
Special Topics on Algorithms

Special Topics on Algorithms

Public Key Cryptosystems

Vangelis Markakis Ioannis Milis

George Zois

Special Topics on Algorithms

RSA

n Public-key cryptosystems
ü Main disadvantage of symmetric cryptosystems: Alice and Bob

need to agree in advance about the key Κ through some secure
channel

ü What if this is infeasible? Can we have encryption without Alice
and Bob communicating with each other beforehand?

ü Idea: Every entity has a Public and a Secret key.

ü RSA: the public key is a pair of integers
ü Suppose Alice (A) and Bob (B) have public and secret keys as

follows:
§ PA, SA for Alice

§ PB, SB for Bob.

2

Special Topics on Algorithms

RSA

n Public-key cryptosystems
ü Let EA() be the encryption function of Alice, and DA() be the decryption

function

ü Challenge for developing a computationally feasible public-key
cryptosystem:
§ Need a system where we can reveal the encyption function EA()

without running the danger of making the decryption function DA()
known

§ On the contrary, in symmetric cryptosystems knowing EA() leads to
identifying DA() as well

3

Special Topics on Algorithms

RSA

n Public-key cryptosystems
n Hence, overall requirements:

ü Computationally feasible for a user B to produce a pair of keys
(Ρublic key PB, Secret key SB)

ü Computationally feasible for a sender Α, who knows the public
key of Β and wants to send the plaintext Μ, to create the
ciphertext: C = EB(M)

ü Computationally feasible for the receiver B, who knows his
private key and receives the ciphertext C to retrieve the original
plaintext M: Μ=DB(C)=DB(EB(M))

ü Computationally infeasible to find the private key SB, knowing
only the public key PB

ü Computationally infeasible to find the message M, knowing
only the public key PB and the ciphertext C

4

Special Topics on Algorithms

RSA

n Public-key cryptosystems
Trapdoor one way functions
ü One-way functions: functions that are easy to

compute but hard to invert

ü Trapdoor: some extra information that allows us to
invert a one-way function

ü Trapdoor one-way functions: one-way functions that
are easy to invert when we have the trapdoor

ü Essentially, in public-key cryptography we are looking
for trapdoor one-way functions

ü [Diffie-Hellman, 1976]: New Directions in
Cryptography

5

Special Topics on Algorithms

RSA

n RSA - Rivest, Shamir, Adleman (1978, MIT)
ü Turing award, 2003

6

Special Topics on Algorithms

RSA

n RSA - Rivest, Shamir, Adleman (1978, MIT)

ü Block cipher
ü All calculations take place in Zn, for some large n (message space

= integers mod n)

Key generation
Choose 2 big and distinct p, q
prime numbers
Compute n: n = p×q
Compute φ(n): φ(n) = (p-1) (q-1)
Choose integer e
(1<e<φ(n)), such that: gcd(φ(n), e) = 1
Compute d, such that: de = 1 mod(φ(n))
Public key P = {e, n}
Secret key S = {d, p, q}

Euler function

7

Special Topics on Algorithms

RSA

n RSA - Rivest, Shamir, Adleman (1978, MIT)

ü In principle, we could have a phone directory with the public keys of all
users

ü For the exponentiation: use the repeated squaring algorithm

Encryption
Initial message: integer Μ such that 0 ≤ M ≤ n-1
Ciphertext: C = E(M) = Me mod n

Decryption
Ciphertext: 0 ≤ C ≤ n-1
Message recovery: M = D(C) = Cd mod n

8

Special Topics on Algorithms

RSA
n In more detail:
n How do we choose e?

