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• Deals with restricted ranges of integers, e.g., ΖN = {0, 1, 
..., N-1} for some large N
• Reset a counter to zero when an integer 

reaches a max value N > 0

If x= qN + r,  0 £ r £ N-1,  N>0
x mod N = r

x º y (mod N) ó x mod N= y mod N
x and y are congruent modulo N

Modular Arithmetic



• 253 º 13(mod 60), since 253= 4*60+13
(253 minutes is 4 hours + 13 min)

Modular Arithmetic
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Examples:

• 1º (9+4)mod12  



Claim 1: x º y (mod N) iff N|x-y
Proof :
Þ: x=pN+r, y=qN+r Þ x-y=(p-q)N Þ N |x-y 

Ü:    N|x-y Þ x-y = kN Þ x=y+kN
Let  r= y mod N, Þ

that is, y=qN+r

Þ x=qN+r+kN Þ x=(q+k)N+r Þr= x mod N

Modular Arithmetic
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mod N is an equivalence relation
- a º a (mod N) Reflexivity
– a º b (mod N) Þ b º a (mod N) Symmetry
– a º b (mod N),  b º c (mod N) Þ a º c (mod N) Transitivity

Modulo N arithmetic divides Z into 
N equivalence classes each one of the form
[a]= {x| x º a (mod N)} , 0 £ a £ N-1
or  
[a]= {kN+a| k Î Z },  since x=kN+a,   0 £ a £ N-1

Modular Arithmetic



Example:
There are 5 equivalence classes modulo 5
Z5 = {0, 1, 2, 3, 4}
[0]= {…, -15, -10, -5, 0, 5, 10, 15, …}
[1]= {…, -14, -9, -4, 1, 6, 11, 16, …}
[2]= {…, -13, -8, -3, 2, 7, 12, 17, …}
[3]= {…, -12, -7, -2, 3, 8, 13, 18, …}
[4]= {…, -11, -6, -1, 4, 9, 14, 19, …}

All numbers in [a] are congruent mod N
(any of them is substitutable by any other)

Modular Arithmetic



Substitution Rule

Let x º x’ (mod N) and  y º y’ (mod N),
then, x+y º x’+y’ (mod N) and xy º x’y’ (mod N)

The following properties also hold:
i) x+(y+z) º (x+y)+z (mod N)       Associativity
ii) xy º yx (mod N) Commutativity
iii) x(y+z) º xy+xz (mod N) Distributivity

Hence:
in performing a sequence of additions and multiplications 
(mod N) we can reduce intermediate results to their 
remainders mod N in any stage

Example:
2345 º (25)69 º 3269 º 169 º 1 (mod 31)

Modular Addition and Multiplication



Common arithmetic: inverse of α≠0: x=1/α, αx=1

Modular arithmetic: multiplicative inverse of α, modulo N: 
• xÎ Z such that αx º 1 (mod N)  
• We can also write x º α-1 (mod N) 
• does not always exist!

Claim 2: For 1 ≤ a < N, a has a multiplicative inverse mod N 
iff gcd(a, N) = 1

i)Assume a has a multiplicative inverse mod N. By contradiction, if 
gcd(a,N) > 1, it must hold that gcd(a,N) | ax mod N, for every x. Thus, it 
does not hold that αx º 1 (mod N) 
ii)If gcd(a,N) =1, then by applying ExtEUCLID(a,N) …

Modular Division



Example: 2x º 1 (mod 6)
gcd(2,6) = 2 Þ 2 does not have an inverse mod 6

How can we find multiplicative inverses when they exist?
If gcd(a,N)=1 then ExtEUCLID returns integers x,y such that

ax + Ny = 1 Þ ax º 1 (mod N)

Example: 11x º 1 (mod 25)

ExtEUCLID(11, 25) returns x = -34, y = 15, gcd(11, 25) = 1, and 
thus 11*(-34)º 1 (mod 25)

If gcd(a,N)=1 we say that a, N are relatively primes or coprimes
Hence: α has a multiplicative inverse modulo N iff a, N are 
coprimes.

