
Special Topics on Algorithms
Randomized algorithms

Vangelis Markakis – George Zois

markakis@gmail.com

georzois@aueb.gr



Outline
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• Algorithms for the MAX CUT problem 

• Algorithms for MAX-SAT
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Randomized Algorithms

• Algorithms that flip coins during their execution
• For example: 

▪ they may pick a parameter at random from a given range of values (as in 
primality testing)

▪ Or they may take a random yes/no decision during the execution

• They generally do not produce the same output if you run 
them twice on the same input
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Randomized Algorithms

What may be affected by the randomization:
• Running time: Can be polynomial time or polynomial time in expectation 

or polynomial time with high probability
• Output: Can be wrong (with a small probability)
• Approximability: can be in expectation

 

Overall a very powerful tool
• For some problems we only know randomized efficient algorithms
• Sometimes deterministic algorithms can be obtained by first 

designing a randomized algorithm (and then “derandomize” it)
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A randomized algorithm for MAX-CUT
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MAX CUT:

I: An undirected graph G = (V,E) with nonnegative weights on its edges

Q: Find a cut, i.e., a partition (A, B) of V so as to maximize the total weight of 
the edges that cross the cut

Given a cut (A, B),
w(A, B) = sum of weights of edges crossing the cut  

• Applications of MAX CUT: Circuit layout, statistical physics
• Unlike the s-t MIN CUT problem, MAX CUT is NP-complete
• It also does not admit a PTAS

The MAX CUT Problem
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Randomization for MAX CUT

Input:= weighted graph G = (V, E) on n vertices

S:= , T:=  //initial partition

 for i=1 to n

       { Flip a coin for vertex vi 

     if Head then S:= S U {vi};

     if Tail then T:= T U {vi};

   }

Return the cut (S, T)
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• Let wuv = weight of edge e=(u, v)

• Need first an upper bound on OPT

Claim: OPT ≤ Σe we

For each edge e, let Xe  = ቊ
1, 𝑖𝑓 𝑒 𝑐𝑟𝑜𝑠𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑢𝑡 
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Suppose that the algorithm produced the partition (A, B)
• w(A, B) = Σe we Xe

• Hence:

E[w(A, B)] = E[Σe we Xe] = Σe we E[Xe] = Σe we Pr[Xe =1] 
= ½ Σe we ≥ ½ OPT

Analysis of the randomized algorithm

Linearity of expectation
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• Can we have a deterministic algorithm with the same approximation ratio?

• YES! Using the method of conditional expectations (more on this later)
➢ But it is much easier to obtain first a randomized algorithm for this problem in order to 

propose and analyze a deterministic algorithm

➢ The deterministic algorithm is a “derandomization” of the algorithm we saw

• Is there a better approximation algorithm?
• YES! 0.878-approximation is possible via the use of semidefinite 

programming (a generalization of linear programming) [Goemans, 
Williamson 1995]

• Regarding hardness of approximation:
➢ Unless P = NP, there is no ratio better than 16/17 [Hastad 2001]
➢ Under a stronger but still widely believed conjecture (the unique games conjecture [Khot 

2002]), there is no algorithm with ratio better than 0.878 [Khot et al 2007]
➢ The same conjecture under which, Vertex Cover also does not admit a better than 2-

approximation

         

Analysis of the randomized algorithm
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Algorithms for MAX-SAT



(CNF) SAT variants 
2-SAT: Each clause has 2 literals

Horn SAT:  Each clause has at most one positive literal 

3-SAT: Each clause has 3 literals  

ΝΑΕ 3-SAT

I: Α 3-CNF formula   
Q: is there a truth assignment with at least one true and one false literal in

each clause ? 

1 in 3  3-SAT   
I: A 3-CNF formula 
Q: is there a truth assignment with exactly one true  literal in each clause?                             

MAX 2-SAT   
I: A 2-CNF formula of m clauses and an integer B ≤ m
Q: is there an assignment satisfying at least B clauses ?

