Special Topics on Algorithms

Public Key Cryptosystems

Vangelis Markakis Ioannis Milis
George Zois

- Public-key cryptosystems

\checkmark Main disadvantage of symmetric cryptosystems: Alice and Bob need to agree in advance about the key K through some secure channel
\checkmark What if this is infeasible? Can we have encryption without Alice and Bob communicating with each other beforehand?
\checkmark Idea: Every entity has a Public and a Secret key.
\checkmark RSA: the public key is a pair of integers
\checkmark Suppose Alice (A) and Bob (B) have public and secret keys as follows:

- P_{A}, S_{A} for Alice
- P_{B}, S_{B} for Bob.

Public-key cryptosystems

\checkmark Let $\mathrm{E}_{\mathrm{A}}()$ be the encryption function of Alice, and $\mathrm{D}_{\mathrm{A}}()$ be the decryption function
\checkmark Challenge for developing a computationally feasible public-key cryptosystem:

- Need a system where we can reveal the encyption function $E_{A}()$ without running the danger of making the decryption function $D_{A}()$ known
- On the contrary, in symmetric cryptosystems knowing $\mathbf{E}_{\mathbf{A}}()$ leads to identifying $\mathbf{D}_{\mathrm{A}}()$ as well
- Public-key cryptosystems
- Hence, overall requirements:
\checkmark Computationally feasible for a user B to produce a pair of keys (Public key \mathbf{P}_{B}, Secret key \mathbf{S}_{B})
\checkmark Computationally feasible for a sender \mathbf{A}, who knows the public key of \mathbf{B} and wants to send the plaintext \mathbf{M}, to create the ciphertext: $\mathbf{C =} \mathrm{E}_{\mathrm{B}}(\mathbf{M})$
\checkmark Computationally feasible for the receiver B, who knows his private key and receives the ciphertext \mathbf{C} to retrieve the original plaintext M : $M=D_{B}(C)=D_{B}\left(E_{B}(M)\right)$
\checkmark Computationally infeasible to find the private key \mathbf{S}_{B}, knowing only the public key P_{B}
\checkmark Computationally infeasible to find the message \mathbf{M}, knowing only the public key $\mathbf{P}_{\mathbf{B}}$ and the ciphertext \mathbf{C}

Public-key cryptosystems
Trapdoor one way functions
\checkmark One-way functions: functions that are easy to compute but hard to invert
\checkmark Trapdoor: some extra information that allows us to invert a one-way function
\checkmark Trapdoor one-way functions: one-way functions that are easy to invert when we have the trapdoor
\checkmark Essentially, in public-key cryptography we are looking for trapdoor one-way functions
\checkmark [Diffie-Hellman, 1976]: New Directions in Cryptography

- RSA - Rivest, Shamir, Adleman (1978, MIT)
\checkmark Turing award, 2003

- RSA - Rivest, Shamir, Adleman (1978, MIT)
\checkmark Block cipher
\checkmark All calculations take place in \mathbf{Z}_{n}, for some large n (message space $=$ integers $\bmod \mathrm{n}$)

Key generation	
Choose 2 big and distinct prime numbers Compute $\mathrm{n}:$	p, q
Compute $\varphi(\mathrm{n})$:	$\varphi(\mathrm{n})=(\mathrm{p}-\mathrm{q})(\mathrm{q}-1)$
Choose integer e function	
$(1<\mathrm{e}<\varphi(\mathrm{n}))$, such that:	$\operatorname{gcd}(\varphi(\mathrm{n}), \mathrm{e})=1$
Compute d, such that:	$\mathrm{de}=1 \bmod (\varphi(\mathrm{n}))$
Public key	$\mathrm{P}=\{\mathrm{e}, \mathrm{n}\}$
Secret key	$\mathrm{S}=\{\mathrm{d}, \mathrm{p}, \mathrm{q}\}$

