Special Topics on Algorithms Fall 2023

Modular Arithmetic, Primality Testing

Vangelis Markakis Ioannis Milis and George Zois

Modular Arithmetic

- Deals with restricted ranges of integers, e.g., $\mathrm{Z}_{\mathrm{N}}=\{0,1$, ..., $\mathrm{N}-1$ \} for some large N
- Reset a counter to zero when an integer reaches a max value $\mathrm{N}>0$

$$
\begin{aligned}
& \text { If } \mathrm{x}=\mathrm{qN}+\mathrm{r}, \quad 0 \leq \mathrm{r} \leq \mathrm{N}-1, \mathrm{~N}>0 \\
& \mathrm{x} \bmod \mathrm{~N}=\mathrm{r}
\end{aligned}
$$

$x \equiv y(\bmod N) \Leftrightarrow x \bmod N=y \bmod N$ x and y are congruent modulo N

Modular Arithmetic

Examples:

- $1 \equiv(9+4) \bmod 12$

- $253 \equiv 13(\bmod 60)$, since $253=4^{*} 60+13$
(253 minutes is 4 hours +13 min)

Modular Arithmetic

Claim 1: $x \equiv y(\bmod N)$ iff $N \mid x-y$

Proof:

$\Rightarrow: \quad x=p N+r, y=q N+r \Rightarrow x-y=(p-q) N \Rightarrow N \mid x-y$
$\Leftarrow: ~ N \mid x-y \Rightarrow x-y=k N \Rightarrow x=y+k N$
Let $r=y \bmod N$, that is, $\mathrm{y}=\mathrm{qN}+\mathrm{r}$
$\Rightarrow \mathrm{x}=\mathrm{qN}+\mathrm{r}+\mathrm{kN} \Rightarrow \mathrm{x}=(\mathrm{q}+\mathrm{k}) \mathrm{N}+\mathrm{r} \Rightarrow \mathrm{r}=\mathrm{x} \bmod \mathrm{N}$

Modular Arithmetic

$\underline{\bmod N}$ is an equivalence relation
$-a \equiv a(\bmod N)$
$-a \equiv b(\bmod N) \Rightarrow b \equiv a(\bmod N)$
Reflexivity
$-a \equiv b(\bmod N), b \equiv c(\bmod N) \Rightarrow a \equiv c(\bmod N)$ Transitivity

Modulo N arithmetic divides Z into
N equivalence classes each one of the form
$[a]=\{x \mid x \equiv a(\bmod N)\}, 0 \leq a \leq N-1$
or
$[a]=\{k N+a \mid k \in Z\}$, since $x=k N+a, \quad 0 \leq a \leq N-1$

Modular Arithmetic

Example:

There are 5 equivalence classes modulo 5
$Z_{5}=\{0,1,2,3,4\}$
$[0]=\{\ldots,-15,-10,-5,0,5,10,15, \ldots\}$
$[1]=\{\ldots,-14,-9,-4,1,6,11,16, \ldots\}$
$[2]=\{\ldots,-13,-8,-3,2,7,12,17, \ldots\}$
$[3]=\{\ldots,-12,-7,-2,3,8,13,18, \ldots\}$
$[4]=\{\ldots,-11,-6,-1,4,9,14,19, \ldots\}$
All numbers in [a] are congruent $\bmod \mathrm{N}$ (any of them is substitutable by any other)

Modular Addition and Multiplication

Substitution Rule

Let $x \equiv x^{\prime}(\bmod N)$ and $y \equiv y^{\prime}(\bmod N)$, then, $x+y \equiv x^{\prime}+y^{\prime}(\bmod N)$ and $x y \equiv x^{\prime} y^{\prime}(\bmod N)$
The following properties also hold:
i) $x+(y+z) \equiv(x+y)+z(\bmod N)$
ii) $x y \equiv y x(\bmod N)$
iii) $x(y+z) \equiv x y+x z(\bmod N)$

Associativity
Commutativity
Distributivity

Hence:

in performing a sequence of additions and multiplications $(\bmod N)$ we can reduce intermediate results to their remainders mod N in any stage

Example:

$2^{345} \equiv\left(2^{5}\right)^{69} \equiv 32^{69} \equiv 1^{69} \equiv 1(\bmod 31)$

Modular Division

Common arithmetic: inverse of $\alpha \neq 0: \mathrm{x}=1 / \alpha, \alpha \mathrm{x}=1$
Modular arithmetic: multiplicative inverse of α, modulo N :

- $\mathrm{x} \in \mathrm{Z}$ such that $\alpha \mathrm{x} \equiv 1(\bmod \mathrm{~N})$
- We can also write $\mathrm{x} \equiv \alpha^{-1}(\bmod \mathrm{~N})$
- does not always exist!