Modular Division



• A number p is prime iff its only divisors are the trivial 
divisors 1 and p  

• $ N: N|p, 2 £ N £ p-1
• By convention, 1 is not a prime 
• P= {2, 3, 5, 7, 11, 13, 17, 19,…….}
• Prime numbers play a special role in number theory and its 

applications
• A number that is not prime is called composite

Goldbach conjecture:
Any even integer greater than 3 can be written as the sum of        
two primes

Prime Numbers



– Some big prime numbers:

• (333+ 10793)10791 + 1 (1585 digits, identified in 1987) 

• 21257787 - 1 (378.632 digits, 1996)

• 277,232,917-1(around 23 million digits, Dec 2017)

• Mersenne primes: prime numbers in the form 2m - 1
– Not all numbers of this form are primes

• Fermat primes: prime numbers in the form
– Again, not all numbers of this form are primes
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Fundamental theorem of arithmetic (or unique factorization theorem):
Every natural number ≥ 2, can be written in a unique way as a 
product of prime powers:

– where each pi is prime, p1< p2 < ··· < pr and each ei is a positive 
integer

– 6000 is uniquely decomposed as 24 · 3 · 53

– Proof by (strong) induction
– Corollary: If p is prime and p|ab è p|a or p|b (not true when p is 

not prime)
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CLAIM 1 (Euclid’s theorem): There are infinitely many 
primes

Proof: Suppose that P = {p1, p2, …, pn} for some n

Let p = p1 × p2 × p3 × ... × pn +1

• If p is prime, contradiction, since we assumed no 
other primes

• If p is not prime
By the fundamental theorem, there exists a prime 
that divides p
But p mod pi =1,  "i, 1 ≤ i ≤ n
again a contradiction.

Prime Numbers



• Relatively prime numbers 
– Two integers a, b are relatively prime (or co-

primes) if gcd(a, b) = 1. 
• E.g., 8 and 15 are relatively prime, 
• By Euclid’s algorithm we can decide in polynomial 

time if 2 numbers are relatively prime with each 
other

Prime Numbers



Euler's phi function
Definition: For every n≥2, φ(n) = number of integers between 1 and n 

that are relatively prime with n

Properties:

– For any prime number p: φ(p) = p-1

– φ(pα) = pα - pα-1 = pα (1-1/p)

– φ(mn) = φ(m)φ(n), iff gcd(m,n) = 1

Corollary: For every n≥2

(where p refers to all prime numbers that divide n)
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Euler's phi function
– The properties help in simplifying the calculations

• φ(45) = 24, since the prime factors of 45 are 3 and 5
– φ(45)=45*(1-1/3)(1-1/5)=45*(2/3)(4/5)=24

• φ(1512) = φ(23*33*7) = φ(23)* φ(33) * φ(7) = 

(23-22) * (33-32)*(7-1) = 4 * 18 * 6 = 432

• Hence there are 432 numbers between 1 and 1512 that are 
relatively prime with 1512

Prime Numbers



2 useful properties for simplifying calculations

Fermat’s Little theorem [around 1640]
If p is prime then for every α such that 1 £ α £ p-1
αp-1 ≡ 1 (mod p)

A generalization: Euler’s theorem
For every integer n>1, αφ(n) ≡ 1 (mod n)  for every α 

such that gcd(α, n) = 1 [if n is prime, φ(n) = n-1]

For example: Find 226 mod 7
226 = 22 × 224 = 22 × (26)4 ≡ 22 × 1 mod 7 ≡ 4 mod 7

Prime Numbers



Fermat’s Little theorem [around 1640]
If p is prime then for every α such that 1 £ α £ p-1
αp-1 ≡ 1 (mod p)

Proof:
•Let S = {1, 2, 3, …, p-1} all possible mod p integers
•Main observation: By multiplying integers in S by a (mod p) 
we simply re-permute them!