- RSA - Rivest, Shamir, Adleman (1978, MIT)
\checkmark In principle, we could have a phone directory with the public keys of all users

Encryption

Initial message: integer M such that $0 \leq M \leq n-1$
Ciphertext: $C=E(M)=M^{e} \bmod n$

Decryption

Ciphertext: $0 \leq \mathrm{C} \leq \mathrm{n}-1$
Message recovery: $M=D(C)=C^{d} \bmod n$
\checkmark For the exponentiation: use the repeated squaring algorithm

- In more detail:
- How do we choose e?
\checkmark Suffices to choose some prime number > max\{p, q\} (smaller prime numbers can also be suitable) - use primality testing
\checkmark Recommended value in some systems: $\mathrm{e}=2^{16}+1=65537$
- How do we compute d?
\checkmark Use extended Euclidean algorithm

Key generation	
Choose 2 big and distinct prime numbers	p, q
Compute $\mathrm{n}:$	$\mathrm{n}=\mathrm{p} \cdot \mathrm{q}$
Compute $\varphi(\mathrm{n})$:	$\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
Choose integer e	
$(1<\mathrm{e}<\varphi(\mathrm{n}))$, such that:	$\operatorname{gcd}(\varphi(\mathrm{n}), \mathrm{e})=1$
Compute d, such that:	$\mathrm{de}=1 \bmod (\varphi(\mathrm{n}))$
Public key	$\mathrm{S}=\{\mathrm{e}, \mathrm{n}\}$
Secret key	

- Example

Let $\mathrm{M}=19$

Encryption:

Decryption:

$$
\begin{aligned}
& \mathrm{C}=\mathrm{M}^{5} \bmod \mathrm{n}=19^{5} \bmod 119=66 \longrightarrow \begin{array}{c}
\text { Repeated Squaring } \\
\text { Algorithm: }
\end{array} \\
& \mathrm{M}=\mathrm{C}^{77} \bmod \mathrm{n}=66^{77} \bmod 119=19
\end{aligned}
$$

- Proof of correctness
\checkmark Theorem: For every message M
- $\quad E(D(M))=M$ and
- $D(E(M))=M$
\checkmark Proof:
Let $M \in Z_{n}$
Since d is the multiplicative inverse of e modulo $\varphi(n)=(p-1)(q-1)$:
$e d=1+k \varphi(n)$ for some integer k.
i) If $M \neq 0(\bmod p)$, we have:

$$
\begin{aligned}
M^{e^{2}}(\bmod p) & \equiv M^{1+k \varphi(n)}(\bmod p) \\
& \equiv M\left(M^{\varphi(n)}\right)^{k}(\bmod p) \\
& \equiv M\left(M^{p-1}\right)^{k(q-1)}(\bmod p) \\
& \equiv M(\bmod p)(\text { from Fermat's theorem })
\end{aligned}
$$

ii) If $M=0(\bmod p)$, then again $M{ }^{2 d}(\bmod p) \equiv M(\bmod p)$

- Proof of Correctness
\checkmark Hence, for every $M, M^{\text {ed }}(\bmod p) \equiv M(\bmod p)$
\checkmark Similarly $\mathrm{M}^{\text {ed }}(\bmod q) \equiv \mathrm{M}(\bmod q)$
\checkmark From the corollary of the Chinese Remainder Theorem: when $\mathrm{n}=\mathrm{pq}$, $x=y \bmod n$ iff $x=y \bmod p$ and $x=y \bmod q$
$\checkmark \Rightarrow D(E(M))=M^{\text {ed }}(\bmod n)=M(\bmod n)$
- Simpler proof when $\operatorname{gcd}(\mathrm{M}, \mathrm{n})=1$:
\checkmark ed $=1+k \varphi(n)$ for some k.

$$
\begin{aligned}
D(E(M))=M^{e d} & \equiv M^{1+k \varphi(n)}(\bmod n) \\
& \equiv M\left(M^{\varphi(n)}\right)^{k}(\bmod n) \\
& \equiv M(\bmod n)(\text { from Euler's theorem })
\end{aligned}
$$