ü Suffices to choose some prime number > max{p, q} (smaller prime
numbers can also be suitable) - use primality testing

ü Recommended value in some systems: e = 216 + 1 = 65537

n How do we compute d?
ü Use extended Euclidean algorithm

9

Key generation
Choose 2 big and distinct p, q
prime numbers
Compute n: n = p×q
Compute φ(n): φ(n) = (p-1) (q-1)
Choose integer e
(1<e<φ(n)), such that: gcd(φ(n), e) = 1
Compute d, such that: de = 1 mod(φ(n))
Public key P = {e, n}
Secret key S = {d, p, q}

Special Topics on Algorithms

RSA

n Example

p = 7, q = 17

n = 119
φ(n) = 96

e = 5

d = 77
since 5*77=1 mod96

Let M = 19

Encryption: C = M5 mod n = 195 mod 119 = 66

Decryption: M= C77 mod n = 66 77 mod 119 = 19

Repeated Squaring
Algorithm:

10

Key generation
Choose 2 big and distinct p, q
prime numbers
Compute n: n = p×q
Compute φ(n): φ(n) = (p-1) (q-1)
Choose integer e
(1<e<φ(n)), such that: gcd(φ(n), e) = 1
Compute d, such that: de = 1 mod(φ(n))
Public key P = {e, n}
Secret key S = {d, p, q}

Special Topics on Algorithms

RSA

n Proof of correctness
ü Theorem: For every message M

§ Ε(D(Μ)) = Μ and

§ D(E(Μ)) = Μ
ü Proof:

Let Μ Î Ζn

Since d is the multiplicative inverse of e modulo φ(n) = (p - 1)(q – 1):
ed = 1 + k φ(n) for some integer k.
i) If M ≠ 0 (mod p), we have:

Med (mod p) ≡ M1 + k φ(n) (mod p)

≡ M (Mφ(n))k (mod p)
≡ M (Mp-1)k(q-1) (mod p)
≡ M (mod p) (from Fermat’s theorem)

ii) If M = 0 (mod p), then again Med (mod p) ≡ Μ (mod p)

11

Special Topics on Algorithms

RSA

n Proof of Correctness
ü Hence, for every Μ, Med (mod p) ≡ Μ (mod p)

ü Similarly Med (mod q) ≡ Μ (mod q)

ü From the corollary of the Chinese Remainder Theorem: when n=pq,
x = y mod n iff x=y mod p and x=y mod q

ü Þ D(E(Μ)) = Med (mod n) = M (mod n)

n Simpler proof when gcd(M, n)=1:
ü ed = 1 + k φ(n) for some k.

D(E(Μ)) = Med ≡ M1 + k φ(n) (mod n)

≡ M (Mφ(n))k (mod n)

≡ M (mod n) (from Euler’s theorem)

12

Special Topics on Algorithms

RSA

n Asymmetry of RSA
ü Usually e is a relatively small number Þ fast encryption

ü E.g. when e = 216 + 1, we can encrypt with 17 multiplications

ü The private key d is usually a larger number Þ slower decryption

ü Around 2000 multiplications or more

ü RSA-Chinese Remaindering (RSA-CRT): Another version of RSA
for making decryption faster
§ Almost all operations in the decryption phase are done mod p and mod q and

then combined to return the message mod n

§ Intermediate numbers are half in size than before

§ » 4 times faster

13

Special Topics on Algorithms

RSA

n RSA Cryptanalysis
ü Conjecture: the function f(x) = xb mod n, where n

is a product of 2 primes is a one-way function

ü At the moment, there is no function that is
provably one-way

ü Theorem: If there are one-way functions, then
P ¹ NP

ü Trapdoor in RSA: φ(n) or the factoring of n

14

Special Topics on Algorithms

RSA

n RSA Cryptanalysis
Reduction to the integer factorization problem:
üSuppose Oscar can easily factor the number n

§ If he finds p and q, he can compute φ(n)
§ Then, he can easily find d such that de = 1 mod(φ(n)) using the

extended Euclidean algorithm

üFor the opposite, we also know that:
üTheorem: Any algorithm that can compute the exponent d in RSA,
can be converted into a randomized algorithm for factoring n