• It is an implication of the fact that α has a multiplicative inverse mod 
p, since gcd(α, p)=1

Prime Numbers



Example:
α = 3, p = 7, α6 ≡ 1 (mod 7)

{1,2,3,4,5,6} = {1·3, 2·3, 3·3, 4·3, 5·3, 6·3 (mod 7)}

Taking products: 6! ≡ 36 ·6! (mod 7) 
6! is relatively prime to 7 Þ 36 ≡ 1 (mod 7)

1·3 (mod 7) = 3
2·3 (mod 7) = 6
3·3 (mod 7) = 2
4·3 (mod 7) = 5
5·3 (mod 7) = 1
6·3 (mod 7) = 4

Prime Numbers
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Proof continued (for general α and prime p)

Consider 2 distinct numbers

The numbers resulting by multiplying the elements of S
by α (mod p) are:
• Distinct

if not: α · i ≡ α · j (mod p) Þ i ≡ j (mod p) Þ i ≡ j, 
contradiction

• Non zero mod p
if α · i ≡ 0 (mod p) Þ i=0, contradiction

• In the range [1, p-1]

Hence, they are a permutation of S
Þ (p-1)! ≡ αp-1 · (p-1)! (mod p) Þ αp-1 ≡ 1 (mod p)

Prime Numbers

i, j Î S Þ i≠j, i, j £ p-1, i,j≠0



Problem Primes:
I: An integer N > 1
Q: Answer whether or not N is prime

One of the most fundamental problems in Computer Science

A naive approach: Trial division
•Try to see if any of the numbers 2, 3, 4,…,N-1 divides N

•Actually it suffices to try only with the numbers 2, 3, ..., ë√Nû
• If N is composite it has a factor, which is at most √N

•In fact, since N is odd, we can also remove the even numbers

•Worst case complexity: √N/2, hence O(√N), exponential since √N = 
2logN/2

•Effective only for small values of N (for RSA, N has 512 bits or even 
more)

Primality Testing



A different approach
•Faster but with a small probability of error

Fermat Test
Algorithm PRIME (N)
Pick a positive integer α<N at random
if   αN-1 º 1 (mod N)     then return YES  // we hope yes

else return NO   // definite no

Complexity: only need to use the algorithm for 
exponentiation mod N (repeated squaring), hence 
O(logN) multiplications

Primality Testing



The algorithm can make errors but only of one kind:
• If it says that N is composite, then it is correct
• If it says that N is prime then it may be wrong

• gcd(α,N) > 1: N is not prime, and N fails the test
• gcd(α,N) = 1

- if N is prime: passes the test
- if N is composite: can pass the test for some α’s!

e.g. 341 = 11*31 and   2340 º 1(mod341)
- if N is a Carmichael number: passes the test 
for all α’s!!
e.g. 561 = 3*11*17 and   α560 º 1 (mod 561)

for every α: gcd(α,n)=1!

Primality Testing



Carmichael numbers

• Actually due to Korselt
• They are the composite numbers that pass the Fermat test for all a’s
• Alternative definition: A number n is a Carmichael number if it is 

not divisible by the square of a prime and, for all prime divisors p 
of n, it is true that p−1 | n−1

• They are extremely rare (561, 1105, 1729, 2465,…)
• 561 = 3×11×17
• There are only 255 of them less than 108

• There are 20,138,200 Carmichael numbers between 1 and 1021

(approximately one in 50 billion numbers)
• Ignore them for now  (see Miller-Rabin test)

Primality Testing



Prime: passes the Fermat test

Composite: passes or fails the test depending on α, 
but there is an α for which it fails if it is 

not a Carmichael number

Primality Testing

N

CLAIM 3: If a number N fails the Fermat test for some 
value of α, then N also fails the test for at least half of 
the choices of α < N

If N is composite and not a Carmichael number, 
for how many values of α does it fail the test?