- Asymmetry of RSA
\checkmark Usually e is a relatively small number \Rightarrow fast encryption
\checkmark E.g. when $\mathrm{e}=2^{16}+1$, we can encrypt with 17 multiplications
\checkmark The private key d is usually a larger number \Rightarrow slower decryption
\checkmark Around 2000 multiplications or more
\checkmark RSA-Chinese Remaindering (RSA-CRT): Another version of RSA for making decryption faster
- Almost all operations in the decryption phase are done $\bmod p$ and $\bmod q$ and then combined to return the message mod n
- Intermediate numbers are half in size than before
- ≈ 4 times faster

- RSA Cryptanalysis

\checkmark Conjecture: the function $f(x)=x^{b} \bmod n$, where n is a product of 2 primes is a one-way function
\checkmark At the moment, there is no function that is provably one-way
\checkmark Theorem: If there are one-way functions, then $P \neq N P$
\checkmark Trapdoor in RSA: $\varphi(n)$ or the factoring of n

- RSA Cryptanalysis

Reduction to the integer factorization problem:
\checkmark Suppose Oscar can easily factor the number n

- If he finds p and q, he can compute $\varphi(n)$
- Then, he can easily find d such that $d e=1 \bmod (\varphi(n))$ using the extended Euclidean algorithm
\checkmark For the opposite, we also know that:
\checkmark Theorem: Any algorithm that can compute the exponent din RSA, can be converted into a randomized algorithm for factoring n
- Hence, if d is revealed, it is not enough to change just d, e, we should also change n

- RSA Cryptanalysis

\checkmark Note: For factoring n , it suffices to know $\varphi(\mathrm{n})$
\checkmark Suppose $\varphi(n)$ becomes known
\checkmark We can solve the system:

$$
\begin{aligned}
& n=p q \\
& \varphi(n)=(p-1)(q-1)
\end{aligned}
$$

\checkmark If $q=n / p$, the factors are derived by solving $p^{2}-(N-\varphi(n)+1) p+N=0$
\checkmark Corollary: Computing $\varphi(\mathrm{n})$ is not easier than factoring n

- RSA Cryptanalysis

- In practice:
\checkmark If we work with 1024 bits, then the key is not breakable within a "reasonable" amount of time, using current knowledge and technology ($\mathrm{n} \approx 200$ decimal digits)
\checkmark Factoring algorithms do well for numbers up to around 130 decimal digits
\checkmark NIST guidelines (2010):
- Since 1/1/2011: 1024-bit keys were declared "deprecated" (acceptable but possibly with some small risk)
- Since 1/1/2014: 1024 bits no longer acceptable, only 2048 bits

- RSA Cryptanalysis

- Other known attacks (implementation attacks):
\checkmark Timing attacks [Kocher '97]: The time it takes to do the decryption may yield information about d
Power attacks [Kocher '99]: Measuring power consumption in a smartcard during the run of the repeated squaring algorithm, may also reveal the bits of d
- Chips should not be vulnerable to power analysis

Fault attacks [Lenstra '96, Boneh, de Millo, Lipton '97]: If some mistake takes place during decryption Oscar may guess d! (applicable mostly for RSA-CRT)

- These methods work if the computations mod p have been done correctly, and there is a mistake on the computations mod q
- Rule of thumb: After decryption, we could check that the calculations are all correct, i.e., check that ($\left.\mathrm{C}^{\mathrm{d}}\right)^{\mathrm{e}} \equiv \mathrm{C}$ modn
- RSA Cryptanalysis

A CRYPTO NERD'S IMAGINATION:

HIS LAPTOP'S ENCRYPTED. LET'S BUILD A MILION-DOLLAR CLUSTER TO CRACK IT.

NO GOOD! IT'S 4096-BIT RSA!

BLAST! OUR EVIL PLAN IS FOILED!

