
Special Topics on Algorithms
Randomized algorithms

Vangelis Markakis – George Zois

markakis@gmail.com

georzois@aueb.gr

Outline

• Introduction to randomized algorithms

• Algorithms for the MAX CUT problem

• Algorithms for MAX-SAT

2

33

Randomized Algorithms

• Algorithms that flip coins during their execution
• For example:

▪ they may pick a parameter at random from a given range of values (as in
primality testing)

▪ Or they may take a random yes/no decision during the execution

• They generally do not produce the same output if you run
them twice on the same input

44

Randomized Algorithms

What may be affected by the randomization:
• Running time: Can be polynomial time or polynomial time in expectation

or polynomial time with high probability
• Output: Can be wrong (with a small probability)
• Approximability: can be in expectation

Overall a very powerful tool
• For some problems we only know randomized efficient algorithms
• Sometimes deterministic algorithms can be obtained by first

designing a randomized algorithm (and then “derandomize” it)

5

A randomized algorithm for MAX-CUT

66

MAX CUT:

I: An undirected graph G = (V,E) with nonnegative weights on its edges

Q: Find a cut, i.e., a partition (A, B) of V so as to maximize the total weight of
the edges that cross the cut

Given a cut (A, B),
w(A, B) = sum of weights of edges crossing the cut

• Applications of MAX CUT: Circuit layout, statistical physics
• Unlike the s-t MIN CUT problem, MAX CUT is NP-complete
• It also does not admit a PTAS

The MAX CUT Problem

77

Randomization for MAX CUT

Input:= weighted graph G = (V, E) on n vertices

S:= , T:=  //initial partition

 for i=1 to n

 { Flip a coin for vertex vi

 if Head then S:= S U {vi};

 if Tail then T:= T U {vi};

 }

Return the cut (S, T)

88

• Let wuv = weight of edge e=(u, v)

• Need first an upper bound on OPT

Claim: OPT ≤ Σe we

For each edge e, let Xe = ቊ
1, 𝑖𝑓 𝑒 𝑐𝑟𝑜𝑠𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑢𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Suppose that the algorithm produced the partition (A, B)
• w(A, B) = Σe we Xe

• Hence:

E[w(A, B)] = E[Σe we Xe] = Σe we E[Xe] = Σe we Pr[Xe =1]
= ½ Σe we ≥ ½ OPT

Analysis of the randomized algorithm

Linearity of expectation

99

• Can we have a deterministic algorithm with the same approximation ratio?

• YES! Using the method of conditional expectations (more on this later)
➢ But it is much easier to obtain first a randomized algorithm for this problem in order to

propose and analyze a deterministic algorithm

➢ The deterministic algorithm is a “derandomization” of the algorithm we saw

• Is there a better approximation algorithm?
• YES! 0.878-approximation is possible via the use of semidefinite

programming (a generalization of linear programming) [Goemans,
Williamson 1995]

• Regarding hardness of approximation:
➢ Unless P = NP, there is no ratio better than 16/17 [Hastad 2001]
➢ Under a stronger but still widely believed conjecture (the unique games conjecture [Khot

2002]), there is no algorithm with ratio better than 0.878 [Khot et al 2007]
➢ The same conjecture under which, Vertex Cover also does not admit a better than 2-

approximation

Analysis of the randomized algorithm

10

Algorithms for MAX-SAT

(CNF) SAT variants
2-SAT: Each clause has 2 literals

Horn SAT: Each clause has at most one positive literal

3-SAT: Each clause has 3 literals

ΝΑΕ 3-SAT

I: Α 3-CNF formula
Q: is there a truth assignment with at least one true and one false literal in

each clause ?

1 in 3 3-SAT
I: A 3-CNF formula
Q: is there a truth assignment with exactly one true literal in each clause?

MAX 2-SAT
I: A 2-CNF formula of m clauses and an integer B ≤ m
Q: is there an assignment satisfying at least B clauses ?

MAX k-SAT
I: A k-CNF formula of m clauses and an integer B ≤ m
Q: is there an assignment satisfying at least B clauses ?

1111

Q: Is there a
satisfying truth
assignment?