Prime,         αN-1 º 1 (mod N), for all α<N

not Prime,  αN-1 º 1 (mod N), for at most half 
of the values α<N

Primality Testing

Pr[Fermat test returns YES, when N is Prime]=1
Pr[Fermat test returns YES, when N is not Prime] £ 1/2

Repeat the algorithm k times for different α1, α2,…,αk

Pr[Fermat test returns YES, when N is not Prime] £ 1/2k

N



Density of prime numbers
• Very important to be able to find prime numbers quickly
• How should we search for prime numbers?

• Theorem: For every n³1, there is always a prime between 
n and 2n

• Initial proof: Chebyshev (1850)
• Simpler proof: Erdos (1932), at the age of 19!!

Generating Random Primes



Generating Random Primes

Prime number Theorem (Conjectured by Legendre et al. 
~1797-1798)

Lex π(x) be the number of primes £ x. Then

If N is a random integer of n bits (hence ≤ 2n), it has roughly 
a one-in-n chance of being prime: 

π (x) ~ x
ln x

   or  lim
x→∞

π (x)
x / ln x
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Generating Random Primes

Algorithm
Repeat

Pick a random n-bit integer N
Run the Fermat test on N

Until N passes

How many iterations? (Waiting for the first success)



Generating Random Primes
Analysis on the number of iterations

• Let k= #trials until first success
• Let p = success probability of each trial = Pr[randomly chosen N is 

prime]
• Pr[k=j] = probability that we succeed in the j-th trial (and hence fail in 

previous ones)
• Pr [k=j]= (1-p)j-1·p
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Generating Random Primes
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Linear equations in modular arithmetic
– Around 100 A.D.
– Question: Is there an integer x such that in a parade 

of x soldiers, when they align themselves in
1. Groups of 3, there is only 1 remaining soldier in the 

last row
2. Groups of 4, there are 3 remaining soldiers
3. Groups of 5, there are 3 remaining soldiers
.   .   .           .   .   .   .           .   .   .   .   .
.   .   .           .   .   .   .           .   .   .   .   .

.                   .   .   .               .   .   .

Chinese Remainder Theorem

.   .   .

.   .   .

.   .   .



Theorem:

– Let n1, n2, ..., nk be positive integers that are relatively 
prime with each other, hence gcd(ni, nj) = 1, " i¹j.

– Then for any integers a1, a2, ..., ak, the system

x ≡ a1 mod n1, x ≡ a2 mod n2, …, x ≡ akmod nk,

has a unique solution within Zn, where n = n1× n2 ×…×nk

Corollary: If n1, n2, ..., nk, are positive integers that are
relatively prime with each other, then for any x and a:
x ≡ a mod ni for i = 1, 2, ..., k iff x ≡ a mod n
where n = n1× n2 ×…×nk

Chinese Remainder Theorem



Proof:
• Let n1, n2, ..., nk be relatively prime with each 

other
• Let a1, a2, ..., ak be arbitrary integers
• "i define ci = n/ni. 
• gcd(ci, ni) = 1 è ci has an inverse mod ni.
• Let di be the inverse, hence cidimod ni = 1
• The number x* =a1c1d1+a2c2d2+ … +akckdk

satisfies all the equations

• Complexity: polynomial since we are just using 
the extended Euclidean algorithm

Chinese Remainder Theorem



Example
• Which x satisfies the following equations?

x  ≡ 2 (mod 5)
x  ≡ 3 (mod 13)

• a1=2, n1=5, a2=3, n2=13 
• We have n=n1*n2=5*13=65, c1 = 65/5 = 13, c2 = 5
• Since 13-1 ≡ 2 (mod 5) and 5-1 ≡ 8 (mod 13), d1=2, d2=8
• Then, x = a1c1d1+a2c2d2

x ≡ 2 · 2 · 13 · + 3 · 5· 8 (mod 65)
≡ 52 + 120 = 42 (mod 65) 

All the solutions are in the form x(t)=42+65t, t Î Z

Chinese Remainder Theorem


