  - -1 to 255 components or planes (C<sub>i</sub>)
    - RGB colors: one plane per color
    - YUV/YIQ signals: one plane per signal
    - Grayscale: one component only
    - Mostly YUV or YIQ
  - Each C<sub>i</sub> may have different X<sub>i</sub> and Y<sub>i</sub>
    - Appropriate for subsampling
    - Not random values!

# Image model (2 of 5)



- Fixed bits/pixel per component in each mode
  - 8 for sequential, 8 for 12 extended
    - [0,255] or [0,4095]
  - 2 to 16 for lossless

# Image model (3 of 5)

- (X,Y) of image =  $(max(X_i), max(Y_i))$
- Example: image with 4 components
  - Component 1: X<sub>1</sub>=48, Y<sub>1</sub>=32
  - Component 2: X<sub>2</sub>=48, Y<sub>2</sub>=16
  - Component 3: X<sub>3</sub>=24, Y<sub>3</sub>=32
  - Component 4: X<sub>4</sub>=24, Y<sub>4</sub>=16
  - $-Max(X_i)=48, Max(Y_i)=32$
  - $-Min(X_i)=24$ ,  $Min(Y_i)=16$

# Image model (4 of 5)

- Relative subsampling ratios
  - We start with the lowest resolution
    - X and Y may be from different components
  - Each components has multiples of that
    - The reverse of subsampling
    - Multipliers instead of dividers
- Example: image with 4 components

 $-(H_i,V_i)$  with 1 to 4 for  $H_i \kappa \alpha V_i$ 

# Image model (5 of 5)

• Example: image with 4 components

- Max(H<sub>i</sub>)=48/24=2, Max(V<sub>i</sub>)=32/16=2

$$-H_1=H_2=2, H_3=H_4=1, V_1=V_3=2, V_2=V_4=1$$

- Component 1: X<sub>1</sub>=2x24=48, Y<sub>1</sub>=2x16=32
- Component 2: X<sub>2</sub>=2x24=48, Y<sub>2</sub>=1x16=16
- Component 3: X<sub>3</sub>=1x24=24, Y<sub>3</sub>=2x16=32
- Component 4: X<sub>4</sub>=1x24=24, Y<sub>4</sub>=1x16=16

# Data ordering (1 of 4)



- Coding data units
  - Data which are coded together
  - Lossless mode: one pixel
  - All lossy modes: 8x8 pixels
- Non interleaved ordering

- Scans units from left to right, top to bottom

# Data ordering (2 of 4)

- Interleaved ordering
  - Each component has its own coding units
  - Minimum Coding Unit (MCU)
    - All units corresponding to the same area
    - Group of coding units across components
- Fixed resolution components
  - MCU has one unit per component
  - Processed in component order

# Data ordering (3 of 4)



- Variable resolution components
  - Each MCU corresponds to the same area
  - Different number of units per component
  - Ordered per component first
  - Each MCU has H<sub>i</sub> x V<sub>i</sub> units for C<sub>i</sub>

# Data ordering (4 of 4)

- MCU limitations
  - Up to four components
  - Up to 10 units per MCU
- Why the complexity of interleaved ordering?
  - Assume an image in YUV
  - The screen however is RGB
  - The YUV->RGB conversion takes by MCU
    - Need to upsample UV and combine with Y

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## Image transform

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# Image processing (1 of 4)



• Input

- Units of 8x8 pixels (intensities)
  - Each unit transform independently
  - Their order does not matter
- Output
  - Units of 8x8 coefficients

$$F[i, j] = \frac{1}{4}C(i)C(j)\sum_{x=0}^{7}\sum_{y=0}^{7}P[x, y]\cos\frac{(2x+1)i\pi}{16}\cos\frac{(2y+1)j\pi}{16}$$

- Forward Discrete Cosine Transform (FDCT)
  - [0,255] -> [-128,127] via subtraction
  - Initially: P[x,y] with x,y= [0,7] (64 values)
  - Finally: F[i,j] with i,j= [0,7] (64 values)
- The cosines do not depend on P[x,y]
   Calculated in advanced and stored in table
- C(x)=1/sqrt(2) when x = 0, 1 when x <> 0

