OIKONOMIKO MANEMIETHMIO AOHN』N

Special Topics on Algorithms

Fall 2023

Randomized algorithms
Vangelis Markakis - George Zois
markakis@gmail.com georzois@aueb.gr

Outline

- Introduction to randomized algorithms
- Algorithms for the MAX CUT problem
- Algorithms for MAX-SAT

Randomized Algorithms

- Algorithms that flip coins during their execution
- For example:
- they may pick a parameter at random from a given range of values (as in primality testing)
- Or they may take a random yes/no decision during the execution
- They generally do not produce the same output if you run them twice on the same input

Randomized Algorithms

What may be affected by the randomization:

- Running time: Can be polynomial time or polynomial time in expectation or polynomial time with high probability
- Output: Can be wrong (with a small probability)
- Approximability: can be in expectation

Overall a very powerful tool

- For some problems we only know randomized efficient algorithms
- Sometimes deterministic algorithms can be obtained by first designing a randomized algorithm (and then "derandomize" it)

A randomized algorithm for MAX-CUT

The MAX CUT Problem

MAX CUT:

I: An undirected graph $G=(V, E)$ with nonnegative weights on its edges
Q: Find a cut, i.e., a partition (A, B) of V so as to maximize the total weight of the edges that cross the cut

Given a cut (A, B),
$w(A, B)=$ sum of weights of edges crossing the cut

- Applications of MAX CUT: Circuit layout, statistical physics
- Unlike the s-t MIN CUT problem, MAX CUT is NP-complete
- It also does not admit a PTAS

Randomization for MAX CUT

```
Input:= weighted graph G = (V, E) on n vertices
S:= \varnothing, T:= \varnothing //initial partition
    for i=1 to n
    { Flip a coin for vertex vi
        if Head then S:= S U {vi};
        if Tail then T:= T U {vi
        }
Return the cut (S, T)
```


Analysis of the randomized algorithm

- Let $\mathrm{w}_{\mathrm{uv}}=$ weight of edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$
- Need first an upper bound on OPT

Claim: OPT $\leq \Sigma_{e} W_{e}$
For each edge e, let $X_{e}=\left\{\begin{array}{l}1, \text { if e crosses the cut } \\ 0, \\ \text { otherwise }\end{array}\right.$

- Suppose that the algorithm produced the partition (A, B)
- $w(A, B)=\Sigma_{e} w_{e} X_{e}$
- Hence:
$E[\mathrm{w}(\mathrm{A}, \mathrm{B})]=\mathrm{E}\left[\Sigma_{\mathrm{e}} \mathrm{w}_{\mathrm{e}} \mathrm{X}_{\mathrm{e}}\right]=\Sigma_{\mathrm{e}} \mathrm{w}_{\mathrm{e}} \mathrm{E}\left[\mathrm{X}_{\mathrm{e}}\right]=\Sigma_{\mathrm{e}} \mathrm{w}_{\mathrm{e}} \operatorname{Pr}\left[\mathrm{X}_{\mathrm{e}}=1\right]$
$=1 / 2 \Sigma_{\mathrm{e}} \mathrm{W}_{\mathrm{e}} \geq 1 / 2$ OPT

Analysis of the randomized algorithm

- Can we have a deterministic algorithm with the same approximation ratio?
- YES! Using the method of conditional expectations (more on this later)
$>$ But it is much easier to obtain first a randomized algorithm for this problem in order to propose and analyze a deterministic algorithm
> The deterministic algorithm is a "derandomization" of the algorithm we saw
- Is there a better approximation algorithm?
- YES! 0.878-approximation is possible via the use of semidefinite programming (a generalization of linear programming) [Goemans, Williamson 1995]
- Regarding hardness of approximation:
$>$ Unless P = NP, there is no ratio better than 16/17 [Hastad 2001]
$>$ Under a stronger but still widely believed conjecture (the unique games conjecture [Khot 2002]), there is no algorithm with ratio better than 0.878 [Khot et al 2007]
$>$ The same conjecture under which, Vertex Cover also does not admit a better than 2approximation

Algorithms for MAX-SAT

(CNF) SAT variants

2-SAT: Each clause has 2 literals

Horn SAT: Each clause has at most one positive literal
Q: Is there a satisfying truth assignment?

3-SAT: Each clause has 3 literals

NAE 3-SAT

I: A 3-CNF formula
Q: is there a truth assignment with at least one true and one false literal in each clause?
1 in 3 3-SAT
I: A 3-CNF formula
Q: is there a truth assignment with exactly one true literal in each clause?

MAX 2-SAT

I: A 2-CNF formula of m clauses and an integer $B \leq m$
Q : is there an assignment satisfying at least B clauses ?

MAX k-SAT

I: A $k-C N F$ formula of m clauses and an integer $B \leq m$
Q : is there an assignment satisfying at least B clauses ?

