ATHENS UNIVERSITY
CF EGQONOMICS
AND BUSINESS

OIKONOMIKO
MANEMNIETHMIO
AOHNAON

Special Topics on Algorithms
Randomized algorithms

Vangelis Markakis — George Zois
markakis@gmail.com
georzois@aueb.gr

Outline

e Introduction to randomized algorithms

e Algorithms for the MAX CUT problem

e Algorithms for MAX-SAT

Randomized Algorithms

e Algorithms that flip coins during their execution

e Forexample:
= they may pick a parameter at random from a given range of values (as in
primality testing)
= Or they may take a random yes/no decision during the execution
e They generally do not produce the same output if you run
them twice on the same input

Randomized Algorithms

What may be affected by the randomization:

e Running time: Can be polynomial time or polynomial time in expectation
or polynomial time with high probability

e Qutput: Can be wrong (with a small probability)
e Approximability: can be in expectation

Overall a very powerful tool

* For some problems we only know randomized efficient algorithms

* Sometimes deterministic algorithms can be obtained by first
designing a randomized algorithm (and then “derandomize” it)

A randomized algorithm for MAX-CUT

The MAX CUT Problem

MAX CUT:
I: An undirected graph G = (V,E) with nonnegative weights on its edges

Q: Find a cut, i.e., a partition (A, B) of V so as to maximize the total weight of
the edges that cross the cut

Given a cut (A, B),
w(A, B) = sum of weights of edges crossing the cut

e Applications of MAX CUT: Circuit layout, statistical physics
e Unlike the s-t MIN CUT problem, MAX CUT is NP-complete
e |t also does not admit a PTAS

Randomization for MAX CUT

Input:= weighted graph G = (V, E) on n vertices
S:=J, T:= J //initial partition
for i=1 to n
{ Flip a coin for vertex v;
if Head then S:= S U {v;};
if Tail then T:= T U {v;};
}
Return the cut (S, T)

Analysis of the randomized algorithm

e Letw, =weight of edge e=(u, v)
e Need first an upper bound on OPT
Claim: OPT<Z_ w,

1,if e crosses the cut

For each edge e, let X, = {0 otherwise

e Suppose that the algorithm produced the partition (A, B)
e w(A B)=Z w,X,
e Hence:

E[w(A, B)] = E[2, w, X.] =%, w, E[X.] =2, w, Pr[X, =1]
=% 3. W, 2% OPT

Linearity of expectation

Analysis of the randomized algorithm

Can we have a deterministic algorithm with the same approximation ratio?

YES! Using the method of conditional expectations (more on this later)
» But it is much easier to obtain first a randomized algorithm for this problem in order to
propose and analyze a deterministic algorithm
» The deterministic algorithm is a “derandomization” of the algorithm we saw

Is there a better approximation algorithm?

YES! 0.878-approximation is possible via the use of semidefinite
programming (a generalization of linear programming) [Goemans,
Williamson 1995]

Regarding hardness of approximation:
» Unless P = NP, there is no ratio better than 16/17 [Hastad 2001]

» Under a stronger but still widely believed conjecture (the unique games conjecture [Khot
2002]), there is no algorithm with ratio better than 0.878 [Khot et al 2007]

» The same conjecture under which, Vertex Cover also does not admit a better than 2-
approximation

Algorithms for MAX-SAT

10

(CNF) SAT variants

2-SAT: Each clause has 2 literals
Q: Is there a

satisfying truth

Horn SAT: Each clause has at most one positive literal = assignment?

3-SAT: Each clause has 3 literals

NAE 3-SAT

I: A 3-CNF formula

Q: is there a truth assignment with at least one true and one false literal in
each clause ?

1in3 3-SAT

I: A 3-CNF formula

Q: is there a truth assignment with exactly one true literal in each clause?
MAX 2-SAT

I: A 2-CNF formula of m clauses and an integer B<m

Q: is there an assignment satisfying at least B clauses ?

MAX k-SAT

I: A k-CNF formula of m clauses and an integer B<m

Q: is there an assignment satisfying at least B clauses ?

