ATHENS UNIVERSITY
@ ECGONOMICS
AND BUSINESS

OIKONOMIKO
MANENIXETHMIO
AOHNAQON

Special Topics on Algorithms

Applications of Linear and Integer
Programming

Vangelis Markakis loannis Milis
George Zois

Linear Programming

Quick applications of LP:
1. Flows in networks

2. Matching in bipartite graphs

Flows in Networks

Recall the max flow problem:
Consider a graph G = (V, E), with a source node s € V, and a sink nodet € V
Capacity constraints: for every edge e € E, there is a capacity c,

A feasible flow is an assignment of a flow f, to every edge so
that
1.f,.<c,
2.For every node other than source and sink:
incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total
amount of flow coming out of s (or equivalently going into t)

Flow going out of s: E S

(s.u)eE

By preservation of flow this equals: E S

(u,t)eE

Flows in Networks

Example:
e Figure (a): network with capacities

Figure (b): a feasible flow

In fact, the flow in (b) is optimal (7 units)

Flows in Networks

Finding a max flow via Linear Programming:
e Suppose we use a variable f,, for the flow carried by each edge
e Then, the objective function and all the constraints are linear

Objective function: E fsu
(s.u)EE
Constraints
1.Capacity constraints:
f.<cy forevery(u,v) e E

2. Flow preservation:

E S = E f.» , foreverynodeu #s, t

(W,U)EE (U,V)EE

3. Non-negativity constraints:
f,,20,forevery(u,v) eE

Flows in Networks

In the example of Figure (a):
max foa +fop +fec

s.t.
11 capacity constraints
11 non-negativity constraints
5 flow preservation constraints
27 constraints in total

Solving this => max flow = 7

Note: There are more efficient algorithms for solving max flow (not covered
here)

*O(|V| |E|?) [Edmonds, Karp '72]

*O(|V|? |E]|) [Goldberg '87]

*O(|V]| |E]| log(|VI|%/|E|)) [Goldberg, Tarjan '86]

Flows in Networks

Recall the max-flow min-cut theorem:
For any graph G = (V, E) with capacities on its edges,
max flow = capacity of minimum s-t cut

In our example, the cut (L, R) shows immediately that the flow of 7 units in
Figure (b) is optimal!

The proof of the max-flow min-cut theorem can be done using the LP
formulation of the problem (in particular using LP-Duality)

Matching Problems

Types of matching problems that arise in optimization:

e Maximal matching: find a matching where no more edges can be added
e Maximum matching: find a matching with the maximum possible number
of edges

e Perfect matching: find a matching where every vertex is matched (if one
exists)

e Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

e Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms
and publications over the last decades)

Matching in Bipartite Graphs

An interesting special case for matching problems:

A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V,, V,
such that all edges connect a vertex from V; with a vertex from V,

BOYS GIRLS
Al Alice
Bob Beatrice
Chet Carol
Dan Danielle

Q: How can we find a maximum matching in a bipartite
graph?

Matching in Bipartite Graphs

We can reduce this to a max-flow problem, and hence to Linear

Programming
Al (Alice>
Bob .Beatrice
O e O
TN
(Dan>

e Orient all edges from left to right
e Add a source node s, connect it to all of U
e Add asinknodet, connectallof Vtot
e Capacities: set them to 1 for all edges
10

Matching in Bipartite Graphs

Hence:

e a maximum matching for bipartite graphs can be computed in polynomial
time

e The graph has a perfect matching if and only if the max flow in the
modified graph equals n

Observation: It can be proved that when the capacities are integer
numbers, we get an integral flow as an optimal solution, and hence

a proper matching as our output

11

Matching in Bipartite Graphs

An approach without going through flows
e Start with the integer program that describes the matching problem
e Integer programming formulation:

— Use an integer variable x, for every edge ecE
— Let N(v) = edges that come out of node v, the matching should select at most one of

them
max E Te

ecE
S. L.
Z Le S. 17 \V"U € V

ecN (v)

r. € {0,1}, Vee E
LP relaxation:
ejust setx, 20
*No need to add x, < 1, it is implied by the other constraints 12