§ Hence, if d is revealed, it is not enough to change just d, e, we should
also change n

15

Special Topics on Algorithms

RSA

n RSA Cryptanalysis
ü Note: For factoring n, it suffices to know φ(n)

ü Suppose φ(n) becomes known

ü We can solve the system:

n = pq

φ(n) = (p-1)(q-1)

ü If q = n/p, the factors are derived by solving
p2 – (N – φ(n)+1)p + N = 0

ü Corollary: Computing φ(n) is not easier than factoring n

16

Special Topics on Algorithms

RSA

n RSA Cryptanalysis

n In practice:
ü If we work with 1024 bits, then the key is not breakable

within a “reasonable” amount of time, using current
knowledge and technology (n » 200 decimal digits)

ü Factoring algorithms do well for numbers up to around
130 decimal digits

ü NIST guidelines (2010):
§ Since 1/1/2011: 1024-bit keys were declared “deprecated”

(acceptable but possibly with some small risk)

§ Since 1/1/2014: 1024 bits no longer acceptable, only 2048 bits

17

Special Topics on Algorithms

RSA

n RSA Cryptanalysis

n Other known attacks (implementation attacks):
ü Timing attacks [Kocher ’97]: The time it takes to do the decryption

may yield information about d
ü Power attacks [Kocher ’99]: Measuring power consumption in a

smartcard during the run of the repeated squaring algorithm, may
also reveal the bits of d

§ Chips should not be vulnerable to power analysis

ü Fault attacks [Lenstra ’96, Boneh, de Millo, Lipton ’97]: If some
mistake takes place during decryption Oscar may guess d!
(applicable mostly for RSA-CRT)

§ These methods work if the computations mod p have been done correctly, and
there is a mistake on the computations mod q

§ Rule of thumb: After decryption, we could check that the calculations are all
correct, i.e., check that (Cd)e ≡ C modn

18

Special Topics on Algorithms

RSA

http://xkcd.com/538/

n RSA Cryptanalysis

Special Topics on Algorithms

ElGamal

n Κρυπτοσύστημα ElGamal
ü T. Elgamal (1985)

20

Special Topics on Algorithms

ElGamal

n Discrete logarithm problems
ü Let Z*

p = Ζp – {0} = {1, 2, ..., p-1}
ü The set Z*

p for a prime p, always has at least one
generator: a number g such that for every a Î Z*p
there exists z with gz ≡ a (mod p)

ü g generates the whole Z*
p

§ In abstract algebra terms: Z*
p with multiplication is a cyclic

group
ü The number z is called the discrete logarithm of a,

mod p with basis g
ü There are known algorithms for finding generators of

Z*
p

21

Special Topics on Algorithms

ElGamal

n Discrete logarithm problems
ü When we want to compute the k-th power of a number:

§ Easy by repeated squaring. In Z*17 with k=4, 34 ≡ 13 mod17
ü Discrete logarithm in Ζp (DLP): the reverse of raising

to a power
§ Given that 3k ≡ 13 (mod 17), find k
§ More generally: Given a generator g Î Z*p, and an element

β Î Z*p, find the unique integer k Î Zp for which gk ≡ β (mod p)
ü Considered a hard problem, when p is chosen carefully

§ For example, for p » 1024 bits and when p-1 has a «large»
prime factor

22

Special Topics on Algorithms

ElGamal

nElGamal cryptosystem (T. ElGamal, 1985)

n Based on the difficulty of DLP
n Defined over Z*p for some large prime p

üKey generation
§ First, select a large prime p such that DLP is difficult
§ An indicative method: Find a prime p such that p−1 = mq for

some small integer m and large prime q
§ E.g., with m=2, we can first choose a large prime q and then test

whether p=2q+1 is a prime number
• Use primality testing

§ Choose a generator g Î Z*p, (hence gp-1 ≡ 1 mod p)
§ Choose an element α Î {2, ..., p-2}