11

MAX SAT

The optimization version of SAT problems:

MAX SAT (optimization version)

I: A CNF formula ¢ of m clauses

Q: find a truth assignment satisfying the maximum possible number of
clauses

Restrictions of MAX SAT:

MAX k-SAT (optimization version)

I: A k-CNF formula ¢ of m clauses

Q: find a truth assignment satisfying the maximum possible number of
clauses

We can also have weights on the clauses and try to maximize total weight

Theorem: Even for k =2, MAX k-SAT is NP-complete

12

MAX k-SAT

A randomized approximation algorithm for MAX k-SAT:

1 with probality %

—" —/

Algorithm 1: Independently set each variable to:

—) —

0, with probability %

. Suppose each clause contains ¢, literals

. Suppose also there is a lower bound b on the number of literals, so
that1 <b <c<k

. important: no clause contains a variable and its negation

. Hence, the truth assignment to each literal of a clause is
independent of the other literals within the clause

Pr[C. :O]:Exixxxiz 1 , PrlC =1]=1- L
’ 2 2 2 2 : ¢

13

MAX k-SAT

X =# oftrue clauses (random variable)

C if C,=1
X=X +X,+..+X, =D X, X,-:{l T
i1 0, iIf C.=0
1 1
E[X.]=1-Pr[C,=1]+0- Pr[C,=0] = 1—20'2 1-?

E[X]=E{i)(,}=iE[)€]2i(l-21b) ==

OPT = maximum possible # of true clauses, OPT <m

14

MAX k-SAT

E[X] E[X]_, 1,1
OPT m 20 2

randomized approximate solution

If we know that each clause contains exactly k
literals, then we can guarantee a better estimate:

Ifb=c, =k ""i, then ElX] 5 EIXT 1k
OPT m 2

Remarks:

If b > 2, we have a %-approximation
The algorithm’s worst case is when the formula has clauses with
single literals

15

MAX 3-SAT

For 3-CNF formulas:
E[X] 31 1 7
OPT 2°
Fact 1: for every instance of MAX 3-SAT, the expected # of

clauses satisfied by a random assignment is at least
7/8 of the optimal

But, for any random variable, there is some point at which
it assumes a value at least as large as its expectation

Thus:
Fact 2 (Implication of the probabilistic technique): for

every instance of MAX 3-SAT, there is an assignment
satisfying at least 7/8 of all clauses !

16

MAX 3-SAT

A minor application:

Fact 3: every instance of 3-SAT with at most m < 7 clauses is satisfiable !

Proof:

. By Fact 2, there is an assighment satisfying at least (7/8)m clauses

. So consider such a truth assignment, and let t = number of satisfied clauses
. t>(7/8) mand t<m

. For m < 8, it holds that 7/8m > m-1,

. As t is an integer, it follows that t = m!

17

MAX 3-SAT: Improving Algorithm 1

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8
of all clauses!

Algorithm 1 only guarantees this in expectation

Q: Can we find such an assignment? How much running time do we need?

A first attempt:
Algorithm 2: Repeatedly generate random truth assignments until one of them
satisfies at least 7m/8 clauses.

How long will it take until we find one by random trials ?

18

MAX 3-SAT: Improving Algorithm 1

Waiting for the first success (geometric distr.):
Let Z= # of trials until success (a random variable)

/*success probability
p = Pr[a random assignment satisfies at least 7m/8 clauses]

/*Probability mass function
Pr[Z=j] = probability for success in the j-th trial

Pr(z=j] = (1-p)p

E[z]1=) jPriz=1=) (- p)"—lp:ﬁZja— p)’
j=1 j=1 j=1
p -p) 1

1-p p® p

In expectation 1/p random trials suffice

19

MAX 3-SAT: Improving Algorithm 1

Can we bound 1/p ?
X = # of satisfied clauses by a random assignment; recall E[X] >7/8m

p,= Pr[a random assignment satisfies exactly j clauses]

Let m’ = the largest integer less than 7/8m, m’ <m

> p;=1-p, D p;=p

j<7m/8 j>7m/8

7 m - -
gm:E[X]:ZJpj: 2 o+ 2 0py<)L mipy+ D mp,
=1

j<7m/8 j>7m/8 j<7m/8 j>7m/8

=m'(l-p)+mp=m+(m-m)p<m'+mp

20

MAX 3-SAT: Improving Algorithm 1

7/8m—-m'
m
m'=largest integer<7/8m=7/8m—-m'>1/8

gmgm'+mp:> P>

Thus, p28i:>£§8m
m p

This implies:
Theorem: there is a randomized algorithm with expected

complexity O(m) for finding an assignment satisfying at least 7/8
of all clauses of a 3-SAT instance !

