Special Topics on Algorithms Fall 2023
 Number-theoretic problems:
 Exponentiation, Fibonacci numbers and GCD

Vangelis Markakis

Exponentiation

- Exponentiation:

I: Two positive integers a,n
Q: Find a^{n}

- Main operation in many cryptographic protocols (e.g., RSA)
- Very important to be able to compute this fast

Complexity: O(n)
Suppose $\mathrm{a} \leq \mathrm{n}$ (or that a is of the same magnitude as n)
$\left\|\|=\Theta(\log n) \Rightarrow n=\Theta\left(2^{\mid I I}\right), O(n)\right.$ is $O\left(2^{|l|}\right)=O(\exp (1)) \quad$ NOT POLYNOMIAL!
$\mathrm{N}(\mathrm{I})=\mathrm{n}, \mathrm{O}(\mathrm{n})$ is $\mathrm{O}($ poly $(\mathrm{N}(\mathrm{I}))$
Is there a polynomial algorithm for EXP ?

Exponentiation

Repeated Squaring

Consider n in binary, $\mathrm{n}=\mathrm{b}_{\mathrm{k}} \mathrm{b}_{\mathrm{k}-1} \ldots . \mathrm{b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$, e.g. $29=11101 \Rightarrow 29=16+8+4+1$

$$
a^{29}=a^{16} \cdot a^{8} \cdot a^{4} \cdot a^{1}
$$

Idea: Compute sequentially the powers $a, a^{2}, a^{4}, a^{8}, \ldots$
and keep track which ones are needed

```
Exp2 (a,n)
p=1;
z=a;
for i=0 to k do
    { if b}\mp@subsup{b}{i}{}=1\mathrm{ then p=p z;
    z=\mp@subsup{z}{}{2} ; }
Return p;
```

Time: $\mathrm{O}(\mathrm{k})=\mathbf{O}(\operatorname{logn})$!
O(polylII)!

Exponentiation

Or equivalently:

```
Exp3 (a,n)
p=1;
z=a;
while n>0 do
    if n is odd then p=p\cdotz;
    z= z';
    n=\lfloorn/2\rfloor; }
Return p;
```

$\underline{29}$	1	lsb
14	0	
7	1	
3	1	
1	1	msb
0		

Time: O(logn)

Exponentiation - Even more...

- Or yet another implementation
- Based on the recurrence relation:
$\alpha^{n}= \begin{cases}\left(\alpha^{\frac{n}{2}}\right)^{2}, & \text { n even } \\ \alpha\left(a^{\left\lfloor\frac{n}{2}\right\rfloor}\right)^{2}, & \mathrm{n} \text { odd }\end{cases}$

```
Exp4 (a,n)
if n=0 then return 1;
z=Exp4 (a,\lfloorn/2\rfloor);
if n is even then
return z}\mp@subsup{z}{}{2
else return a}\mp@subsup{z}{}{2
```

Complexity: $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(1)$
Solving the recurrence $\Rightarrow \mathrm{O}(\operatorname{logn})$

Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89 \ldots$
Definition: $F_{n}=F_{n-1}+F_{n-2}, \quad F_{0}=0, \quad F_{1}=1$
Problem Fibonacci:
I: a natural number $n \in N$
Q: Find F_{n}

Direct Implementation of Recurrence

```
Fib1 (n)
if n<2 then return n
else return Fibl (n-1) + Fibl (n-2)
```

Complexity of Fib1 (n) : $\mathrm{T}(0)=\mathrm{T}(1)=1$,

$$
T(n)=T(n-1)+T(n-2)+O(1)
$$

Fibonacci Numbers

Fibonacci Numbers / Dynamic Programming

```
Fib2 (n)
f[0]=0; f[1]=1;
    for i=2 to n do
    f[i] = f[i-1] + f[i-2];
Return f[n]
```

Time: $\Theta(\mathrm{n})$
Space: $\Theta(\mathrm{n})$
Big improvement over Fib 1 But: NOT O(poly(|II)), recall $|\mathrm{I}|=\mathrm{O}(\operatorname{logn})$

Save Space: No need for an array

```
Fib3(n);
if n<2 then return n
a=0; b=1;
for i=2 to n do
    { f=b+a; a=b;
b}=\textrm{f};\quad
Return f;}
```


Fibonacci Numbers / Closed Form Formula

- Relation to the golden ratio:

$$
\begin{aligned}
& F_{n}=\frac{\phi^{n}}{\sqrt{5}}-\frac{\hat{\phi}^{n}}{\sqrt{5}}, \quad \text { where } \phi=\frac{1+\sqrt{5}}{2}=1.618 \quad \text { (golden ratio) } \\
& \text { and } \hat{\phi}=\frac{1-\sqrt{5}}{2}=-0.618 \\
& \\
&\text { (roots of } \left.x^{2}-x-1=0, \hat{\phi}=1-\phi=-\frac{1}{\phi}, \quad \phi^{2}=\phi+1\right)
\end{aligned}
$$