# Image processing (3 of 4)



• Coefficient F[0,0]: DC coefficient

Average value of entire data unit

- Others: AC coefficients
- Highest values concentrated around the DC

# Image processing (4 of 4)

$$P[x, y] = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C(i)C(j)F[i, j] \cos \frac{(2x+1)i\pi}{16} \cos \frac{(2y+1)j\pi}{16}$$

- Inverse DCT (IDCT)
  - Calculates P[x,y] from F[i,j]
  - The cosines again are independent of F[i,j]
  - Calculated in advanced and stored in table
  - In theory, a lossless transform
    - In practice, rounding errors cause some distortion
    - But we have no <u>compression</u>

# Why DCT in JPEG? (1 of 3)

- Relies on the properties of natural images
  - Large areas with similar colors
    - Each component varies slowly
    - Few drastic changes
  - Very different from computer graphics
    - Fewer colors with drastic changes
- The DC coefficient holds the mean value
  - The mean "color" of the unit

# Why DCT in JPEG? (2 of 3)

- The AC coefficients encode variations
  - Slower to faster variations
  - Separately for each dimension
  - Natural images have slow variations
    - The large coefficients are close to the DC
    - Gradually, values drop
    - Many coefficients are close to zero
    - This allows for more efficient coding!

# Why DCT in JPEG? (3 of 3)



- Analyzing a unit into coefficients
  - Coefficient (u,v) corresponds to block (u,v)
  - The unit is a linear combination of these blocks

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## Quantization

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# Quantization (1 of 5)

- The FDCT is not lossy
  - The IDCT fully reverses it
  - Some distortion due to rounding
- The FDCT reveals the image structure
  - It shows how much each coefficient
  - Different quantization per coefficient
    - Controlled distortion
    - Ideally, not visible to the human eye

# Quantization (2 of 5)

- Coefficient quantization
  - 8x8=64 quantization matrix
    - Integer 8 bit values (quantizers)
    - Same size as the coefficient matrix
  - Each coefficient is divided by its quantizer
    - Rounded to the nearest integer
  - Multiplication at the decoder
    - Using the exact same matrix

# Quantization (3 of 5)

- Quantization matrix
  - Quantization is the main lossy stage
  - The JPEG standard offers some matrices
  - Each application can add its own
- Natural images: focus on DC coefficient
  - Smaller quantizers close to DC
  - Progressively larger quantizers further from DC

# Quantization (4 of 5)



Πίνακας κβαντοποίησης

• Example of quantization

# Quantization (5 of 5)

- Variable compression ratio
  - Most applications allow for variable compression
  - Usually x=1-12 (worst-best quality)
  - Multiplies the quantizer matrix
    - Actually, its inverse is used (e.g., 12/x)
  - Controls how much information we drop
  - Same multiplier used at the decoder

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## **Entropy coding**

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# **Compression (1 of 4)**



- Coefficient ordering
  - We start with the DC coefficient
  - Then we zig-zag across the AC coefficients
  - The values get progressively smaller
    - Due to the higher quantizers!

# Compression (2 of 4)

- DC coefficient coding
  - Differential coding from unit to unit
    - We expect small variations in the average value
- AC coefficient coding
  - Independent coding in each unit
  - We have progressively smaller values
  - Many zeroes towards the end of the sequence
- How to compress a sequence of small values?