MAX SAT

The optimization version of SAT problems:

MAX SAT (optimization version)

I: A CNF formula ϕ of m clauses
Q: find a truth assignment satisfying the maximum possible number of clauses

Restrictions of MAX SAT:

MAX k-SAT (optimization version)
I: A k-CNF formula ϕ of m clauses
Q: find a truth assignment satisfying the maximum possible number of clauses

We can also have weights on the clauses and try to maximize total weight

Theorem: Even for $k=2$, MAX $k-S A T$ is NP-complete

MAX k-SAT

A randomized approximation algorithm for MAX k-SAT:

- Suppose each clause contains c_{i} literals
- \quad Suppose also there is a lower bound b on the number of literals, so that $1 \leq b \leq c_{i} \leq k$
- important: no clause contains a variable and its negation
- Hence, the truth assignment to each literal of a clause is independent of the other literals within the clause

$$
\operatorname{Pr}\left[C_{i}=0\right]=\frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2}=\frac{1}{2^{c_{i}}}, \quad \operatorname{Pr}\left[C_{i}=1\right]=1-\frac{1}{2^{c_{i}}}
$$

MAX k-SAT

$X=\#$ of true clauses (random variable)
$X=X_{1}+X_{2}+\ldots .+X_{m}=\sum_{i=1}^{m} X_{i}, \quad X_{i}= \begin{cases}1, & \text { if } C_{i}=1 \\ 0, & \text { if } C_{i}=0\end{cases}$
$E\left[X_{i}\right]=1 \cdot \operatorname{Pr}\left[C_{i}=1\right]+0 \cdot \operatorname{Pr}\left[C_{i}=0\right]=1-\frac{1}{2^{c_{i}}} \geq 1-\frac{1}{2^{b}}$
$E[X]=E\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} E\left[X_{i}\right] \geq \sum_{i=1}^{m}\left(1-\frac{1}{2^{b}}\right)=\left(1-\frac{1}{2^{b}}\right) m$
$O P T=$ maximum possible \# of true clauses, $\quad O P T \leq m$

MAX k-SAT

$\frac{E[X]}{O P T} \geq \frac{E[X]}{m}=1-\frac{1}{2^{b}} \geq \frac{1}{2}$ randomized approximate solution

If we know that each clause contains exactly k literals, then we can guarantee a better estimate:

$$
\text { If } b=c_{i}=k, \forall i \text {, then } \frac{E[X]}{O P T} \geq \frac{E[X]}{m}=1-\frac{1}{2^{k}}
$$

Remarks:

- If $b \geq 2$, we have a $3 / 4$-approximation
- The algorithm's worst case is when the formula has clauses with single literals

MAX 3-SAT

For 3-CNF formulas:

$$
\frac{E[X]}{O P T} \geq 1-\frac{1}{2^{3}}=\frac{7}{8}=0.875
$$

Fact 1: for every instance of MAX 3-SAT, the expected \# of clauses satisfied by a random assignment is at least 7/8 of the optimal

But, for any random variable, there is some point at which it assumes a value at least as large as its expectation

Thus:
Fact 2 (Implication of the probabilistic technique): for every instance of MAX 3-SAT, there is an assignment satisfying at least 7/8 of all clauses !

MAX 3-SAT

A minor application:
Fact 3: every instance of 3-SAT with at most $\mathrm{m} \leq 7$ clauses is satisfiable ! Proof:

- \quad By Fact 2 , there is an assignment satisfying at least $(7 / 8) \mathrm{m}$ clauses
- So consider such a truth assignment, and let $\mathrm{t}=$ number of satisfied clauses
- $\quad t \geq(7 / 8) m$ and $t \leq m$
- For $m<8$, it holds that $7 / 8 \mathrm{~m}>\mathrm{m}-1$,
- As t is an integer, it follows that $\mathrm{t}=\mathrm{m}$!

MAX 3-SAT: Improving Algorithm 1

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 of all clauses !

Algorithm 1 only guarantees this in expectation

Q: Can we find such an assignment? How much running time do we need?

A first attempt:
Algorithm 2: Repeatedly generate random truth assignments until one of them satisfies at least 7m/8 clauses.

How long will it take until we find one by random trials ?

MAX 3-SAT: Improving Algorithm 1

Waiting for the first success (geometric distr.): Let $Z=\#$ of trials until success (a random variable)
/*success probability
$\mathrm{p}=\operatorname{Pr}$ [a random assignment satisfies at least $7 \mathrm{~m} / 8$ clauses]
/*Probability mass function
$\operatorname{Pr}[Z=j]=$ probability for success in the j-th trial

$$
\begin{aligned}
\operatorname{Pr}[\mathrm{Z}=\mathrm{j}] & =(1-\mathrm{p})^{-1} \mathrm{p} \\
E[Z] & =\sum_{j=1}^{\infty} j \operatorname{Pr}[Z=j]=\sum_{j=1}^{\infty} j(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j} \\
& =\frac{p}{1-p} \frac{(1-p)}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

In expectation $1 / \mathrm{p}$ random trials suffice

MAX 3-SAT: Improving Algorithm 1

Can we bound 1/p ?