MAX SAT

12

The optimization version of SAT problems:

MAX SAT (optimization version)
I: A CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of

clauses

Restrictions of MAX SAT:

MAX k-SAT (optimization version)
I: A k-CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of

clauses

We can also have weights on the clauses and try to maximize total weight

Theorem: Even for k =2, MAX k-SAT is NP-complete

1313

MAX k-SAT

A randomized approximation algorithm for MAX k-SAT:

• Suppose each clause contains ci literals
• Suppose also there is a lower bound b on the number of literals, so

that 1 ≤ b ≤ ci ≤k
• important: no clause contains a variable and its negation
• Hence, the truth assignment to each literal of a clause is

independent of the other literals within the clause

1, with probality
1

2

0, with probability
1

2

ì

í
ïï

î
ï
ï

Pr[C
i
= 0] =

1

2
×
1

2
× × ×

1

2
=

1

2
c

i

, Pr[C
i
=1] =1-

1

2
c

i

Algorithm 1: Independently set each variable to:

1414

MAX k-SAT

X = # of true clauses (random variable)

X = X1 + X2 +.... + Xm = Xi

i=1

m

å , Xi =
1, if Ci =1

0, if Ci = 0

ì
í
î

E[Xi] =1× Pr[Ci =1]+ 0 × Pr[Ci = 0] = 1-
1

2ci

³ 1-
1

2b

E[X] = E Xi

i=1

m

å
é

ë
ê

ù

û
ú= E[Xi

i=1

m

å]³ (
i=1

m

å 1-
1

2b
) = (1-

1

2b
)m

OPT = maximum possible # of true clauses, OPT £ m

1515

MAX k-SAT

E[X]

OPT
³

E[X]

m
=1-

1

2b
³

1

2
randomized approximate solution

If b = ci = k, "i, then
E[X]

OPT
³

E[X]

m
=1-

1

2k

If we know that each clause contains exactly k
literals, then we can guarantee a better estimate:

Remarks:
• If b ≥ 2, we have a ¾-approximation
• The algorithm’s worst case is when the formula has clauses with

single literals

1616

MAX 3-SAT

Fact 1: for every instance of MAX 3-SAT, the expected # of
clauses satisfied by a random assignment is at least
7/8 of the optimal

But, for any random variable, there is some point at which
it assumes a value at least as large as its expectation

Thus:
Fact 2 (Implication of the probabilistic technique): for
every instance of MAX 3-SAT, there is an assignment
satisfying at least 7/8 of all clauses !

E [X]

OPT
³1-

1

23
=

7

8
= 0.875

For 3-CNF formulas:

1717

MAX 3-SAT

A minor application:
Fact 3: every instance of 3-SAT with at most m ≤ 7 clauses is satisfiable !
Proof:
• By Fact 2, there is an assignment satisfying at least (7/8)m clauses
• So consider such a truth assignment, and let t = number of satisfied clauses
• t ≥ (7/8) m and t≤m
• For m < 8, it holds that 7/8m > m-1,
• As t is an integer, it follows that t = m!

18

MAX 3-SAT: Improving Algorithm 1

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8
of all clauses !

Algorithm 1 only guarantees this in expectation

Q: Can we find such an assignment? How much running time do we need?

A first attempt:
Algorithm 2: Repeatedly generate random truth assignments until one of them
satisfies at least 7m/8 clauses.

How long will it take until we find one by random trials ?

19

MAX 3-SAT: Improving Algorithm 1

Waiting for the first success (geometric distr.):
Let Z= # of trials until success (a random variable)

/*success probability
p = Pr[a random assignment satisfies at least 7m/8 clauses]

/*Probability mass function
Pr[Z=j] = probability for success in the j-th trial

Pr[Z=j] = (1-p)j-1p

pp

p

p

p

pj
p

p
ppjjZjZE

j j

jj

j

1)1(

1

)1(
1

)1(]Pr[][

2

1 1

1

1

=
−

−
=

−
−

=−===  


=



=

−


=

In expectation 1/p random trials suffice

20

Can we bound 1/p ?

X = # of satisfied clauses by a random assignment; recall E[X] ≥ 7/8m

pj
 = Pr[a random assignment satisfies exactly j clauses]

pppp
mj mj

jj 
 

=−=
8/7 8/7

,1

mpmpmmmmppm

mppmjpjpjpXEm
mj mj

jj

mj mj

jj

m

j

j

+−+=+−=

++===   
  =

')'(')1('

'][
8

7

8/7 8/78/7 8/71

Let m’= the largest integer less than 7/8m, m’ < m

MAX 3-SAT: Improving Algorithm 1

2121

This implies:

Theorem: there is a randomized algorithm with expected
complexity O(m) for finding an assignment satisfying at least 7/8
of all clauses of a 3-SAT instance !

m
pm

p

mmmm

m

mm
pmpmm

8
1

8

1

8/1'8/78/7 '