Claim 2: For $1 \leq \mathrm{a}<\mathrm{N}$, a has a multiplicative inverse $\bmod \mathrm{N}$ iff $\operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$
i) Assume a has a multiplicative inverse mod N . By contradiction, if $\operatorname{gcd}(\mathrm{a}, \mathrm{N})>1$, it must hold that $\operatorname{gcd}(\mathrm{a}, \mathrm{N}) \mid$ ax $\bmod \mathrm{N}$, for every x . Thus, it does not hold that $\alpha x \equiv 1(\bmod N)$
ii)If $\operatorname{gcd}(a, N)=1$, then by applying $\operatorname{ExtEUCLID}(a, N) \ldots$

Modular Division

Example: $2 x \equiv 1(\bmod 6)$ $\operatorname{gcd}(2,6)=2 \Rightarrow 2$ does not have an inverse $\bmod 6$

How can we find multiplicative inverses when they exist? If $\operatorname{gcd}(a, N)=1$ then ExtEUCLID returns integers x, y such that

$$
a x+N y=1 \Rightarrow a x \equiv 1(\bmod N)
$$

Example: $11 x \equiv 1(\bmod 25)$
$\operatorname{ExtEUCLID}(11,25)$ returns $x=-34, y=15, \operatorname{gcd}(11,25)=1$, and thus $11^{*}(-34) \equiv 1(\bmod 25)$

If $\operatorname{gcd}(a, N)=1$ we say that a, N are relatively primes or coprimes Hence: α has a multiplicative inverse modulo N iff a, N are coprimes.

Prime Numbers

- A number p is prime iff its only divisors are the trivial divisors 1 and p
- $\nexists \mathrm{N}: \mathrm{N} \mid \mathrm{p}, 2 \leq \mathrm{N} \leq \mathrm{p}-1$
- By convention, 1 is not a prime
- $P=\{2,3,5,7,11,13,17,19, \ldots \ldots$.
- Prime numbers play a special role in number theory and its applications
- A number that is not prime is called composite

Goldbach conjecture:
Any even integer greater than 3 can be written as the sum of two primes

Prime Numbers

- Some big prime numbers:
- $\left(333+10^{793}\right) 10^{791}+1$ (1585 digits, identified in 1987)
- $2^{1257787}-1$ (378.632 digits, 1996)
- $2^{77,232,917-1(\text { around } 23 \text { million digits, Dec 2017) }}$
- Mersenne primes: prime numbers in the form $2^{m}-1$
- Not all numbers of this form are primes
- Fermat primes: prime numbers in the form $2^{2^{n}}+1$
- Again, not all numbers of this form are primes

Prime Numbers

Fundamental theorem of arithmetic (or unique factorization theorem):

Every natural number ≥ 2, can be written in a unique way as a product of prime powers:

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}
$$

- where each p_{i} is prime, $p_{1}<p_{2}<\cdots<p_{r}$ and each e_{i} is a positive integer
- 6000 is uniquely decomposed as $2^{4} \cdot 3 \cdot 5^{3}$
- Proof by (strong) induction
- Corollary: If p is prime and p|ab \rightarrow p|a or p|b (not true when p is not prime)

Prime Numbers

CLAIM 1 (Euclid's theorem): There are infinitely many primes

Proof: Suppose that $\mathrm{P}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$ for some n
Let $\mathrm{p}=\mathrm{p}_{1} \cdot \mathrm{p}_{2} \cdot \mathrm{p}_{3} \cdot \ldots \cdot \mathrm{p}_{\mathrm{n}}+1$

- If p is prime, contradiction, since we assumed no other primes
- If p is not prime

By the fundamental theorem, there exists a prime that divides p
But $\mathrm{p} \bmod \mathrm{p}_{\mathrm{i}}=1, \forall \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
again a contradiction.

Prime Numbers

- Relatively prime numbers
- Two integers a, b are relatively prime (or coprimes) if $\operatorname{gcd}(a, b)=1$.
- E.g., 8 and 15 are relatively prime,
- By Euclid's algorithm we can decide in polynomial time if 2 numbers are relatively prime with each other

Prime Numbers

Euler's phi function

Definition: For every $n \geq 2, \varphi(n)=$ number of integers between 1 and n that are relatively prime with n

Properties:

- For any prime number $p: \varphi(p)=p-1$
- $\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}(1-1 / p)$
$-\quad \varphi(\mathrm{mn})=\varphi(\mathrm{m}) \varphi(\mathrm{n})$, iff $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$
Corollary: For every $\mathrm{n} \geq 2$

$$
\varphi(n)=n \prod_{p \backslash n}\left(1-\frac{1}{p}\right)
$$

(where p refers to all prime numbers that divide n)