- To simplify a bit, let ε be:

$$
\left.\varepsilon=\left|\frac{\hat{\varphi}^{n}}{\sqrt{5}}\right|<\frac{1}{2}, \forall n \geq 0 \quad\left(\begin{array}{r}
|\hat{\varphi}|<1 \Rightarrow|\hat{\varphi}|^{n}<1 \Rightarrow\left|\hat{\varphi}^{n}\right|<1 \\
1 / \sqrt{5}<1 / 2
\end{array}\right\} \Rightarrow\left|\frac{\hat{\varphi}^{n}}{\sqrt{5}}\right|<\frac{1}{2}\right)
$$

Fibonacci Numbers / Closed Form Formula

$F_{n}=\frac{\phi^{n}}{\sqrt{5}}-\frac{\hat{\phi}^{n}}{\sqrt{5}} \Rightarrow\left\{\begin{array}{l}F_{n}=\frac{\phi^{n}}{\sqrt{5}}+\varepsilon, n \text { odd } \\ F_{n}=\frac{\phi^{n}}{\sqrt{5}}-\varepsilon, n \text { even }\end{array}\right\} \Rightarrow F_{n}=\operatorname{round}\left(\frac{\phi^{n}}{\sqrt{5}}\right)$
or $\quad F_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor \quad F_{n}$ is $\Theta\left(\varphi^{n}\right)$

Consequences:

- Better lower bound for Fib1:
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)+\mathrm{O}(1) \geq \mathrm{F}_{\mathrm{n}}$
- $\mathrm{T}(\mathrm{n})=\Omega\left(\varphi^{\mathrm{n}}\right)$ that is $\Omega\left(1.6^{\mathrm{n}}\right)$
- We can calculate F_{n} by using the Exponentiation algorithm, $\operatorname{Exp} 2(\varphi, \mathbf{n})$

Complexity: O(logn)

Fibonacci Numbers / Exponentiation

- We can work only with integer arithmetic
- Use the Exponentiation algorithm again, but to an array this time!

Matrix representation:
$\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}=A^{n}, \quad$ that is $(-1)^{n}=F_{n+1} F_{n-1}-F_{n}^{2}$ induction

- Hence, just need to compute A^{n}
- Use the exponentiation algorithm
- Exactly as before but replacing number multiplication by matrix multiplication (multiplications of 2×2 matrices)
- All intermediate results in the run of the algorithm are integer numbers
- Complexity: O(logn)

Number theory - Divisibility

- Divisibility
- d \| a : d divides a (d is a divisor of a)
- Hence, a = kd for some integer k
- Every integer divides 0
- If $\mathrm{a}>0$ and $\mathrm{d} \mid \mathrm{a}$, then $|\mathrm{d}| \leq|a|$
- Every integer a has as trivial divisors 1 and a itself
- The non-trivial divisors of a are called factors
- Factors of $20: 2,4,5$, and 10

Number theory - Divisibility

- Simple facts:
$-\mathrm{a}|\mathrm{b} \Rightarrow \mathrm{a}| \mathrm{bc}$ for every integer c
$-\mathrm{a}|\mathrm{b} \Rightarrow| \mathrm{a}|\leq|\mathrm{b}|$ or $b=0$
$-\mathrm{a}|\mathrm{b} \wedge \mathrm{b}| \mathrm{c} \Rightarrow \mathrm{a} \mid \mathrm{c}$
$-a|b \wedge a| c \Rightarrow a \mid(b+c)$ and $a \mid(b-c)$
$-\mathrm{a}|\mathrm{b} \wedge \mathrm{a}| c \Rightarrow a \mid(b x+c y)$ for all integers x, y
$-\mathrm{a}|\mathrm{b} \wedge \mathrm{b}| \mathrm{a} \Rightarrow|\mathrm{a}|=|\mathrm{b}|$

Number theory - Divisibility

- Division theorem:
- For every pair of integers a, b with $b \neq 0$, there are unique integers q and r such that
$a=q b+r(0 \leq r<|b|)$
- $q=$ quotient $=\left\lfloor\frac{\mathbf{a}}{\mathbf{b}}\right\rfloor$
- $r=a \bmod b=$ remainder
- Proof:
- Existence: either by induction or by looking into the smallest positive integer in the sequence

$$
\ldots ., a-3 b, a-2 b, a-b, a, a+b, a+2 b, a+3 b, \ldots
$$

- Uniqueness: by contradiction

Number theory - Divisibility

Common divisors

- If $d \mathrm{la}$, and $d \mathrm{lb}$, then d is a common divisor of a and b
- e.g., the divisors of 30 are $1,2,3,5,6,10,15,30$
- divisors of 24: $1,2,3,4,6,8,12,24$
- Common divisors of 24 and $30: 1,2,3$, and 6
- 1 is a common divisor for any 2 integers
- Every common divisor of a and b is at most min ($|a|,|b|)$

