

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 4: Information Theory Instructor: George Xylomenos Department: Informatics

Contents

- Channels
- Information
- Applications of information
- Entropy
- Applications of entropy

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Channels

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Channels (1 of 4)

- Transmission of digital information
 - Discrete symbols from a discrete alphabet
 - Source / Channel / User
- Source coding
 - Reduces the bits to transmit (compression)
 - Based on the nature of information
- Channel coding
 - Improves channel reliability
 - Based on the nature of the channel

Channels (2 of 4)

- Discrete Memoryless Channel (DMC)
 - Independent transmission of symbols (M)
 - Discrete symbols (D)

Channels (3 of 4)

- Channels can be different things
 - Transmission channel: WiFi link
 - Uses OFDM to encode source symbols
 - Goal: guard against interference
 - Storage channel: CD
 - Uses RS coding to encode source symbols
 - Goal: guard against disc errors or damage
 - What is the capacity of a channel?

Channels (4 of 4)

- Shannon-Hartley theorem $C = B \log_2(1 + \frac{S}{N})$
 - C: Capacity in bits per second
 - B: Bandwidth in Hz
 - S: Signal power (W or V²)
 - N: Noise/interference power (W or V²)
 - S/N: Signal to Noise Ratio (SNR)

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Information

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Measuring information (1 of 2)

- How can we quantify information?
 - How much information is on a page?
 - Is a printed page the same as a blank page?
 - How much information is in an image?
 - Is it a vector image or a bit map?
 - What are the elements of information?
 - Pixels, lines, letters, logos?
 - How much can I compress information?

Measuring information (2 of 2)

- How much information does a channel carry?
 - The maximum is what Shannon-Hartley says
 - But this is not a recipe for how to transmit
 - In practice, channels are imperfect
 - The transmitter sends symbol X
 - The receiver gets symbol Y
 - Y may not be the same as X (e.g., a bit was flipped)
 - How much information did the channel carry?

Mutual information (1 of 3)

• Assume two discrete random variables X and Y

 $- x_i$, i=1, 2, ..., n and y_j , j=1, 2, ..., m

- If X and Y are statistically independent
 Y=y_i does not provide any information on X=x_i
- If X and Y are fully dependent

 $- Y = y_i$ assures as that $X = x_i$

- What information does Y provide for X?
 - When I observe Y, what do I learn about X?
 - How can I quantify this information?

Mutual information (2 of 3)

Proportional to conditional probability

 $P(X = x_i | Y = y_j) = P(x_i | y_j)$

- Normalized to the magnitude of X=x_i
 P(X = x_i) = P(x_i)
- I(x_i;y_j): mutual information between x_i and y_j

$$I(x_i; y_j) = \log \frac{P(x_i | y_j)}{P(x_i)}$$

Mutual information (3 of 3)

• Mutual information is symmetric

 $\frac{P(x_i|y_j)}{P(x_i)} = \frac{P(x_i|y_j)P(y_j)}{P(x_i)P(y_j)} = \frac{P(x_i, y_j)}{P(x_i)P(y_j)} = \frac{P(y_j|x_i)P(x_i)}{P(y_j)P(x_i)} = \frac{P(y_j|x_i)}{P(y_j)}$ $I(x_i; y_j) = \log \frac{P(x_i|y_j)}{P(x_i)} = \log \frac{P(y_j|x_i)}{P(y_j)} = I(y_j; x_i)$

• X and Y statistically independent: $I(x_i; y_j) = 0$ $I(x_i; y_j) = \log \frac{P(x_i|y_j)}{P(x_i)} = \log \frac{P(x_i)}{P(x_i)} = 0$

)

• X and Y fully dependent

$$I(x_i; y_j) = \log \frac{P(x_i|y_j)}{P(x_i)} = \log \frac{1}{P(x_i)} = -\log P(x_i)$$

(Intrinsic) Information

- What is full dependence between X and Y?
 - The channel between them is perfect
 - It carries the full information of the source
- (Intrinsic) Information of x_i

$$I(x_i) = \log \frac{1}{P(x_i)} = -\log P(x_i)$$

- Non-negative
 - Log of a number <= 1 is always negative
- Measured in binary digits, or bits $(\log_2 x \text{ or } \lg x)$

Conditional information (1 of 2)

Definition of conditional information

- X=x_i given that Y=y_j
$$I(x_i|y_j) = \log \frac{1}{P(x_i|y_j)} = -\log P(x_i|y_j)$$

• Mutual information I(x_i;y_j)

- Information that $Y=y_j$ provides for $X=x_i$

- Conditional information I(x_i | y_j)
 - Intrinsic information of $X=x_i$...
 - \dots when Y=y_j occurs

Conditional information (2 of 2)

Conditional information: non-negative

- Same reason as for intrinsic information

All these definitions are connected

$$I(x_i; y_j) = \log \frac{P(x_i | y_j)}{P(x_i)} = \log P(x_i | y_j) - \log P(x_i) = I(x_i) - I(x_i | y_j)$$

$$- I(x_i;y_j) > 0 \text{ when } I(x_i) > I(x_i | y_j)$$

- I(x_i;y_j) < 0 when I(x_i) < I(x_i | y_j)

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Applications of information

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Application to sources (1 of 2)

• Assume a binary source (e.g., it produces bits)

- If P(0)=P(1)=1/2 $I(x_i) = -\log_2 P(x_i) = -\log_2 \frac{1}{2} = 1$

- Memoryless binary source
 - k consecutive symbols
 - M=2^k different sequences of symbols

 $I(x_i) = -\log_2 2^{-k} = k$

Application to sources (2 of 2)