WHAT WOULD ACTUALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED. DRUG HIM AND HIT HIM WITH THIS \$5 WRENCH UNTLL HE TEUS US THE PASSWORD.

- Kpumtooúбтqua ElGamal
\checkmark T. Elgamal (1985)

- Discrete logarithm problems
\checkmark Let $Z_{p}^{*}=Z_{p}-\{0\}=\{1,2, \ldots, p-1\}$
\checkmark The set Z_{p}^{*} for a prime p, always has at least one generator: a number g such that for every $a \in Z^{*}{ }_{p}$ there exists z with $g^{z} \equiv a(\bmod p)$
\checkmark g generates the whole Z_{p}^{*}
- In abstract algebra terms: Z_{p}^{*} with multiplication is a cyclic group
\checkmark The number z is called the discrete logarithm of a, $\bmod p$ with basis g
\checkmark There are known algorithms for finding generators of Z_{p}^{*}

Discrete logarithm problems

\checkmark When we want to compute the k-th power of a number:

- Easy by repeated squaring. In $\mathrm{Z}^{*}{ }_{17}$ with $\mathrm{k}=4,3^{4} \equiv 13 \mathrm{mod} 17$
\checkmark Discrete logarithm in \mathbf{Z}_{p} (DLP): the reverse of raising to a power
- Given that $3^{k} \equiv 13(\bmod 17)$, find k
- More generally: Given a generator $g \in Z^{*}$, and an element $\beta \in Z^{*}$, find the unique integer $k \in Z_{p}$ for which $g^{k} \equiv \beta(\bmod p)$
\checkmark Considered a hard problem, when p is chosen carefully
- For example, for $p \approx 1024$ bits and when $p-1$ has a «large» prime factor

■ ElGamal cryptosystem (T. ElGamal, 1985)

- Based on the difficulty of DLP
- Defined over Z_{p} for some large prime p
\checkmark Key generation
- First, select a large prime p such that DLP is difficult
- An indicative method: Find a prime p such that $p-1=m q$ for some small integer m and large prime q
- E.g., with $m=2$, we can first choose a large prime q and then test whether $p=2 q+1$ is a prime number
- Use primality testing
- Choose a generator $\mathrm{g} \in \mathrm{Z}_{\mathrm{p}}^{*}$, (hence $\left.\mathrm{g}^{\mathrm{p}-1} \equiv 1 \bmod \mathrm{p}\right)$
- Choose an element $\alpha \in\{2, \ldots, p-2\}$

- EIGamal cryptosystem

\checkmark Key generation

- Public + private keys $\left.=\left\{(p, g, \alpha, \beta): \beta \equiv g^{\alpha} \operatorname{modp}\right)\right\}$
- Public Key: The numbers p, g, β
- Private Key: the exponent α
\checkmark Encryption algorithm for a message x :
- Alice chooses a secret random number $k \in Z^{*}{ }_{p-1}$ and sends to Bob $\mathrm{E}(\mathrm{x}, k)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$, where
- $y_{1}=g^{k} \operatorname{modp}$
- $\mathrm{y}_{2}=\mathrm{x} \beta^{\mathrm{k}}$ modp //mask on x
\checkmark Decryption algorithm:
- Upon receiving $\mathrm{y}_{1}, \mathrm{y}_{2}$, do:
- $D\left(y_{1}, y_{2}\right)=y_{2}\left(y_{1}{ }^{\alpha}\right)^{-1} \operatorname{modp}$
o Which results at x
- EIGamal cryptosystem
- Proof of correctness

Claim: $D\left(y_{1}, y_{2}\right)=y_{2}\left(y_{1}{ }^{\alpha}\right)^{-1} \operatorname{modp}=x$

$$
\text { - } \begin{aligned}
\left.\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)^{\alpha}\right)^{-1} & =x \beta^{k}\left(\left(g^{k}\right)^{\alpha}\right)^{-1} \\
& =x \beta^{k}\left(\left(g^{\alpha}\right)^{k}\right)^{-1} \\
& \left.=x \beta^{k}\left((\beta)^{k}\right)^{-1} \quad \text { (because } \beta \equiv g^{\alpha} \operatorname{modp}\right) \\
& =x
\end{aligned}
$$