Greatest Common Divisor (GCD)

- Greatest common divisor
- $\quad \operatorname{gcd}(a, b)$: The biggest among the common divisors (sometimes also written as (a, b)).
- If $a \neq 0$, and $b \neq 0$, then $\operatorname{gcd}(a, b)$ is an integer between 1 and $\min (|a|,|b|)$
- Convention:
- $\operatorname{gcd}(0,0)=0$
- Simple properties:
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$
- $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$
- $\operatorname{gcd}(a, 0)=|a|$
- $\operatorname{gcd}(a, a k)=|a|$ for every $k \in Z$

Greatest Common Divisor (GCD)

GCD

I: $\mathrm{a}, \mathrm{b} \in \mathbb{N}$
Q: Find $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

A simple algorithm:

```
GCD (a,b)
while a\not=b do
    if a>b then a=a-b
    else b=b-a
return a
```


Greatest Common Divisor (GCD)

Correctness of GCD (a, b)

Claim 1: if $\mathrm{a}>\mathrm{b}$ then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{a}-\mathrm{b}, \mathrm{b})$

Proof:

Let $\mathrm{g}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$, and $\mathrm{g}^{\prime}=\operatorname{gcd}(\mathrm{a}-\mathrm{b}, \mathrm{b})$
Then, $\mathrm{a}=\mathrm{gx}$ and $\mathrm{b}=\mathrm{gy}$ for some $\mathrm{x}, \mathrm{y} \Rightarrow \mathrm{g} \mid \mathrm{a}-\mathrm{b} \Rightarrow \mathrm{g}^{\prime} \geq \mathrm{g}$
Also, $a-b=g^{\prime} z$ and $b=g^{\prime} w$ for some $z, w \Rightarrow a=g^{\prime}(z+w) \Rightarrow$ $g^{\prime} \mid a \Rightarrow g \geq g^{\prime}$. Hence $g=g^{\prime}$

Complexity of GCD(a,b)

Worst case ($\mathrm{a}=1$ or $\mathrm{b}=1$): Complexity $\mathbf{O}(\mathbf{w})$, with $w=\max \{a, b\}$
$|\mathbf{I}|=\mathrm{O}(\log a+\log b)=\mathbf{O}(\log w)$
$\mathrm{O}(\mathrm{w})$ is not $\mathrm{O}($ poly $|\mathrm{I}|$)!

Euclid's Algorithm

Around 300 B.C., Euclid's elements, Book 7

```
EUCLID (a,b)
if b=0 then return a
else return EUCLID(b, a mod b)
```

Correctness of EUCLID (\mathbf{a}, b)
Claim 2: if $\mathrm{a}>\mathrm{b}$ then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$ Proof: Apply repeatedly Claim 1

Example

a	b
55	34
34	21
21	13
13	8

85
5 3
32
21
(1) 0

Euclid's Algorithm

More examples:

- $a=1742, b=494$
- $1742=3.494+260$
- $494=1.260+234$
- $260=1.234+26$
- $234=9.26$
- $\operatorname{gcd}(1742,494)=26$
- $a=132, b=35$
- $132=3.35+27$
- $35=1.27+8$
- $27=3.8+3$
- $8=2 \cdot 3+2$
- $3=1 \cdot 2+1$
- $2=2 \cdot 1$
- $\operatorname{gcd}(132,35)=1$
"We might call it the granddaddy of all algorithms because it is the oldest nontrivial algorithm that has survived to the present day",
(D. Knuth)

Euclid Algorithm

Complexity of EUCLID(a, b)

- One of a and b is at least halved at every call
- Both a and b are at least halved after any two recursive calls

Case 1: $\mathrm{b} \leq \mathrm{a} / 2$, then $\mathrm{a} \bmod \mathrm{b}<\mathrm{b}<\mathrm{a} / 2$
Case 2: $b>a / 2$ then
Time complexity:

At most $k=\log a+\log b$ calls, that is $\mathrm{O}(\log a+\log b)$

How many Euclid calls for Fibonacci Numbers?