- Information is a logarithmic measure
 - Logarithms turn multiplication to addition
 - log ab = log a + log b
 - What is the information of a sequence of events?
 - It is the sum of the information of each event
 - 1 random binary symbol -> 1 bit
 - k random binary symbols -> k bits
 - The base 2 logarithm turns this to bits

Application to transmission (1 of 3)

- Assume a binary DMC (transmitting bits)
 - X: input, transmitted signal
 - Y: output, received signal
 - Output differs from input with probability p
 - Assume that P(X=0)=P(X=1)=1/2 (random source)

Application to transmission (2 of 3)

• Probability of output being 0 or 1

$$P(Y = 1) = P(Y = 1 | X = 0)P(X = 0) + P(Y = 1 | X = 1)P(X = 1) = \frac{1}{2}(p + 1 - p) = \frac{1}{2}$$
$$P(Y = 0) = P(Y = 0 | X = 0)P(X = 0) + P(Y = 0 | X = 1)P(X = 1) = \frac{1}{2}(1 - p + p) = \frac{1}{2}$$

Mutual information

$$I(y_0; x_0) = I(0; 0) = \log_2 \frac{P(Y = 0 | X = 0)}{P(Y = 0)} = \log_2 2(1 - p)$$
$$I(y_0; x_1) = I(0; 1) = \log_2 \frac{P(Y = 0 | X = 1)}{P(Y = 0)} = \log_2 2p$$

Application to transmission (3 of 3)

- Noiseless channel
 - p=0: you always get what you sent
 - Therefore, I(0;0)=1
- Noisy channel
 - p=1/2, therefore I(0;0)=I(0;1)=0
 - p=1/4, therefore I(0;0)=0,587 and I(0;1)=-1
 - Note that p=1/2 is the worst case!
 - It makes the channel completely random

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Entropy

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Information and entropy (1 of 4)

- Assume an information source
 - Produces a set of symbols
 - We know the information for each symbol
- How can we characterize the source?
 - We weigh all symbols...
 - ...based on their probability
 - Essentially, a weighted mean of information

Information and entropy (2 of 4)

• Mean mutual information of X and Y

$$I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) I(x_i; y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) \log \frac{P(x_i|y_j)}{P(x_i)}$$

- P(x_i,y_j) and I(x_i;y_j) are symmetric
 I(X;Y)= I(Y;X)
- X and Y statistically independent

 $- P(x_i | y_j) = P(x_i), άρα I(X;Y) = 0$

Information and entropy (3 of 4)

• Mean (intrinsic) information X

$$H(X) = \sum_{i=1}^{n} P(x_i) I(x_i) = -\sum_{i=1}^{n} P(x_i) \log P(x_i)$$

• Values of X: symbols of an alphabet

- H(X): entropy of the source

• Source with random behavior

$$- P(\mathbf{x}_i) = 1/n$$

$$H(X) = -\sum_{i=1}^n \frac{1}{n} \log \frac{1}{n} = \log n$$

Requires log₂n bits per symbol

Information and entropy (4 of 4)

• Maximum entropy

- All symbols are equally probable

- Conditional entropy $H(X|Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) \log \frac{1}{P(x_i|y_j)}$
- All these definitions can be combined

I(X;Y) = H(X) - H(X|Y)

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Applications of entropy

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Behavior of entropy (1 of 3)

- Discrete memoryless source
 P(0)=q, P(1)=1-q
- Source entropy

 $H(X) = -P(0) \log P(0) - P(1) \log P(1) =$

 $= -q \log q - (1-q) \log(1-q)$

- Binary entropy function
 - Depends on q
 - When q=1-q=1/2, H(X)=1
 - When q=0 ή q=1, H(X)=0

Behavior of entropy (2 of 3)

- Discrete memoryless channel (DMC)
- Entropy of source X

 $H(X) \equiv H(q) = -q \log q - (1-q) \log(1-q)$

• Mean mutual information I(X;Y)

I(X;Y) = H(X) - H(X|Y)

- Maximized when q=1-q=1/2 for every p
- p=0: maximum, p=1/2: minimum
- Conditional entropy H(X|Y)
 - The opposite behavior from I(X;Y)
 - p=1/2: maximum, p=0: minimum

- Mean mutual information and conditional entropy
 - Complementary to each other

Applications (1 of 4)

- Assume a media source
 - Produces w symbols q_i, i=1, 2, ..., w
 - Probability of symbol q_i is $P(q_i)$
- Simple symbol representation
 - Fixed length binary sequences
 - Need log₂w bits per symbol for w symbols
 - Example: US ASCII
 - 128 characters encoded with 7 bits

Applications (2 of 4)

- Information
 - $-I(q_i)=-log_2P(q_i)$ bits
- Variable length representation
 - $I(q_i)$ bits for symbol q_i
 - Differentiates common and rare symbols
 - Fewer bits for common ones
 - More bits for rare ones
 - This is the most economical encoding
 - But: this is a limit, not an encoding method

Applications (3 of 4)

- Source entropy H(X)
 - Average number of information bits/symbol
- Efficiency of a coding scheme
 - R: Average number of coded bits/symbol
 - Efficiency: H(X)/R
 - Goal: get as close to the optimal as possible
- Note: optimal under specific assumptions
 Lossless, per symbol encoding

Applications (4 of 4)

- Transmission over a channel
 - X: input, Y: output
- Conditional entropy H(X|Y)
 - Mean input information, when we know the output
- Entropy H(X)
 - Mean input information, regardless of output
- Mean mutual information I(X;Y)
 - I(X;Y)=H(X)-H(X|Y)
 - Difference of information before after transmission

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section #4

Class: Multimedia Technology, Section # 4: Information Theory Instructor: George Xylomenos, Department: Informatics