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Randomized Algorithms

• Algorithms that flip coins during their execution
• For example: 

§ they may pick a parameter at random from a given range of values (as in 
primality testing)

§ Or they may take a random yes/no decision during the execution
• They generally do not produce the same output if you run 

them twice on the same input
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Randomized Algorithms

What may be affected by the randomization:
• Running time: Can be polynomial time or polynomial time in expectation 

or polynomial time with high probability
• Output: Can be wrong (with a small probability)
• Approximability: can be in expectation

Overall a very powerful tool
• For some problems we only know randomized efficient algorithms
• Sometimes deterministic algorithms can be obtained by first 

designing a randomized algorithm (and then “derandomize” it)
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A randomized algorithm for MAX-CUT
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MAX CUT:
I: An undirected graph G = (V,E) with nonnegative weights on its edges
Q: Find a cut, i.e., a partition (A, B) of V so as to maximize the total weight of 

the edges that cross the cut

Given a cut (A, B),
w(A, B) = sum of weights of edges crossing the cut  

• Applications of MAX CUT: Circuit layout, statistical physics
• Unlike the s-t MIN CUT problem, MAX CUT is NP-complete
• It also does not admit a PTAS

The MAX CUT Problem
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Randomization for MAX CUT
Input:= weighted graph G = (V, E) on n vertices

S:= Æ, T:= Æ //initial partition
 for i=1 to n
       { Flip a coin for vertex vi 
     if Head then S:= S U {vi};
     if Tail then T:= T U {vi};
   }
Return the cut (S, T)
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• Let wuv = weight of edge e=(u, v)
• Need first an upper bound on OPT
Claim: OPT ≤ Σe we

For each edge e, let Xe = !1, 𝑖𝑓 𝑒 𝑐𝑟𝑜𝑠𝑠𝑒𝑠 𝑡ℎ𝑒 𝑐𝑢𝑡0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Suppose that the algorithm produced the partition (A, B)
• w(A, B) = Σe we Xe
• Hence:

E[w(A, B)] = E[Σe we Xe] = Σe we E[Xe] = Σe we Pr[Xe =1] 
= ½ Σe we ≥ ½ OPT

Analysis of the randomized algorithm

Linearity of expectation
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• Can we have a deterministic algorithm with the same approximation ratio?
• YES! Using the method of conditional expectations (more on this later)

Ø But it is much easier to obtain first a randomized algorithm for this problem in order to
propose and analyze a deterministic algorithm

Ø The deterministic algorithm is a “derandomization” of the algorithm we saw
• Is there a better approximation algorithm?
• YES! 0.878-approximation is possible via the use of semidefinite

programming (a generalization of linear programming) [Goemans, 
Williamson 1995]

• Regarding hardness of approximation:
Ø Unless P = NP, there is no ratio better than 16/17 [Hastad 2001]
Ø Under a stronger but still widely believed conjecture (the unique games conjecture [Khot

2002]), there is no algorithm with ratio better than 0.878 [Khot et al 2007]
Ø The same conjecture under which, Vertex Cover also does not admit a better than 2-

approximation

Analysis of the randomized algorithm
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Algorithms for MAX-SAT



(CNF) SAT variants 
2-SAT: Each clause has 2 literals

Horn SAT: Each clause has at most one positive literal 

3-SAT: Each clause has 3 literals  

ΝΑΕ 3-SAT
I: Α 3-CNF formula   
Q: is there a truth assignment with at least one true and one false literal in
each clause ? 
1 in 3  3-SAT
I: A 3-CNF formula 
Q: is there a truth assignment with exactly one true  literal in each clause?                             
MAX 2-SAT
I: A 2-CNF formula of m clauses and an integer B ≤ m
Q: is there an assignment satisfying at least B clauses ?
MAX k-SAT
I:  A k-CNF formula of m clauses and an integer B ≤ m
Q: is there an assignment satisfying at least B clauses ?
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Q: Is there a 
satisfying truth 
assignment?



MAX SAT
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The optimization version of SAT problems:

MAX SAT (optimization version)
I:  A CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of  

clauses 

Restrictions of MAX SAT:

MAX k-SAT (optimization version)
I:  A k-CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of  

clauses 

We can also have weights on the clauses and try to maximize total weight

Theorem: Even for k =2, MAX k-SAT is NP-complete
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MAX k-SAT
A randomized approximation algorithm for MAX k-SAT: 

• Suppose each clause contains ci literals
• Suppose also there is a lower bound b on the number of literals, so 

that 1 ≤ b ≤ ci ≤k
• important: no clause contains a variable and its negation
• Hence, the truth assignment to each literal of a clause is 

independent of the other literals within the clause
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2

0,   with probability 1
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Algorithm 1: Independently set each variable to:
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MAX k-SAT

X = #   of true clauses (random variable)   

X = X1 + X2 +....+ Xm = Xi
i=1

m

∑ ,         Xi =
1,    if  Ci =1
0,   if  Ci = 0                                            
⎧
⎨
⎩

E[Xi ]=1⋅ Pr[Ci =1]+ 0 ⋅  Pr[Ci = 0]  =   1− 1
2ci

≥  1− 1
2b     

E[X]= E Xi
i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥= E[Xi

i=1

m

∑ ]≥ (
i=1

m

∑ 1− 1
2b ) = (1− 1

2b )m

OPT =  maximum possible # of true clauses,     OPT ≤m



1515

MAX k-SAT

E[X]
OPT

≥
E[X]
m

=1− 1
2b

≥
1
2

randomized approximate solution 

If b = ci = k, ∀i,  then E[X]
OPT

≥
E[X]

m
=1− 1

2k

If we know that each clause contains exactly k 
literals, then we can guarantee a better estimate:   

Remarks: 
• If b ≥ 2, we have a ¾-approximation
• The algorithm’s worst case is when the formula has clauses with 

single literals
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MAX 3-SAT

Fact 1: for every instance of MAX 3-SAT, the expected # of 
clauses satisfied by a random assignment is at least 
7/8  of the optimal

But, for any random variable, there is some point at which 
it assumes a value at least as large as its expectation 

Thus:
Fact 2 (Implication of the probabilistic technique): for 
every instance of MAX 3-SAT, there is an assignment 
satisfying at least 7/8 of  all clauses ! 