MAX k-SAT   
I:  A k-CNF formula of m clauses and an integer B ≤ m
Q: is there an assignment satisfying at least B clauses ? 
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Q: Is there a 
satisfying truth 
assignment?



MAX SAT

12

The optimization version of SAT problems:

MAX SAT (optimization version)
I:  A CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of  

clauses 

Restrictions of MAX SAT:

MAX k-SAT (optimization version)
I:  A k-CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of  

clauses 

We can also have weights on the clauses and try to maximize total weight

Theorem: Even for k =2, MAX k-SAT is NP-complete
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MAX k-SAT

A randomized approximation algorithm for MAX k-SAT: 

• Suppose each clause contains ci literals
• Suppose also there is a lower bound b on the number of literals, so 

that 1 ≤ b ≤ ci ≤k
• important: no clause contains a variable and its negation
• Hence, the truth assignment to each literal of a clause is 

independent of the other literals within the clause
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Algorithm 1: Independently set each variable to:
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MAX k-SAT

 

X = #   of true clauses (random variable)   
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OPT =  maximum possible # of true clauses,     OPT £ m
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MAX k-SAT

 

E[X]

OPT
³

E[X]

m
=1-

1

2b
³

1

2
randomized approximate solution 

If b = ci = k, "i,  then 
E[X]

OPT
³

E[X]

m
=1-

1

2k

If we know that each clause contains exactly k 
literals, then we can guarantee a better estimate:   

Remarks: 
• If b ≥ 2, we have a ¾-approximation
• The algorithm’s worst case is when the formula has clauses with 

single literals



1616

MAX 3-SAT

Fact 1: for every instance of MAX 3-SAT, the expected # of 
clauses satisfied by a random assignment is at least 
7/8  of the optimal

But, for any random variable, there is some point at which 
it assumes a value at least as large as its expectation 

Thus:
Fact 2 (Implication of the probabilistic technique): for 
every instance of MAX 3-SAT, there is an assignment 
satisfying at least 7/8 of  all clauses ! 
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= 0.875

For 3-CNF formulas:
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MAX 3-SAT

A minor application: 
Fact 3: every instance of 3-SAT with at most m ≤ 7 clauses is satisfiable ! 
Proof:   
• By Fact 2, there is an assignment satisfying at least (7/8)m clauses
• So consider such a truth assignment, and let t = number of satisfied clauses
• t ≥ (7/8) m and t≤m 
• For m < 8, it holds that  7/8m > m-1, 
• As t is an integer, it follows that t = m! 
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MAX 3-SAT: Improving Algorithm 1

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 
of  all clauses ! 

Algorithm 1 only guarantees this in expectation

Q: Can we find such an assignment? How much running time do we need?

A first attempt: 
Algorithm 2: Repeatedly generate random truth assignments until one of them 
satisfies at least 7m/8 clauses. 

How long will it take until we find one by random trials ?
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MAX 3-SAT: Improving Algorithm 1

Waiting for the first success (geometric distr.): 
Let Z= # of trials until success (a random variable) 

/*success probability
p = Pr[a random assignment satisfies at least 7m/8 clauses] 

/*Probability mass function
Pr[Z=j] = probability for success in the j-th trial

Pr[Z=j] = (1-p)j-1p
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In expectation 1/p random trials suffice
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Can we bound 1/p ?