Prime Numbers

Euler's phi function

- The properties help in simplifying the calculations
- $\varphi(45)=24$, since the prime factors of 45 are 3 and 5
- $\varphi(45)=45^{*}(1-1 / 3)(1-1 / 5)=45^{*}(2 / 3)(4 / 5)=24$
- $\varphi(1512)=\varphi\left(2^{3 *} 3^{3 *} 7\right)=\varphi\left(2^{3}\right)^{*} \varphi\left(3^{3}\right)^{*} \varphi(7)=$ $\left(2^{3}-2^{2}\right) *\left(3^{3}-3^{2}\right)^{*}(7-1)=4$ * 18 * $6=432$
- Hence there are 432 numbers between 1 and 1512 that are relatively prime with 1512

Prime Numbers

2 useful properties for simplifying calculations
Fermat's Little theorem [around 1640]
If p is prime then for every α such that $1 \leq \alpha \leq \mathrm{p}-1$
$\alpha^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$

A generalization: Euler's theorem

For every integer $\mathrm{n}>1, \alpha^{\varphi(\mathrm{n})} \equiv 1(\bmod \mathrm{n})$ for every α such that $\operatorname{gcd}(\alpha, \mathrm{n})=1$ [if n is prime, $\varphi(\mathrm{n})=\mathrm{n}-1$]

For example: Find $2^{26} \bmod 7$
$2^{26}=2^{2} \cdot 2^{24}=2^{2} \cdot\left(2^{6}\right)^{4} \equiv 2^{2} \cdot 1 \bmod 7 \equiv 4 \bmod 7$

Prime Numbers

Fermat's Little theorem [around 1640]

If p is prime then for every α such that $1 \leq \alpha \leq \mathrm{p}$-1
$\alpha^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$

Proof:

- Let $\mathrm{S}=\{1,2,3, \ldots, \mathrm{p}-1\}$ all possible mod p integers
\cdot Main observation: By multiplying integers in S by a $(\bmod p)$
we simply re-permute them!
- It is an implication of the fact that α has a multiplicative inverse mod p , since $\operatorname{gcd}(\alpha, \mathrm{p})=1$

Prime Numbers

Example:

$$
\alpha=3, p=7, \alpha^{6} \equiv 1(\bmod 7)
$$

Taking products: $6!\equiv 3^{6} \cdot 6!(\bmod 7)$
$6!$ is relatively prime to $7 \Rightarrow 3^{6} \equiv 1(\bmod 7)$

Prime Numbers

Proof continued (for general α and prime p)

Consider 2 distinct numbers

$$
i, j \in S \Rightarrow i \neq j, i, j \leq p-1, i, j \neq 0
$$

The numbers resulting by multiplying the elements of S by $\alpha(\bmod p)$ are:

- Distinct
if not: $\alpha \cdot \mathrm{i} \equiv \alpha \cdot \mathrm{j}(\bmod \mathrm{p}) \Rightarrow \mathrm{i} \equiv \mathrm{j}(\bmod \mathrm{p}) \Rightarrow \mathrm{i} \equiv \mathrm{j}$, contradiction
- Non zero $\bmod \mathbf{p}$

$$
\text { if } \alpha \cdot \mathrm{i} \equiv 0(\bmod \mathrm{p}) \Rightarrow \mathrm{i}=0, \text { contradiction }
$$

- In the range [1, $\mathrm{p}-1$]

Hence, they are a permutation of S
$\Rightarrow(\mathrm{p}-1)!\equiv \alpha^{\mathrm{p}-1} \cdot(\mathrm{p}-1)!(\bmod \mathrm{p}) \Rightarrow \alpha^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$

Primality Testing

Problem Primes:

I: An integer $\mathrm{N}>1$
Q: Answer whether or not N is prime
One of the most fundamental problems in Computer Science

A naive approach: Trial division

- Try to see if any of the numbers $2,3,4, \ldots, \mathrm{~N}-1$ divides N
- Actually it suffices to try only with the numbers $2,3, \ldots,\lfloor\sqrt{ } N\rfloor$
- If N is composite it has a factor, which is at most $\sqrt{ } N$
- In fact, since N is odd, we can also remove the even numbers
-Worst case complexity: $\sqrt{ } N / 2$, hence $\mathrm{O}(\sqrt{ } N)$, exponential since $\sqrt{ } N=$ $2^{\log \mathrm{N} / 2}$
- Effective only for small values of N (for RSA, N has 512 bits or even more)