23

Special Topics on Algorithms

ElGamal

nElGamal cryptosystem
ü Key generation

§ Public + private keys = {(p,g,α,β): β ≡ gα modp)}
§ Public Key: The numbers p, g, β
§ Private Key: the exponent α

ü Encryption algorithm for a message x:
§ Alice chooses a secret random number k Î Z*p–1 and sends to

Bob E(x,k) = (y1, y2), where
• y1 = gk modp
• y2 = xβk modp //mask on x

ü Decryption algorithm:
§ Upon receiving y1, y2, do:

• D(y1, y2) = y2(y1
α)-1modp

o Which results at x

24

Special Topics on Algorithms

ElGamal

nElGamal cryptosystem
n Proof of correctness

Claim: D(y1, y2)=y2(y1
α)-1modp = x

• y2(y1
α)-1 = xβk ((gk)α)-1

= xβk ((gα)k)-1

= xβk ((β)k)-1 (because β ≡ gα modp)
= x

nFeatures
ü The plaintext x is “masked” through the multiplication by βk

(yielding y2)
ü The ciphertext contains also the value gk
ü Bob knows his private key α, hence he can derive (y1)α

ü He then removes the mask by multiplying y2 with the inverse of βk

25

Special Topics on Algorithms

ElGamal

nExample
ü Let p = 2579, g = 2, α = 765
ü β = 2765 mod 2579 = 949
ü Suppose Alice wants to send the message x = 1299
ü Suppose also that she chooses at random k = 853

ü Then:
§ y1= 2853 mod 2579 = 435
§ y2 = 1299 (949)853 mod 2579 = 2396

ü Bob then calculates
§ 2396 (435765)-1 mod 2579 = 1299

26

Special Topics on Algorithms

ElGamal

n Cryptanalysis for ElGamal

n The cryptanalysis can be reduced to the discrete
logarithm problem

n Given the public parameters (p, g, β) and the
ciphertext (y1, y2), Oscar should
ü either compute the exponent α, from the relation

β ≡ gα mod p (DLP)
ü or find k from the relation y1 ≡ gk mod p (again DLP)

27

Special Topics on Algorithms

n Other public key cryptosystems

ü Merkle-Hellman Knapsack systems, all broken
except:
§ Chor-Rivest

ü McEliece

ü Elliptic Curve systems

28

Special Topics on Algorithms

ΕCC

n Elliptic Curve Systems
ü Studied initially in [Miller ’86, Koblitz ’87]

ü Wider use from 2004 onwards
ü NIST approval: 2006
ü Important advantage: smaller key size for the same

security level as other public-key systems
ü Applications: Bitcoin, SSH (about 10% of ssh

implementations), Austrian citizen card, etc
ü Main idea:

§ DLP can be defined not just over Z*p but over other abelian
groups

§ Find suitable such groups where DLP is difficult

29

Special Topics on Algorithms

ΕCC

n Elliptic Curve Systems

Using elliptic curves we decrease significantly the key size!

30

Special Topics on Algorithms

n Other applications of public-key
cryptosystems
ü Digital signatures
ü Bit pattern that depends on the message to be signed
ü Idea 1: use the decryption algorithm as a signing algorithm

(treat the message as a ciphertext)
ü Size of signature could be big
ü Idea 2: Apply the signing algorithm to a hash of the message
ü Digital Signature Standard (DSA): Based on ElGamal and the

Secure Hash Algorithm (produces signature size around 320
bits)

31

Special Topics on Algorithms

Bibliography on Number Theory and Cryptography

• [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”
ü Chapter 1, Sections 1.1 – 1.4

ü Representative exercises: 1.11 – 1.13, 1.19 – 1.22, 1.25, 1.27-1.28

• [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:
“Introduction to Algorithms”
ü Chapter 31 on number-theoretic algorithms

ü Representative exercises: most exercises up until the RSA section

32