Matching in Bipartite Graphs

Constraint matrix of the LP relaxation

We only have the constraints
S ze<1VweV
ecN (v)
This is precisely the node-arc incidence matrix for undirected graphs

Given a node k, and an edge e = (u, v), the entry at row k and column e
equals

- 0,ifkzu k#v

— 1,ifk=u,ork=v

13

Matching in Bipartite Graphs

Theorem:

For bipartite graphs, the corner points of the polyhedron described
by the matching constraints are integral

(proof based on the notion of total unimodularity, which is a
sufficient condition for integrality of LP solutions)

Corollary: We can compute a maximum matching for bipartite

graphs, by solving the LP relaxation

e Recall: the LP algorithms we have discussed identify a corner
point optimal solution

e Total unimodularity guarantees that they will return a 0/1
solution

14

Approximation Algorithms for
Vertex Cover and Set Cover

15

Vertex Cover (VC)

Recall the (optimization) version:

VERTEX COVER (VQ):

I: A graph G = (V,E)

Q: Find a cover C < V of maximum size, i.e.,asetCcV, s.t. V (u, v) € E,
eitheru € Corv e C(or both)

Weighted version:

WEIGHTED VERTEX COVER (WV():
I: A graph G =(V,E), and a weight w(u) for every vertex ueV
Q: Find a subset C < V covering all edges of G, s.t. W = 2 w(u) is minimized

ucC

Many different approximation techniques have been “tested” on vertex cover

16

Vertex Cover (VC)

Recall: Greedy-any-edge algorithm (which computes a maximal matching on the
input graph) achieves a tight 2-approximation factor and is almost the best
known algorithm for VC

Is there a better approximation algorithm ?
We know a lower bound of 1.36 on the approximation factor for VC,

l.e.,
Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1.36 2—-0(1/+/logn)
I . > I
I I
|
BEST KNOWN BEST KNOWN
LOWER BOUND APPROXIMATION RATIO

Big open problem!!

17

Weighted Vertex Cover (WVC)

e The Greedy-any-edge algorithm does not apply to the weighted case, i.e.,
a maximal matching does not guarantee anything about the total weight
of the solution returned

e Can we have constant approximations here as well?

Recall:
Theorem. The pricing method is 2-approximation for WVC.

Next, we will apply techniques from (Integer) Linear Programming for WVC

18

Integer Programming Formulations

e Modeling Vertex Cover as an integer program:

Weighted Vertex Cover

min 2, w(u) x,

S.t.
X,+x,21 V(uv)etE
X, €10,1} YueV

LP relaxation: Set x, € [0,1]
Main observation:
eFor minimization problems: LP-OPT < IP-OPT (Why?)

19

Linear Programming Relaxations

Solving the LP, we get a fractional solution

But what can we do with it? It is after all not a valid solution for our original
problem

E.g., what is the meaning of having x, = 0.8 for a vertex cover instance?

LP-rounding: the process of constructing an integral solution to the original
problem, given an optimal fractional solution of the corresponding LP

The process is problem-specific, but there are some general guidelines

A natural first idea: objects with a high fractional value may be preferred
(e.g., ifin the LP, x, = 0.8, it may be beneficial to include vertex u in an
integral solution)

20

Linear Programming Relaxations

General scheme for LP rounding:

Write down an IP for the problem we want to solve

Convert IP to LP

Solve LP in O(poly) time to obtain a fractional solution

Find a way to convert the fractional solution to an integral one

 The constructed solution should not lose much in the objective
function from LP-OPT

5. Prove that the integral solution has a good approximation

W N e

guarantee
* Exploit the main observation to derive bounds with respect to
OPT

21

LP Rounding for WVC

1. First solve:

min 2, w(u) x,

s.t.
X,+x,21 V(uv)ekE
X, €[0,1]] VYVueV

2. Let {x,},y be the optimal fractional solution

3. Rounding: Include in the cover all vertices v, for which x, > %
Rationale: Vertices with a high fractional value are more likely to be
important for the cover. We also stay “close” in value to LP-OPT