$X=\#$ of satisfied clauses by a random assignment; recall $E[X] \geq 7 / 8 m$
$p_{j}=\operatorname{Pr}[$ a random assignment satisfies exactly j clauses]
Let $\mathrm{m}^{\prime}=$ the largest integer less than 7/8m, m' < m

$$
\begin{aligned}
& \sum_{j<7 m / 8} p_{j}=1-p, \quad \sum_{j \geq 7 m / 8} p_{j}=p \\
& \frac{7}{8} m=E[X]=\sum_{j=1}^{m} j p_{j}=\sum_{j<7 m / 8} j p_{j}+\sum_{j \geq 7 m / 8} j p_{j} \leq \sum_{j<7 m / 8} m^{\prime} p_{j}+\sum_{j \geq 7 m / 8} m p_{j} \\
& =m^{\prime}(1-p)+m p=m^{\prime}+\left(m-m^{\prime}\right) p \leq m^{\prime}+m p
\end{aligned}
$$

MAX 3-SAT: Improving Algorithm 1

$\frac{7}{8} m \leq m^{\prime}+m p \Rightarrow p \geq \frac{7 / 8 m-m^{\prime}}{m}$
$m^{\prime}=$ largest integer $<7 / 8 m \Rightarrow 7 / 8 m-m^{\prime} \geq 1 / 8$
Thus, $p \geq \frac{1}{8 m} \Rightarrow \frac{1}{p} \leq 8 m$
This implies:
Theorem: there is a randomized algorithm with expected complexity $\mathrm{O}(\mathrm{m})$ for finding an assignment satisfying at least 7/8 of all clauses of a 3-SAT instance!

MAX 3-SAT: A second attempt

- Actually it gets even better
-We can "derandomize" Algorithm 1
- Again use the fact that there is always a truth assignment that achieves at least what the expectation says
- Method of conditional expectations:
- Try to set a variable, say a to 0 or 1
- One of the two conditional expectations (i.e., given that $\mathrm{a}=0$ or $\mathrm{a}=1$) has to be at least as large as the original expectation
- Hence, we set the variable a accordingly
- If we know how to compute conditional expectations we are done essentially
- We repeat until all variables have been set

$$
E[X]=E[X \backslash a=0] \cdot \operatorname{Pr}[a=0]+E[X \backslash a=1] \cdot \operatorname{Pr}[a=1]
$$

Hence: there exists a deterministic 7/8-approximation for MAX 3-SAT

Randomized LP rounding for MAX-SAT

MAX SAT: Handling small clauses

- We saw that Algorithm 1 provides better guarantees when the formula does not have "small" clauses
- If we could handle more effectively clauses with a single literal, we can get a better approximation
- We will use Integer Programming for this
- Consider a formula with n variables, $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
- Q: Can we model MAX SAT as an integer program?

Modeling MAX SAT as an integer

program

variables $y_{i}=\left\{\begin{array}{c}0, \text { FALSE } \\ 1, \text { TRUE }\end{array} \quad\right.$ clauses $\quad z_{c}=\left\{\begin{array}{c}0, \text { FALSE } \\ 1, \text { TRUE }\end{array}\right.$
clause $\mathrm{c}:\left\{\begin{array}{cl}P_{c} & \text { literals with positive variables } \\ N_{c} & \text { literals with negations of variables }\end{array}\right.$
if $z_{c}=1$ then $\left\{\begin{array}{l}\text { at least one variable in } P_{c} \text { is } 1 \\ \text { OR at least one variable in } N_{c} \text { is } 0\end{array}\right.$

Modeling MAX SAT as an integer program

```
\(\max \sum_{c} z_{c}\)
\(\sum_{i \in P_{c}} y_{i}+\sum_{i \in N_{c}}\left(1-y_{i}\right) \geq z_{c}, \forall c\)
\(z_{c} \in\{0,1\} \forall c\)
\(y_{i} \in\{0,1\} \forall i\)
```

Even if we solve the LP relaxation, how should we do the rounding?

Randomized LP-rounding algorithm for MAX SAT

Input:= a CNF SAT formula on variables x_{1}, \ldots, x_{n} Solve the LP relaxation
Let $\left(Y_{1}, \ldots, Y_{n}, z_{1}, \ldots, z_{m}\right)$ be an optimal LP solution

```
for i=1 to n
```

\{ Set variable x_{i} to 1 with probability equal to Y_{i} \}

Randomized LP-rounding algorithm for MAX SAT

Performance of the LP-based algorithm:

We need to analyze again the quantity:
$E[Z]=$ expected number of satisfied clauses $=\Sigma_{c} \operatorname{Pr}[c$ is satisfied $]$

Theorem: For MAX k-SAT, E[Z] $\geq\left[1-(1-1 / k)^{k}\right]$ OPT > (1-1/e) OPT

- Hence $1-1 / \mathrm{e}=0.632$-approximation algorithm
- This algorithm can also be derandomized via the method of conditional expectations

Final Deterministic algorithm for MAX SAT

Input:= a CNF SAT formula on variables $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$

1. Run the derandomization of Algorithm 1
2. Run the derandomization of the LP-based rounding
3. Return the best of the 2 truth assignments

Theorem: The above is a $3 / 4$-approximation algorithm for MAX SAT

