

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 4: Information Theory **Instructor:** George Xylomenos **Department:** Informatics

Contents

- Channels
- Information
- Applications of information
- Entropy
- Applications of entropy

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Channels

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Channels (1 of 4)

- Transmission of digital information
	- Discrete symbols from a discrete alphabet
	- Source / Channel / User
- Source coding
	- Reduces the bits to transmit (compression)
	- Based on the nature of information
- Channel coding
	- Improves channel reliability
	- Based on the nature of the channel

Channels (2 of 4)

- Discrete Memoryless Channel (DMC)
	- Independent transmission of symbols (M)
	- Discrete symbols (D)

Channels (3 of 4)

- Channels can be different things
	- Transmission channel: WiFi link
		- Uses OFDM to encode source symbols
		- Goal: guard against interference
	- Storage channel: CD
		- Uses RS coding to encode source symbols
		- Goal: guard against disc errors or damage
	- What is the capacity of a channel?

Channels (4 of 4)

- Shannon-Hartley theorem $C = B log_2(1 +$ \mathcal{S}_{0} \overline{N})
	- C: Capacity in bits per second
	- B: Bandwidth in Hz
	- S: Signal power (W or V²)
	- $-$ N: Noise/interference power (W or V²)
		- S/N: Signal to Noise Ratio (SNR)

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Information

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Measuring information (1 of 2)

- How can we quantify information?
	- How much information is on a page?
		- Is a printed page the same as a blank page?
	- How much information is in an image?
		- Is it a vector image or a bit map?
	- What are the elements of information?
		- Pixels, lines, letters, logos?
	- How much can I compress information?

Measuring information (2 of 2)

- How much information does a channel carry?
	- The maximum is what Shannon-Hartley says
	- But this is not a recipe for how to transmit
	- In practice, channels are imperfect
		- The transmitter sends symbol X
		- The receiver gets symbol Y
		- Y may not be the same as X (e.g., a bit was flipped)
		- How much information did the channel carry?

Mutual information (1 of 3)

• Assume two discrete random variables X and Y

– x_i, i=1, 2, ..., n and y_j, j=1, 2, ..., m

• If X and Y are statistically independent

 $-$ Y=y_i does not provide any information on X=x_i

• If X and Y are fully dependent

– Y=y_j assures as that X=x_i

- What information does Y provide for X?
	- When I observe Y, what do I learn about X?
	- How can I quantify this information?

Mutual information (2 of 3)

• Proportional to conditional probability

 $P(X = x_i | Y = y_j) = P(x_i | y_j)$

- Normalized to the magnitude of $X=x_i$ $P(X = x_i) = P(x_i)$
- $I(x_i; y_j)$: mutual information between x_i and y_j

$$
I(x_i; y_j) = \log \frac{P(x_i|y_j)}{P(x_i)}
$$

Mutual information (3 of 3)

• Mutual information is symmetric

 $P(x_i|y_j)$ $P(x_i)$ = $P(x_i|y_j)P(y_j)$ $P(x_i)P(y_j)$ = $P(x_i, y_j)$ $P(x_i)P(y_j)$ = $P(y_j|x_i)P(x_i)$ $P(y_j)P(x_i)$ = $P(y_j|x_i)$ $P(y_j)$ $I(x_i; y_j) = \log$ $P(x_i|y_j)$ $P(x_i)$ $=$ log $P(y_j|x_i)$ $P(y_j)$ $= I(y_j; x_i)$

• X and Y statistically independent: I(x_i;y_j)=0

$$
I(x_i; y_j) = \log \frac{P(x_i|y_j)}{P(x_i)} = \log \frac{P(x_i)}{P(x_i)} = 0
$$

• X and Y fully dependent $I\!\left(x_{i}; y_{j} \right) = \log$ $P(x_i|y_j)$ $P(x_i$ $=$ log 1 $P(x_i)$ $= -\log P(x_i)$