# Compression (3 of 4)

- Entropy coding for coefficients
  - Huffman-like coding is used
  - Predefined trees or application defined
- DC coefficient coding
  - Each DC codes as (bit length, value)
    - Coefficient: difference with previous DC
  - Bit length is Huffman coded
  - Coefficient value in 2's complement

# **Compression (4 of 4)**

- AC coefficient coding
  - Similar to DC, but in triples
  - (number of zeroes, bit length, value)
    - Similar to RLE for zeros
  - Zeroes and bit length: Huffman coded
    - For more than 15 zeroes, need more symbols
  - Coefficient value: 2's complement

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## Image quality

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# Image quality (1 of 4)

- JPEG elements can be found everywhere
  - All video codecs start with JPEG
    - H.26x, MPEG-x
  - Three basic elements
    - 8x8 units (possibly 4x4 16x16)
    - Transform (DCT or others)
    - Quantization (matrix or single value)
  - Hardware support for these elements

# Image quality (2 of 4)



- Compression vs quality
  - Controlled by quantization multiplier
  - Causes very specific artefacts (distortion)
  - Muddy text, blocking

# Image quality (3 of 4) Ποιότητα εικόνας Ποιότητα εικόνας Ποιότητα εικόνας

- Muddy text
  - Sharp text has sudden intensity changes
  - But these AC coefficients are heavily compressed
  - Shades appear inside each block

# Image quality (4 of 4)



- Blocking
  - Each block is compressed around the mean (DC)
  - Edges of blocks are not continuous

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## **Other coding modes**

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# Extended sequential (1 of 3)





- Minor extensions to baseline sequential
- Sequential coding
  - Image appears sequentially
- Progressive coding
  - Image progressively gets more detail







# Extended lossy (2 of 3)

- Progressive coding methods
  - Spectral selection
    - First encode lower frequency coefficients
    - Each consecutive pass encodes higher frequencies
  - Progressive approximation
    - All coefficients encoded in each pass
    - First encode most significant bits
    - Each consecutive pass encodes more bits

# Extended lossy (3 of 3)

- Color depth extensions
  - Allows either 8 or 12 bits per pixel (per plane)
    - Allows 36 bit color depth
- Entropy coding extensions
  - Allows arithmetic coding
    - 5-10% better compression than Huffman
    - Computationally harder
    - Initially covered by patents

# Lossless mode (1 of 2)



- Prediction instead of transform
  - X: current pixel
  - A: pixel left of X
  - B: pixel above of X
  - C: pixel above and left of X

# Lossless mode (2 of 2)

- Coding of pixel X
  - 8 prediction modes
    - X=A, X=B+(A-C)/2, ...
  - Difference from prediction
- No quantization at all
   That is the lossy part!
- Only entropy coding

   Huffman or arithmetic

# Hierarchical mode (1 of 3)



- Multiple resolutions in the same file
  - Progressive (de)coding
  - We can decode only some resolutions
  - Targets heterogeneous devices

# Hierarchical mode (2 of 3)

- Progressive: different qualities
- Hierarchical: different resolutions
- Hierarchical coding has some overhead
  - But we can get multiple resolutions
  - We can choose which one to decode
- Works in consecutive levels
  - Each level can use any coding mode
  - But we need all previous levels for decoding

# Hierarchical mode (3 of 3)

- Coding process for n levels
  - Reduce the original image resolution by 2<sup>n</sup>
  - Encode the image
  - Reduce the original image resolution by 2<sup>n-1</sup>
  - <u>Decode</u> the previous level
  - Calculate the different between the two
  - Encode only the different
  - Continue up to the original resolution

### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

### **Bit stream**

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics

# JPEG bit stream (1 of 3)



Bit stream is hierarchically structured

– Scan = component, segment = MCU

# JPEG bit stream (2 of 3)

- Full or abbreviated format
  - Full includes all tables
  - Abbreviated can drop some
    - Makes sense when only a single application is used
- Data are structured hierarchically
  - Each level starts with some parameters
  - Frame: bits / pixel, X and Y
  - Scan: Huffman tree used

# JPEG bit stream (3 of 3)

- EXIF (Exchangeable image format)
  - Metadata specification
  - Common in JPEG photos
    - Photo date take (may differ from modification date!)
    - Exposure, speed, focus
    - Resolution per size unit
    - Resolution in pixels
    - Geolocation

#### ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

# End of Section # 10

**Class:** Multimedia Technology, **Section # 10:** JPEG Coding **Instructor:** George Xylomenos, **Department:** Informatics