Primality Testing

A different approach

- Faster but with a small probability of error

Fermat Test

Algorithm PRIME (N)
Pick a positive integer $\alpha<\mathrm{N}$ at random
if $\alpha^{\mathrm{N}-1} \equiv 1(\bmod \mathrm{~N}) \quad$ then return YES // we hope yes else return NO // definite no

Complexity: only need to use the algorithm for exponentiation mod N (repeated squaring), hence $\mathrm{O}(\log \mathrm{N})$ multiplications

Primality Testing

The algorithm can make errors but only of one kind:

- If it says that N is composite, then it is correct
- If it says that N is prime then it may be wrong
- $\operatorname{gcd}(\alpha, \mathrm{N})>1: \mathrm{N}$ is not prime, and N fails the test - $\quad \operatorname{gcd}(\alpha, N)=1$
- if N is prime: passes the test
- if N is composite: can pass the test for some α ' s !
e.g. $341=11^{*} 31$ and $2^{340} \equiv 1(\bmod 341)$
- if N is a Carmichael number: passes the test for all α ' s !!

$$
\begin{aligned}
& \text { e.g. } 561=3^{*} 11^{*} 17 \text { and } \alpha^{560} \equiv 1(\bmod 561) \\
& \text { for every } \alpha: \operatorname{gcd}(\alpha, \mathrm{n})=1!
\end{aligned}
$$

Primality Testing

Carmichael numbers

- Actually due to Korselt
- They are the composite numbers that pass the Fermat test for all a's
- Alternative definition: A number n is a Carmichael number if it is not divisible by the square of a prime and, for all prime divisors p of n, it is true that $p-1 \mid n-1$
- They are extremely rare (561, 1105, 1729, 2465,...)
- $561=3 \cdot 11 \cdot 17$
- There are only 255 of them less than 10^{8}
- There are 20,138,200 Carmichael numbers between 1 and 10^{21} (approximately one in 50 billion numbers)
- Ignore them for now (see Miller-Rabin test)

Primality Testing

Composite: passes or fails the test depending on α, but there is an α for which it fails if it is not a Carmichael number

If N is composite and not a Carmichael number, for how many values of α does it fail the test?

CLAIM 3: If a number N fails the Fermat test for some value of α, then N also fails the test for at least half of the choices of $\alpha<\mathbf{N}$

Primality Testing

not Prime, $\alpha^{\mathrm{N}-1} \equiv 1(\bmod \mathrm{~N})$, for at most half of the values $\alpha<\mathrm{N}$
$\operatorname{Pr}[$ Fermat test returns YES, when N is Prime] $=1$
$\operatorname{Pr}[F e r m a t$ test returns YES, when N is not Prime $] \leq 1 / 2$

Repeat the algorithm k times for different $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{k}}$ $\operatorname{Pr}[$ Fermat test returns YES, when N is not Prime $] \leq 1 / 2^{\mathrm{k}}$

Generating Random Primes

Density of prime numbers

- Very important to be able to find prime numbers quickly
- How should we search for prime numbers?
- Theorem: For every $\mathrm{n} \geq 1$, there is always a prime between n and $2 n$
- Initial proof: Chebyshev (1850)
- Simpler proof: Erdos (1932), at the age of $19!$!

Generating Random Primes

Prime number Theorem (Conjectured by Legendre et al.

 \simeq 1797-1798)Lex $\pi(x)$ be the number of primes $\leq x$. Then

$$
\pi(x) \sim \frac{x}{\ln x} \text { or } \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1
$$

If N is a random integer of n bits (hence $\leq 2^{\mathrm{n}}$), it has roughly a one-in-n chance of being prime:

$$
p=\operatorname{Pr}[N \text { is prime }]=\frac{2^{\mathrm{n}} / \ln 2^{\mathrm{n}}}{2^{\mathrm{n}}}=\frac{1}{\ln 2^{\mathrm{n}}}=\frac{\log \mathrm{e}}{\log 2^{\mathrm{n}}}=\frac{\log \mathrm{e}}{\mathrm{n}}=\frac{1.44}{\mathrm{n}}
$$

Generating Random Primes

Algorithm

Repeat
Pick a random n-bit integer N
Run the Fermat test on N
Until N passes

How many iterations? (Waiting for the first success)