(Intrinsic) Information

- What is full dependence between X and Υ?
	- The channel between them is perfect
	- It carries the full information of the source
- (Intrinsic) Information of x_i

$$
I(x_i) = \log \frac{1}{P(x_i)} = -\log P(x_i)
$$

- Non-negative
	- Log of a number ≤ 1 is always negative
- $-$ Measured in binary digits, or bits (log₂x or lg x)

Conditional information (1 of 2)

• Definition of conditional information

$$
- X=x_i \text{ given that } Y=y_j
$$

$$
I(x_i|y_j) = \log \frac{1}{P(x_i|y_j)} = -\log P(x_i|y_j)
$$

• Mutual information $I(x_i; y_j)$

– Information that $Y=y_i$ provides for $X=x_i$

- Conditional information $I(x_i|y_j)$
	- $-$ Intrinsic information of X= x_i ...
	- $-$... when Y=y_i occurs

Conditional information (2 of 2)

• Conditional information: non-negative

– Same reason as for intrinsic information

• All these definitions are connected

$$
I(x_i; y_j) = \log \frac{P(x_i|y_j)}{P(x_i)} = \log P(x_i|y_j) - \log P(x_i) = I(x_i) - I(x_i|y_j)
$$

$$
- |(x_i; y_j) > 0 \text{ when } |(x_i) > |(x_i | y_j)
$$

$$
- |(x_i; y_j) < 0 \text{ when } |(x_i) < |(x_i | y_j)
$$

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Applications of information

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Application to sources (1 of 2)

• Assume a binary source (e.g., it produces bits)

 $-$ If P(0)=P(1)=1/2 $I(x_i) = -\log_2 P(x_i) = -\log_2$ 1 2 $= 1$

- Memoryless binary source
	- k consecutive symbols
	- $-$ M=2^k different sequences of symbols

$$
-P(x_i^{\prime})=1/M=2^{-k}
$$

 $I(x_i') = -\log_2 2^{-k} = k$

Application to sources (2 of 2)

- Information is a logarithmic measure
	- Logarithms turn multiplication to addition
		- $log ab = log a + log b$
	- What is the information of a sequence of events?
	- It is the sum of the information of each event
		- 1 random binary symbol -> 1 bit
		- k random binary symbols -> k bits
	- The base 2 logarithm turns this to bits

Application to transmission (1 of 3)

- Assume a binary DMC (transmitting bits)
	- X: input, transmitted signal
	- Y: output, received signal
	- Output differs from input with probability p
	- $-$ Assume that $P(X=0)=P(X=1)=1/2$ (random source)

Application to transmission (2 of 3)

• Probability of output being 0 or 1

$$
P(Y = 1) = P(Y = 1|X = 0)P(X = 0) + P(Y = 1|X = 1)P(X = 1) = \frac{1}{2}(p + 1 - p) = \frac{1}{2}
$$

$$
P(Y = 0) = P(Y = 0|X = 0)P(X = 0) + P(Y = 0|X = 1)P(X = 1) = \frac{1}{2}(1 - p + p) = \frac{1}{2}
$$

• Mutual information

$$
I(y_0; x_0) = I(0; 0) = \log_2 \frac{P(Y = 0 | X = 0)}{P(Y = 0)} = \log_2 2 (1 - p)
$$

$$
I(y_0; x_1) = I(0; 1) = \log_2 \frac{P(Y = 0 | X = 1)}{P(Y = 0)} = \log_2 2 p
$$

Application to transmission (3 of 3)

- Noiseless channel
	- p=0: you always get what you sent
	- $-$ Therefore, $I(0;0)=1$
- Noisy channel
	- $-$ p=1/2, therefore $I(0;0)=I(0;1)=0$
	- $-$ p=1/4, therefore I(0;0)=0,587 and I(0;1)=-1
	- $-$ Note that $p=1/2$ is the worst case!
		- It makes the channel completely random

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Entropy

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Information and entropy (1 of 4)

- Assume an information source
	- Produces a set of symbols
	- We know the information for each symbol
- How can we characterize the source?
	- We weigh all symbols…
	- …based on their probability
	- Essentially, a weighted mean of information