21

MAX 3-SAT: A second attempt

eActually it gets even better
e\We can “derandomize” Algorithm 1
e Again use the fact that there is always a truth assignment that achieves at
least what the expectation says
eMethod of conditional expectations:
 Trytosetavariable,sayatoOorl
* One of the two conditional expectations (i.e., given thata=0or a =1)

has to be at least as large as the original expectation
* Hence, we set the variable a accordingly

* |f we know how to compute conditional expectations we are done
essentially
* We repeat until all variables have been set
E[X] = E[X\a=0]:-Pr[a=0] + E[X\a=1]-Pr[a=1]

Hence: there exists a deterministic 7/8-approximation for MAX 3-SAT

22

Randomized LP rounding for MAX-SAT

23

MAX SAT: Handling small clauses

e We saw that Algorithm 1 provides better guarantees when the formula does
not have “small” clauses

e |[f we could handle more effectively clauses with a single literal, we can get a
better approximation

e We will use Integer Programming for this
e Consider a formula with n variables, x4, ..., X,

e Q: Can we model MAX SAT as an integer program?

24

Modeling MAX SAT as an integer

program
: 0, FALSE 0, FALSE
variables y. =: clauses z, =1
1,TRUE .~ LTRUE
P literals with positive variables
clausec: ° _ _ _
N literals with negations of variables

if z =1then -

-

.

at least one variable In P IS 1
OR at least one variable In N, IS0

25

Modeling MAX SAT as an integer
program

max E z,

(1IP) c

Zyi + Z(l_yi) = ZC,VC‘

ielP. ieN,_,
z. € {0,1}Vc
y. € {0,1} Vi

/

Even if we solve the LP relaxation, how should we do the
rounding?

26

Randomized LP-rounding algorithm
for MAX SAT

Input:= a CNF SAT formula on variables x,,..,x
Solve the LP relaxation

n

Let (yvi,-/¥Ynys 21,..., Z,)be an optimal LP
solution

for i=1 to n
{ Set wvariable x; to 1 with
probability equal to y;
}

27

Randomized LP-rounding algorithm
for MAX SAT

Performance of the LP-based algorithm:

We need to analyze again the quantity:
E[Z] = expected number of satisfied clauses = 2 Pr[c is satisfied]

Theorem: For MAX k-SAT, E[Z] = [1 - (1-1/k)¥] OPT > (1-1/e) OPT

e Hence 1-1/e = 0.632-approximation algorithm

e This algorithm can also be derandomized via the method of
conditional expectations

28

Final Deterministic algorithm for
MAX SAT

Input:= a CNF SAT formula on variables x,,..,x,
1. Run the derandomization of Algorithm 1

2. Run the derandomization of the LP-based
rounding

3. Return the best of the 2 truth assignments

Theorem: The above is a %-approximation algorithm for MAX
SAT

29

	Slide 1: Special Topics on Algorithms Randomized algorithms
	Slide 2: Outline
	Slide 3: Randomized Algorithms
	Slide 4: Randomized Algorithms
	Slide 5: A randomized algorithm for MAX-CUT
	Slide 6: The MAX CUT Problem
	Slide 7: Randomization for MAX CUT
	Slide 8: Analysis of the randomized algorithm
	Slide 9: Analysis of the randomized algorithm
	Slide 10: Algorithms for MAX-SAT
	Slide 11: (CNF) SAT variants
	Slide 12: MAX SAT
	Slide 13: MAX k-SAT
	Slide 14: MAX k-SAT
	Slide 15: MAX k-SAT
	Slide 16: MAX 3-SAT
	Slide 17: MAX 3-SAT
	Slide 18: MAX 3-SAT: Improving Algorithm 1
	Slide 19: MAX 3-SAT: Improving Algorithm 1
	Slide 20
	Slide 21
	Slide 22: MAX 3-SAT: A second attempt
	Slide 23: Randomized LP rounding for MAX-SAT
	Slide 24: MAX SAT: Handling small clauses
	Slide 25: Modeling MAX SAT as an integer program
	Slide 26
	Slide 27: Randomized LP-rounding algorithm for MAX SAT
	Slide 28
	Slide 29: Final Deterministic algorithm for MAX SAT