Generating Random Primes

Analysis on the number of iterations

- Let $\mathrm{k}=$ \#trials until first success
- Let $\mathrm{p}=$ success probability of each trial $=\operatorname{Pr}[$ randomly chosen N is prime]
- $\operatorname{Pr}[\mathrm{k}=\mathrm{j}]=$ probability that we succeed in the j-th trial (and hence fail in previous ones)
- $\operatorname{Pr}[k=j]=(1-p)^{j^{-1}} p$

$$
\begin{aligned}
& E[k]=\sum_{j=1}^{\infty} j \operatorname{Pr}[k=j]=\sum_{j=1}^{\infty} j(1-p)^{j-1} p=\frac{p}{p-1} \sum_{j=1}^{\infty} j(1-p)^{j} \\
& =\frac{p}{p-1} \frac{1-p}{p^{2}}=\frac{1}{p}=\frac{n}{1.44}
\end{aligned}
$$

Generating Random Primes

$\mathrm{N}=25 * 10^{9}$
$\pi(N)=\frac{25 \cdot 10^{9}}{\ln \left(25 \cdot 10^{9}\right)}=10^{9}$

$\operatorname{Pr}\left[\right.$ a composite $\leq 25 \cdot 10^{9}$ passes the test $] \approx \frac{20.000}{10^{9}}=2 \cdot 10^{-5}$

Chinese Remainder Theorem

Linear equations in modular arithmetic

- Around 100 A.D.
- Question: Is there an integer x such that in a parade of x soldiers, when they align themselves in

1. Groups of 3 , there is only 1 remaining soldier in the last row
2. Groups of 4, there are 3 remaining soldiers
3. Groups of 5 , there are 3 remaining soldiers

- - -

. . .

$$
.
$$

Chinese Remainder Theorem

Theorem:

- Let $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ be positive integers that are relatively prime with each other, hence $\operatorname{gcd}\left(\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right)=1, \forall \mathrm{i} \neq \mathrm{j}$.
- Then for any integers $a_{1}, a_{2}, \ldots, a_{k}$, the system

$$
x \equiv \mathrm{a}_{1} \bmod \mathrm{n}_{1}, \mathrm{x} \equiv \mathrm{a}_{2} \bmod \mathrm{n}_{2}, \ldots, \mathrm{x} \equiv \mathrm{a}_{\mathrm{k}} \bmod \mathrm{n}_{\mathrm{k}},
$$

has a unique solution within Z_{n}, where $n=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$

Corollary: If $n_{1}, n_{2}, \ldots, n_{k}$, are positive integers that are relatively prime with each other, then for any x and a :
$x \equiv \operatorname{amod} n_{i}$ for $i=1,2, \ldots, k$ iff $x \equiv \operatorname{amod} n$
where $\mathrm{n}=\mathrm{n}_{1} \cdot \mathrm{n}_{2} \cdot \ldots \cdot \mathrm{n}_{\mathrm{k}}$

Chinese Remainder Theorem

Proof:

- Let $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ be relatively prime with each other
- Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}$ be arbitrary integers
- $\forall i$ define $c_{i}=n / n_{i}$.
- $\operatorname{gcd}\left(c_{i}, n_{i}\right)=1 \rightarrow c_{i}$ has an inverse mod n_{i}.
- Let d_{i} be the inverse, hence $c_{i} d_{i} \bmod n_{i}=1$
- The number $x^{*}=a_{1} \mathrm{c}_{1} \mathrm{~d}_{1}+\mathrm{a}_{2} \mathrm{c}_{2} \mathrm{~d}_{2}+\ldots+\mathrm{a}_{\mathrm{k}} \mathrm{c}_{\mathrm{k}} \mathrm{d}_{\mathrm{k}}$ satisfies all the equations
- Complexity: polynomial since we are just using the extended Euclidean algorithm

Chinese Remainder Theorem

Example

- Which x satisfies the following equations?

$$
\begin{aligned}
& x \equiv 2(\bmod 5) \\
& x \equiv 3(\bmod 13)
\end{aligned}
$$

- $\mathrm{a}_{1}=2, \mathrm{n}_{1}=5, \mathrm{a}_{2}=3, \mathrm{n}_{2}=13$
- We have $n=n_{1}{ }^{*} n_{2}=5 * 13=65, c_{1}=65 / 5=13, c_{2}=5$
- Since $13^{-1} \equiv 2(\bmod 5)$ and $5^{-1} \equiv 8(\bmod 13), d_{1}=2, d_{2}=8$
- Then, $x=a_{1} c_{1} d_{1}+a_{2} c_{2} d_{2}$

$$
\begin{aligned}
x & \equiv 2 \cdot 2 \cdot 13 \cdot+3 \cdot 5 \cdot 8 & & (\bmod 65) \\
& \equiv 52+120=42 & & (\bmod 65)
\end{aligned}
$$

All the solutions are in the form $x(t)=42+65 t, t \in Z$