E [X ]
OPT

≥1− 1
23
=
7
8
= 0.875

For 3-CNF formulas:
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MAX 3-SAT

A minor application: 
Fact 3: every instance of 3-SAT with at most m ≤ 7 clauses is satisfiable ! 
Proof:   
• By Fact 2, there is an assignment satisfying at least (7/8)m clauses
• So consider such a truth assignment, and let t = number of satisfied clauses
• t ≥ (7/8) m and t≤m 
• For m < 8, it holds that  7/8m > m-1, 
• As t is an integer, it follows that t = m! 
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MAX 3-SAT: Improving Algorithm 1
Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 
of  all clauses ! 

Algorithm 1 only guarantees this in expectation

Q: Can we find such an assignment? How much running time do we need?

A first attempt: 
Algorithm 2: Repeatedly generate random truth assignments until one of them 
satisfies at least 7m/8 clauses. 

How long will it take until we find one by random trials ?
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MAX 3-SAT: Improving Algorithm 1

Waiting for the first success (geometric distr.): 
Let Z= # of trials until success (a random variable) 

/*success probability
p = Pr[a random assignment satisfies at least 7m/8 clauses] 

/*Probability mass function
Pr[Z=j] = probability for success in the j-th trial

Pr[Z=j] = (1-p)j-1p
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In expectation 1/p random trials suffice
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Can we bound 1/p ?

X = # of satisfied clauses by a random assignment; recall  E[X] ≥ 7/8m

pj
 = Pr[ a random assignment satisfies exactly  j clauses]  
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Let m’= the largest integer less than 7/8m, m’ < m 

MAX 3-SAT: Improving Algorithm 1
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This implies: 

Theorem: there is a randomized algorithm with expected 
complexity O(m) for finding an assignment satisfying at least 7/8 
of all clauses of a 3-SAT instance !
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MAX 3-SAT: Improving Algorithm 1
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MAX 3-SAT: A second attempt
 
•Actually it gets even better
•We can “derandomize” Algorithm 1
•Again use the fact that there is always a truth assignment that achieves at 
least what the expectation says
•Method of conditional expectations: 

• Try to set a variable, say a to 0 or 1
• One of the two conditional expectations (i.e., given that a = 0 or a = 1) 

has to be at least as large as the original expectation
• Hence, we set the variable a accordingly

• If we know how to compute conditional expectations we are done 
essentially

• We repeat until all variables have been set
E[X] = E[X\a=0]⋅Pr[a=0] + E[X\a=1]⋅Pr[a=1]

Hence: there exists a deterministic 7/8-approximation for MAX 3-SAT 
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Randomized LP rounding for MAX-SAT
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MAX SAT: Handling small clauses
 
• We saw that Algorithm 1 provides better guarantees when the formula does 
not have “small” clauses
• If we could handle more effectively clauses with a single literal, we can get a 
better approximation
• We will use Integer Programming for this
• Consider a formula with n variables, x1,…, xn

• Q: Can we model MAX SAT as an integer program?



Modeling MAX SAT as an integer 
program

variables  yi =
0,FALSE
1,TRUE

⎧
⎨
⎪

⎩⎪
        clauses    zc =

0,FALSE
1,TRUE

⎧
⎨
⎪

⎩⎪
  

clause c:     
 Pc     literals with positive variables         

N c    literals with negations of variables  

⎧
⎨
⎪

⎩⎪

if   zc =1 then  
at least one variable in Pc  is 1            

OR at least one variable in N c  is 0      

⎧
⎨
⎪

⎩⎪
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max zc
c
å

yi
iÎPc

å + (1- yi) ³ zc
iÎNc

å ,"c

zc Î {0,1}"c
yi Î {0,1}"i

(IP)

Modeling MAX SAT as an integer 
program

Even if we solve the LP relaxation, how should we do the 
rounding?
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Randomized LP-rounding algorithm 
for  MAX SAT

Input:= a CNF SAT formula on variables x1,…,xn
Solve the LP relaxation
Let (y1,…,yn, z1,…, zm)be an optimal LP 
solution
 for i=1 to n
       { Set variable xi to 1 with  
  probability equal to yi
   }



Randomized LP-rounding algorithm 
for  MAX SAT

Performance of the LP-based algorithm:

We need to analyze again the quantity: 
 E[Z] = expected number of satisfied clauses = Σc Pr[c is satisfied] 

Theorem: For MAX k-SAT, E[Z] ≥ [1 - (1-1/k)k] OPT > (1-1/e) OPT
• Hence 1-1/e = 0.632-approximation algorithm 
• This algorithm can also be derandomized via the method of 

conditional expectations
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Final Deterministic algorithm for  
MAX SAT

Input:= a CNF SAT formula on variables x1,…,xn
1. Run the derandomization of Algorithm 1
2. Run the derandomization of the LP-based 

rounding
3. Return the best of the 2 truth assignments

Theorem: The above is a ¾-approximation algorithm for MAX 
SAT


