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Complexity Class P
P = 
All problems Π, such that for every instance ΙÎΠ, there exists an algorithm  
with worst case complexity O(p(|I|) ), for some polynomial p -- denoted also as 
O(poly(|I|)))

Known Problems in P: finding min/max: O(n) 
sorting: O(n log n) 
Integer multiplication: O(n1.59)
GCD(a,b), a>b: O(log a) 
Primality testing: O(log 12  n)  [ August 2002]
… many others …

Problems without a known polynomial time algorithm: 
SUBSET SUM : O(nB) [recall: pseudo-polynomial]
SAT:  O(2n) 
… many many others…
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Decision and Optimization Problems
Decision problems: problems where the answer is YES or NO
e.g.  Primality testing, SUBSET SUM, SAT,...

Optimization problems: maximize/minimize some objective function

TSP (Traveling Salesman Problem) 
I: A complete weighted digraph G = (V, E)
Q:  Find a minimum weight tour of  G  

(tour: a cycle visiting each node exactly once)

CLIQUE
I: A graph G = (V,E)
Q: Find the maximum subset  C Í V s. t. " u,v Î C: (u,v) Î E

(the maximum complete subgraph of G)
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Decision and Optimization Problems
An optimization problem has three versions/questions: 

Function version: find  an optimal feasible  solution
Evaluation version: find the cost of an optimal feasible solution
Decision version: Given a bound B, is there a feasible solution 

of value £ B (for minimization problems) or 
of value ≥ B (for maximization problems)

TSP
Q1: Find a tour of minimum cost
Q2: Find the actual cost of an optimal tour
Q3: Given a bound B, is there a tour of cost £ B ?

CLIQUE
Q1: Find the vertices of a maximum clique C
Q2: Find the size of  C
Q3: Given a bound B, is there a clique C Í V such that |C| ³ B ?

For any optimization problem we can state its corresponding decision version
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Decision and Optimization Problems

• Complexity theory is mostly built around decision 
problems

• they are used to define complexity classes 

• the decision version of an optimization problem is 
equivalent to its function and evaluation versions!
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Decision and Optimization Problems
For all the problems that we have seen and will see:
Given an algorithm for the decision version of an optimization problem,
there exists a polynomial time algorithm to answer both its evaluation 
and function versions

Example: TSP
(1) decision à evaluation

Apply the question  "is there a tour of cost £ B" for several values of B
For what values of B ?  (not for all)
Optimal value upper bounded by the sum of the first n weights
Hence, apply binary search in this range
How many calls needed to the decision version?
O(log(sum of n largest weights)) = O(poly(|I|))
Hence a polynomial “reduction” from decision to evaluation
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Decision and Optimization Problems
Example: TSP (cont.)
(2) decision à function

Use (1) to find the cost of an optimal solution, say B*
T:= { }    //T will store an optimal tour
For each edge e Î E do

{  x :=w(e);
w(e) := w(e) + M; //M is some positive number > B* , e.g. M = 

B*+1.
"is there a tour of cost £ B* ? "
if NO  then 

{  T=T U {e} ; //e  is contained in an optimal tour
w(e):=x    } //restore the weight of e

// if YES then e is not needed for finding an optimal tour 
// keep its weight to w(e) + M

Complexity O(|E|) ~ O(n2)
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The Complexity Class NP
For a decision problem Π, an instance Ι Î Π is a
• yes-instance, if there exists a solution to the question posed by I
• no-instance, otherwise

The class NP - high level definition:
• A problem Π is in NP if we can verify efficiently the validity of a candidate 

solution
§ i.e., if someone presents to us a candidate solution, we can answer in poly-time if it is 

indeed a solution to the problem
§ Thus, for a yes instance, there is a way to verify that it is indeed a yes instance

In TSP: a candidate solution (a certificate) = one of the possible tours
• Consider a decision instance of TSP with bound B
• If someone presents to us a candidate solution  

§ We can check that it is indeed a tour
§ We can sum up the weights of the tour and check if they exceed B or not

• Hence in poly-time we can verify if the candidate solution is an actual 
solution 
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The Complexity Class NP
For a decision problem Π, an instance Ι Î Π is a
• yes-instance, if there exists a solution to the question posed by I
• no-instance, otherwise

The class NP – formal definition:
Definition: A problem Π is in NP if and only if there is a polynomial time 

verification algorithm A such that: for every yes-instance Ι Î Π, there is a 
certificate x with |x| ≤ poly(|I|), such that A(I, x) = yes

In complexity theory terms: NP = all problems for which there is a non-
deterministic polynomial time algorithm

Note: Verifying yes-instances does not imply we can do the same for no-
instances

• For TSP: the only way to convince someone for a no-instance would be to 
check that all tours have cost > B
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P versus NP
If for a problem Π, we have a polynomial time algorithm that 
solves it, then, we can obviously validate a  yes-instance in 
polynomial time  

Hence: P  Í NP

P NP

What about the reverse direction? Million dollar question!!
http://www.claymath.org/millennium-problems
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P versus NP
If for a problem Π, we have a polynomial time algorithm that 
solves it, then, we can obviously validate a  yes-instance in 
polynomial time  

Hence: P  Í NP

P NP

Philosophically: the P≠ NP conjecture supports that it is easier 
to verify a yes-instance than decide if an instance is yes or no
• Verification is strictly easier than actually solving the problem



12

The class of NP-complete problems
A problem ΠÎNP is NP-complete iff all problems in NP polynomially reduce to Π
• Equivalently: for every other problem Π’ Î NP: Π’ £p Π, where £p denotes a 