Information and entropy (2 of 4)

• Mean mutual information of X and Y

$$
I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) I(x_i; y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) \log \frac{P(x_i|y_j)}{P(x_i)}
$$

- $P(x_i, y_j)$ and $I(x_i, y_j)$ are symmetric $- I(X;Y) = I(Y;X)$
- X and Y statistically independent

— P(x_i|y_j)=P(x_i), άρα I(X;Y)=0

Information and entropy (3 of 4)

• Mean (intrinsic) information X

$$
H(X) = \sum_{i=1}^{n} P(x_i)I(x_i) = -\sum_{i=1}^{n} P(x_i) \log P(x_i)
$$

• Values of X: symbols of an alphabet

 $- H(X)$: entropy of the source

• Source with random behavior

$$
- P(xi) = 1/n
$$

$$
H(X) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n
$$

– Requires $log₂$ n bits per symbol

Information and entropy (4 of 4)

• Maximum entropy

– All symbols are equally probable

- Conditional entropy $H(X|Y) = \sum$ $i=1$ \boldsymbol{n} \sum $j=1$ \boldsymbol{m} $P(x_i, y_j)$ log 1 $P(x_i|y_j)$
- All these definitions can be combined

 $I(X; Y) = H(X) - H(X|Y)$

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Applications of entropy

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics

Behavior of entropy (1 of 3)

- Discrete memoryless source $- P(0)=q, P(1)=1-q$
- Source entropy

 $H(X) = -P(0) \log P(0) - P(1) \log P(1) =$

 $= -q \log q - (1 - q) \log(1 - q)$

- **Binary entropy function**
	- Depends on q
	- $-$ When q=1-q=1/2, H(X)=1
	- When q=0 ή q=1, Η(X)=0

Behavior of entropy (2 of 3)

- Discrete memoryless channel (DMC)
- Entropy of source X

 $H(X) \equiv H(q) = -q \log q - (1 - q) \log(1 - q)$

• Mean mutual information I(X;Y)

 $I(X; Y) = H(X) - H(X|Y)$

- $-$ Maximized when $q=1-q=1/2$ for every p
- $-$ p=0: maximum, p=1/2: minimum
- Conditional entropy $H(X|Y)$
	- $-$ The opposite behavior from I(X;Y)
	- $-$ p=1/2: maximum, p=0: minimum

- Mean mutual information and conditional entropy
	- Complementary to each other

Applications (1 of 4)

- Assume a media source
	- Produces w symbols q_i, i=1, 2, ..., w
	- Probability of symbol q_i is P(q_i)
- Simple symbol representation
	- Fixed length binary sequences
	- $-$ Need log₂w bits per symbol for w symbols
	- Example: US ASCII
	- 128 characters encoded with 7 bits

Applications (2 of 4)

- Information
	- I(q_i)=-log₂P(q_i) bits
- Variable length representation
	- $-$ I(q_i) bits for symbol q_i
	- Differentiates common and rare symbols
		- Fewer bits for common ones
		- More bits for rare ones
	- This is the most economical encoding
		- But: this is a limit, not an encoding method

Applications (3 of 4)

- Source entropy $H(X)$
	- Average number of information bits/symbol
- Efficiency of a coding scheme
	- R: Average number of coded bits/symbol
	- Efficiency: H(X)/R
	- Goal: get as close to the optimal as possible
- Note: optimal under specific assumptions – Lossless, per symbol encoding

Applications (4 of 4)

- Transmission over a channel
	- X: input, Y: output
- Conditional entropy H(X|Y)
	- Mean input information, when we know the output
- Entropy H(X)
	- Mean input information, regardless of output
- Mean mutual information I(X;Y)
	- $I(X;Y)=H(X)-H(X|Y)$
	- Difference of information before after transmission

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section #4

Class: Multimedia Technology, **Section # 4:** Information Theory **Instructor:** George Xylomenos, **Department:** Informatics