X = # of satisfied clauses by a random assignment; recall  E[X] ≥ 7/8m

pj
 = Pr[ a random assignment satisfies exactly  j clauses]  
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Let m’= the largest integer less than 7/8m, m’ < m 

MAX 3-SAT: Improving Algorithm 1
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This implies: 

Theorem: there is a randomized algorithm with expected 
complexity O(m) for finding an assignment satisfying at least 7/8 
of all clauses of a 3-SAT instance !
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MAX 3-SAT: Improving Algorithm 1
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MAX 3-SAT: A second attempt
 
•Actually it gets even better
•We can “derandomize” Algorithm 1
•Again use the fact that there is always a truth assignment that achieves at 
least what the expectation says
•Method of conditional expectations: 

• Try to set a variable, say a to 0 or 1
• One of the two conditional expectations (i.e., given that a = 0 or a = 1) 

has to be at least as large as the original expectation
• Hence, we set the variable a accordingly

• If we know how to compute conditional expectations we are done 
essentially

• We repeat until all variables have been set
E[X] = E[X\a=0]⋅Pr[a=0] + E[X\a=1]⋅Pr[a=1]

Hence: there exists a deterministic 7/8-approximation for MAX 3-SAT 
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Randomized LP rounding for MAX-SAT
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MAX SAT: Handling small clauses
 
• We saw that Algorithm 1 provides better guarantees when the formula does 
not have “small” clauses

• If we could handle more effectively clauses with a single literal, we can get a 
better approximation

• We will use Integer Programming for this

• Consider a formula with n variables, x1,…, xn

• Q: Can we model MAX SAT as an integer program?



Modeling MAX SAT as an integer 
program
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 

max zc
c



y i
iPc

 + (1− y i)  zc
iNc

 ,c

zc  {0,1}c

y i  {0,1}i

(IP)

Modeling MAX SAT as an integer 
program

Even if we solve the LP relaxation, how should we do the 
rounding?
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Randomized LP-rounding algorithm 
for  MAX SAT

Input:= a CNF SAT formula on variables x1,…,xn

Solve the LP relaxation

Let (y1,…,yn, z1,…, zm)be an optimal LP 

solution

 for i=1 to n

       { Set variable xi to 1 with  

  probability equal to yi

   }



Randomized LP-rounding algorithm 
for  MAX SAT

Performance of the LP-based algorithm:

We need to analyze again the quantity: 

 E[Z] = expected number of satisfied clauses = Σc Pr[c is satisfied] 

Theorem: For MAX k-SAT, E[Z] ≥ [1 - (1-1/k)k] OPT > (1-1/e) OPT
• Hence 1-1/e = 0.632-approximation algorithm 
• This algorithm can also be derandomized via the method of 

conditional expectations

28
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Final Deterministic algorithm for  
MAX SAT

Input:= a CNF SAT formula on variables x1,…,xn

1. Run the derandomization of Algorithm 1

2. Run the derandomization of the LP-based 

rounding

3. Return the best of the 2 truth assignments

Theorem: The above is a ¾-approximation algorithm for MAX 
SAT


	Slide 1:  Special Topics on Algorithms Randomized algorithms 
	Slide 2: Outline
	Slide 3: Randomized Algorithms
	Slide 4: Randomized Algorithms
	Slide 5: A randomized algorithm for MAX-CUT
	Slide 6: The MAX CUT Problem
	Slide 7: Randomization for MAX CUT
	Slide 8: Analysis of the randomized algorithm
	Slide 9: Analysis of the randomized algorithm
	Slide 10: Algorithms for MAX-SAT
	Slide 11: (CNF) SAT variants 
	Slide 12: MAX SAT
	Slide 13: MAX k-SAT
	Slide 14: MAX k-SAT
	Slide 15: MAX k-SAT
	Slide 16: MAX 3-SAT
	Slide 17: MAX 3-SAT
	Slide 18: MAX 3-SAT: Improving Algorithm 1 
	Slide 19: MAX 3-SAT: Improving Algorithm 1 
	Slide 20
	Slide 21
	Slide 22: MAX 3-SAT: A second attempt
	Slide 23: Randomized LP rounding for MAX-SAT
	Slide 24: MAX SAT: Handling small clauses
	Slide 25: Modeling MAX SAT as an integer program
	Slide 26
	Slide 27: Randomized LP-rounding algorithm for  MAX SAT
	Slide 28
	Slide 29: Final Deterministic algorithm for  MAX SAT