Theorem: The LP rounding algorithm achieves a 2-approximation for
the Weighted Vertex Cover problem

22

Rounding for WVC

Let C be the collection of vertices picked

Claim 1: Cis a valid vertex cover

e\We started with a feasible LP solution

eHence, for every edge (u, v), x, +x,2 1

eThus either x, 2% orx, 2%

*By the way we constructed our solution, either u or v belongs to C
eHence, every edge is covered

23

Rounding for WVC

Claim2: C achieves a 2-approximation for WVC

Let C be the collection of vertices picked
C corresponds to the integral solution:y,=1ifu € C, y, = 0 otherwise

Note:y, <2 x,, foreveryu e V

Given this and the main observation:

SOL=> w(u)=Y wu) y <Y wlu) 2 -zy=2-LP-OPT <2.0PT

ueC ueV ueV

24

Set Cover

SET COVER (SC):
I: a set U of n elements
a family F=1{S,, S,, ...,S,,,} of subsets of U
Q: Find @ minimum size subset C — F covering all elements of U, i.e.:

USZ. =U and|C| is minimized

S;eC
Weighted version:

WEIGHTED SET COVER (WSC):
I: a set U of n elements

a family F=1{S,, S,, ..., S} of subsets of U
a weight w(S;) for each set S,

Q: Find a minimum weight subset C — F covering all elements of U, i.e.,

LJS, =U and W = > w(S,) is minimized

S;eC S;eC

Set Cover vs Vertex Cover

(weighted) vertex cover is a special case of (weighted) set cover
Consider a vertex cover instance on a graph G = (V, E)

Let U = E (i.e., we need to cover the edges)

One set per vertex, S, ={(u,v) | (u,v) e E}, |F| = |V]

In the weighted case, weight of set S, = w(u)

(8¢
@

26

Set Cover vs Vertex Cover

e f,=frequency of an elementu e U =# of sets S, that u belongs to
e f=max,cy{f,}="~frequency of the most frequent element

e |ff=2(and w(S;) =1) then (W)SC reduces to (W)VC:
- G=(V,E), V=F,E={(uv) | SynS,#0}

We have seen an approximation algorithm for WSC,

and hence, for SC, WVC and VC:

* Greedy best setis O(log n) (n: the size of the universe U) approximation by a greedy
approach

e Next, we will see a LP-based f-approximation for WSC, using an LP rounding approach
while extending the 2-approximation for weighted vertex cover

27

Rounding for WSC

LP relaxation for Set Cover:

min EXS

S
S.1.

E x;z1l, YueU

UuUES

xg =0, VSEF

Q: How should we round a fractional solution?

28

Rounding for WSC

LP rounding:

e Solve the LP relaxation
e Fractional solution x = {x}..; of cost LP-OPT
e Rounding: if xg 2 1/f, then include S in the cover

Theorem: The LP Rounding algorithm achieves an
approximation ratio of f for the WSC problem

29

Rounding for WSC

Proof:
Let C be the collection of sets picked

Claim 1: Cis a valid set cover

Assume not
* Then there exists some u that is not covered

« =>For each set S for which ueS, xs < 1/f
* But then:

1 1 1
s<=H{S:ueSt=—f <—f =1
Ex 7181 } ff ff

e 3 contradiction since we found a violated LP constraint

30

Rounding for WSC

Proof:
Let C be the collection of sets picked

Claim 2: C achieves an f-approximation

Proof very similar to the proof for WVC

31

Bibliography on Linear Programming

[DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”
Chapter 7, Sections 7.1 -7.3

Representative exercises: 7.1 -7.4,7.6, 7.7, 7.28(a,b), 7.29, 7.30

[Vazirani] V. Vazirani: “Approximation Algorithms”
Chapters: 14,16

Representative exercises: 14.4, 14.7

32