- Features
\checkmark The plaintext \mathbf{x} is "masked" through the multiplication by $\boldsymbol{\beta}^{\mathbf{k}}$ (yielding \mathbf{y}_{2})
\checkmark The ciphertext contains also the value $\mathbf{g}^{\mathbf{k}}$
\checkmark Bob knows his private key $\boldsymbol{\alpha}$, hence he can derive $\left(\mathrm{y}_{1}\right)^{\alpha}$
\checkmark He then removes the mask by multiplying \mathbf{y}_{2} with the inverse of $\boldsymbol{\beta}^{\mathbf{k}}$
-Example
\checkmark Let $\mathrm{p}=2579, \mathrm{~g}=2, \mathrm{a}=765$
$\checkmark \beta=2^{765} \bmod 2579=949$
\checkmark Suppose Alice wants to send the message $x=1299$
\checkmark Suppose also that she chooses at random $k=853$
\checkmark Then:
- $\mathrm{y}_{1}=2^{853} \bmod 2579=435$
- $\mathrm{y}_{2}=1299(949)^{853} \bmod 2579=2396$
\checkmark Bob then calculates
- $2396\left(435^{765}\right)^{-1} \bmod 2579=1299$

EIGamal

- Cryptanalysis for ElGamal

- The cryptanalysis can be reduced to the discrete logarithm problem
- Given the public parameters ($\mathrm{p}, \mathrm{g}, \beta$) and the ciphertext ($\mathrm{y}_{1}, \mathrm{y}_{2}$), Oscar should
\checkmark either compute the exponent α, from the relation $\beta \equiv g^{\alpha} \bmod p(D L P)$
\checkmark or find k from the relation $\mathrm{y}_{1} \equiv \mathrm{~g}^{\mathrm{k}}$ mod p (again DLP)

- Other public key cryptosystems

\checkmark Merkle-Hellman Knapsack systems, all broken except:

- Chor-Rivest
\checkmark McEliece
\checkmark Elliptic Curve systems

Elliptic Curve Systems

\checkmark Studied initially in [Miller '86, Koblitz '87]
\checkmark Wider use from 2004 onwards
\checkmark NIST approval: 2006
\checkmark Important advantage: smaller key size for the same security level as other public-key systems
\checkmark Applications: Bitcoin, SSH (about 10\% of ssh implementations), Austrian citizen card, etc
\checkmark Main idea:

- DLP can be defined not just over Z^{*} put over other abelian groups
- Find suitable such groups where DLP is difficult
- Elliptic Curve Systems

Symmetric Scheme (key size In bils)	ECC-Based Scheme (size of n in bils)	RSA/DSA (modulus alze in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
92	384	7680
Source: Certicom	512	15360

Using elliptic curves we decrease significantly the key size!

Other applications of public-key cryptosystems

\checkmark Digital signatures
\checkmark Bit pattern that depends on the message to be signed
\checkmark Idea 1: use the decryption algorithm as a signing algorithm (treat the message as a ciphertext)
\checkmark Size of signature could be big
\checkmark Idea 2: Apply the signing algorithm to a hash of the message
\checkmark Digital Signature Standard (DSA): Based on ElGamal and the Secure Hash Algorithm (produces signature size around 320 bits)

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani : "Algorithms"
\checkmark Chapter 1, Sections 1.1-1.4
\checkmark Representative exercises: 1.11-1.13, 1.19-1.22, 1.25, 1.27-1.28
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: "Introduction to Algorithms"
\checkmark Chapter 31 on number-theoretic algorithms
\checkmark Representative exercises: most exercises up until the RSA section