Karp reduction (as you saw it in the Algorithms course)

ΝP-completeness: 
• captures the essence and the difficulty of NP
• identifies the most difficult problems in NP

To prove that a problem Π is NP-complete:
1. prove that Π Î NP
2. prove that  " Π’ Î NP: Π’ £p Π
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The class of NP-complete problems

the common belief Not possible Not widely believed

Ladner’s theorem

Beyond NP: there exist even more difficult problems, in complexity 
classes that contain NP (not within the scope of this course)
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The class of NP-complete problems
But how do we start proving NP-completeness results?
Fortunately we have:
Cook's Theorem [Cook 1970, Levin 1972]: 

SAT is NP –Complete (for every  Π’ Î NP :  Π’ £p SAT)

• Hence we have a starting point!
• We can derive now more NP-complete problems by 

reducing from SAT
• It suffices to provide a reduction from any known NP-

complete problem

S. Cook

L. Levin



More NP-complete problems 
CLIQUE:
I: A graph G = (V,E), an integer B £ |V|
Q: Is there C Í V s.t. " u,v Î C: (u, v) Î E and |C| ³ B?

VERTEX COVER (VC):
I: A graph G = (V,E), an integer B £ |V|
Q: Is there S Í V s.t. " (u, v) Î E  either uÎS or vÎS (or both) and |S| £ B?

INDEPENDENT SET (IS):
I: A graph G = (V,E), an integer B £ |V|
Q: Is there I Í V s.t. " u, v Î I: (u, v) Ï E and |I| ³ B?

3-GRAPH COLORABILITY (3-GC):
I: A graph G = (V,E)
Q: Is there a function f: V→ {1,2,3} s.t. " (u, v) Î E: f(u) ≠ f(v)?  

15



P vs NP 
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No poly-time algorithm is known for an NP-complete problem



A Tree of reductions for some problems
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Cook
" Π Î NP SAT 3-SAT 

CLIQUE / IS / VC

MAX 2-SAT 

HP /  HC 

3- GC

TSP / Δ -TSP 

3-DM / X3C

0-1 KNAPSACK
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Coping with NP-complete problems

1. Algorithms for small instances

2. Algorithms for special cases

3. Exponential algorithms 

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms
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Coping with NP-complete problems
1. Algorithms for small instances
If we want to run an algorithm in small instances only, then an 

exponential algorithm may be satisfactory

2. Algorithms for special cases
Identify important families of instances where we can have an 

efficient algorithm, e.g., 2-SAT
§ Some times an actual application may only deal with specific types of 

instances

3. Exponential algorithms 
Some worst-case exponential algorithms may still be better than 

brute-force or have a good average-case behavior: Pseudo-
polynomial algorithms,  Dynamic Programming, Backtracking,  
Branch-and-Bound
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Approximation algorithms
4. Approximation algorithms
algorithms for which we can have a provable bound
on the quality of the solution returned

ΟPT

MinMax

Definition: An algorithm A, for a minimization problem Π, achieves an
approximation factor of ρ (ρ ≥ 1), if for every instance I of the problem,
A returns a solution with:

C(I) ≤ ρ OPT(I)

Given an instance I of an optimization problem Π:
•OPT(I) = optimal solution
•C(I) = cost of solution returned by the algorithm under consideration
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Approximation algorithms
4. Approximation algorithms
algorithms for which we can have a provable bound
on the quality of the solution returned

ΟPT

MinMax

Definition for maximization: An algorithm A, for a maximization
problem Π, achieves an approximation factor of ρ (ρ ≤ 1), if for every
instance I of the problem, A returns a solution with:

C(I) ≥ ρ OPT(I)

Given an instance I of an optimization problem Π:
•OPT(I) = optimal solution
•C(I) = cost of solution returned by the algorithm under consideration



22

Approximations: 
Good, better, best and more …

Non - constant approximation: C(I)/OPT(I) £ f(n) for some function that 
depends on n

Constant (ρ-)approximation: C(I)/OPT(I) £ ρ, where ρ is a constant, e.g. 3/2

Polynomial Time Approximation Schemes (PTAS):
§ C(I)/OPT(I) £ 1 + ε,  for any  ε >0 (any constant factor is achievable)
§ Complexity should be O(poly (|I|) ) and O(exp (1/ε) ), e.g.  O( n3/ε ) 

Fully Polynomial Time Approximation Schemes (FPTAS): 
§ C(I)/OPT(I) £ 1 + ε,  for any ε >0
§ Complexity should be O(poly (|I|) ),  O(poly (1/ ε) ) !!!  
§ e.g.  O( (1/ε)2n3 ), dependence on 1/ε should not be on the exponent 

Additive approximation:
§ C(I) £ OPT(I) + f(n)   or  C(I) £ OPT(I) + k (a constant), e.g. C £ OPT+1
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Coping with NP-complete problems

5. Randomized algorithms
algorithms that use randomization (e.g. flipping coins) and make 
randomized decisions 
Performace: Such algorithms may
• produce a good solution with high probability
• Produce a good expected cost
• Run in expected polynomial time

Power of randomization: for some problems, the only decent 
algorithms known are randomized!
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Coping with NP-complete problems

6. Heuristic algorithms
Algorithms that are typically fast and work well in practice
but without a formal guarantee of their performance (e.g., many 

local search approaches)
• No guarantee on the approximation achieved by the solution 

returned
• Some times no guarantee that they even terminate in 

polynomial time