'8/7
'

8

7

 Thus,

 integerlargest



−=

−
+



MAX 3-SAT: Improving Algorithm 1

2222

MAX 3-SAT: A second attempt

•Actually it gets even better
•We can “derandomize” Algorithm 1
•Again use the fact that there is always a truth assignment that achieves at
least what the expectation says
•Method of conditional expectations:

• Try to set a variable, say a to 0 or 1
• One of the two conditional expectations (i.e., given that a = 0 or a = 1)

has to be at least as large as the original expectation
• Hence, we set the variable a accordingly

• If we know how to compute conditional expectations we are done
essentially

• We repeat until all variables have been set
E[X] = E[X\a=0]⋅Pr[a=0] + E[X\a=1]⋅Pr[a=1]

Hence: there exists a deterministic 7/8-approximation for MAX 3-SAT

23

Randomized LP rounding for MAX-SAT

2424

MAX SAT: Handling small clauses

• We saw that Algorithm 1 provides better guarantees when the formula does
not have “small” clauses

• If we could handle more effectively clauses with a single literal, we can get a
better approximation

• We will use Integer Programming for this

• Consider a formula with n variables, x1,…, xn

• Q: Can we model MAX SAT as an integer program?

Modeling MAX SAT as an integer
program

variables y
i
=

0,FALSE

1,TRUE

ì
í
ï

îï
 clauses z

c
=

0, FALSE

1,TRUE

ì
í
ï

îï

clause c:
 P

c
 literals with positive variables

N
c
 literals with negations of variables

ì

í
ï

îï

if z
c

=1 then
at least one variable in P

c
 is 1

OR at least one variable in N
c
 is 0

ì

í
ï

îï

25



max zc
c



y i
iPc

 + (1− y i)  zc
iNc

 ,c

zc  {0,1}c

y i  {0,1}i

(IP)

Modeling MAX SAT as an integer
program

Even if we solve the LP relaxation, how should we do the
rounding?

26

2727

Randomized LP-rounding algorithm
for MAX SAT

Input:= a CNF SAT formula on variables x1,…,xn

Solve the LP relaxation

Let (y1,…,yn, z1,…, zm)be an optimal LP

solution

 for i=1 to n

 { Set variable xi to 1 with

 probability equal to yi

 }

Randomized LP-rounding algorithm
for MAX SAT

Performance of the LP-based algorithm:

We need to analyze again the quantity:

 E[Z] = expected number of satisfied clauses = Σc Pr[c is satisfied]

Theorem: For MAX k-SAT, E[Z] ≥ [1 - (1-1/k)k] OPT > (1-1/e) OPT
• Hence 1-1/e = 0.632-approximation algorithm
• This algorithm can also be derandomized via the method of

conditional expectations

28

2929

Final Deterministic algorithm for
MAX SAT

Input:= a CNF SAT formula on variables x1,…,xn

1. Run the derandomization of Algorithm 1

2. Run the derandomization of the LP-based

rounding

3. Return the best of the 2 truth assignments

Theorem: The above is a ¾-approximation algorithm for MAX
SAT

	Slide 1: Special Topics on Algorithms Randomized algorithms
	Slide 2: Outline
	Slide 3: Randomized Algorithms
	Slide 4: Randomized Algorithms
	Slide 5: A randomized algorithm for MAX-CUT
	Slide 6: The MAX CUT Problem
	Slide 7: Randomization for MAX CUT
	Slide 8: Analysis of the randomized algorithm
	Slide 9: Analysis of the randomized algorithm
	Slide 10: Algorithms for MAX-SAT
	Slide 11: (CNF) SAT variants
	Slide 12: MAX SAT
	Slide 13: MAX k-SAT
	Slide 14: MAX k-SAT
	Slide 15: MAX k-SAT
	Slide 16: MAX 3-SAT
	Slide 17: MAX 3-SAT
	Slide 18: MAX 3-SAT: Improving Algorithm 1
	Slide 19: MAX 3-SAT: Improving Algorithm 1
	Slide 20
	Slide 21
	Slide 22: MAX 3-SAT: A second attempt
	Slide 23: Randomized LP rounding for MAX-SAT
	Slide 24: MAX SAT: Handling small clauses
	Slide 25: Modeling MAX SAT as an integer program
	Slide 26
	Slide 27: Randomized LP-rounding algorithm for MAX SAT
	Slide 28
	Slide 29: Final Deterministic algorithm for MAX SAT