Tight example on the complexity

=k-1 recursive calls

Complexity: $\mathrm{O}\left(\log \mathrm{F}_{\mathrm{k}+1}+\log \mathrm{F}_{\mathrm{k}}\right)$

EUCLID and Fibonacci numbers

If Euclid needs k calls, can we extract more information about a and b ?

$$
\begin{aligned}
& \mathrm{b}=0 \Rightarrow \mathrm{k}=0 \text { calls } \\
& \mathrm{a}=\mathrm{b} \Rightarrow \mathrm{k}=1 \text { calls }
\end{aligned}
$$

Lemma: For $\mathrm{a}>\mathrm{b}>0$, if $\operatorname{EUCLID}(\mathrm{a}, \mathrm{b})$ performs $\mathrm{k} \geq 1$ recursive calls, then $a \geq F_{k+2}$ and $b \geq F_{k+1}$
Proof: By induction on k
Induction base: for $\mathrm{k}=1$ call:
$\mathrm{b}>0 \Rightarrow \mathrm{~b} \geq 1=\mathrm{F}_{2} \Rightarrow \mathrm{~b} \geq \mathrm{F}_{2}$
$\mathrm{a}>\mathrm{b} \Rightarrow \mathrm{a} \geq 2=\mathrm{F}_{3} \Rightarrow \mathrm{a} \geq \mathrm{F}_{3}$
Inductive hypothesis: suppose true for $\mathrm{k}-1$ calls:
$a \geq F_{k+1}, b \geq F_{k}$

EUCLID and Fibonacci numbers

Inductive step: suppose the algorithm needed k calls
$-\mathrm{k}>0 \Rightarrow \mathrm{~b}>0 \Rightarrow \operatorname{EUCLID}(\mathrm{a}, \mathrm{b})$ calls EUCLID(b, a mod b)
$-\mathrm{b}=\mathrm{a}$, $\mathrm{a} \bmod \mathrm{b}=\mathrm{b}^{\prime}: \operatorname{EUCLID}\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right)$ performs $k-1$ calls

- By hypothesis
$a^{\prime} \geq F_{k+1} \Rightarrow b \geq F_{k+1}$ and $b^{\prime} \geq F_{k} \Rightarrow a \bmod b \geq F_{k}$
Also, $\mathrm{a}>\mathrm{b}$ and by the division theorem
$\Rightarrow \mathrm{a} \geq \mathrm{b}+(\mathrm{a} \bmod \mathrm{b})$
$\Rightarrow \mathrm{a} \geq \mathrm{b}+\mathrm{F}_{\mathrm{k}} \geq \mathrm{F}_{\mathrm{k}+1}+\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+2} \Rightarrow \mathrm{a} \geq \mathrm{F}_{\mathrm{k}+2}$
Corollary: Lame's Theorem
For $k \geq 1$, if $a>b>0$, and $b<F_{k+1}$
$\operatorname{EUCLID}(\mathrm{a}, \mathrm{b})$ performs at most $k-1$ recursive calls

EUCLID and Fibonacci numbers

k calls \Rightarrow
$b \geq \frac{\phi^{k+1}}{\sqrt{5}} \Rightarrow$
$\phi^{k+1} \leq b \sqrt{5} \Rightarrow$
$k+1 \leq \log _{\phi}(b \sqrt{5})=\log _{\phi} b+\log _{\phi} \sqrt{5}=\log _{\phi} b+1.672 \Rightarrow$
$k \leq \log _{\phi} b+0.672 \Rightarrow$
k is $\mathrm{O}(\log \mathrm{b})$

Extended Euclid's Algorithm

- Let a, b be "large" integers
- It is useful to understand further how $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ looks like
- If someone claims that $\operatorname{gcd}(a, b)=d$, how can we check this?
- It is not enough to check if $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$!
- (this would show that d is a divisor of a and b, but not necessarily the greatest)

Extended Euclid's Algorithm

Claim 3: If $\mathrm{d}|\mathrm{a}, \mathrm{d}| \mathrm{b}$ and $\mathrm{d}=\mathrm{xa}+\mathrm{yb}, \mathrm{x}, \mathrm{y} \in \mathbf{Z}$, then
$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{d}$
Proof:
$d \mid a$ and $d \left\lvert\, b \Rightarrow\left\{\begin{array}{l}\operatorname{gcd}(a, b) \geq d \\ \operatorname{gcd}(a, b) \mid x a+y b=d \Rightarrow \operatorname{gcd}(a, b) \leq d\end{array}\right\}\right.$
Even further:
Claim 4: $\operatorname{gcd}(a, b)$ is the smallest positive integer from the set $\{a x+b y: x, y \in Z\}$ of the linear combinations of a and b

Useful in certain applications (e.g., cryptosystems) to compute these coefficients

Extended Euclid's Algorithm -Correctness

Example: $\operatorname{gcd}(13,4)=1$, since $13^{*} 1+4^{*}(-3)=1$

Existence of integer coefficients x, y for every pair of integers a, b, $\mathrm{a}>\mathrm{b}$:
Proof by strong induction on b :
Base: For $b=0$, we have that $\operatorname{gcd}(a, 0)=a=a^{*} x+0^{*} y$, which holds for $\mathrm{x}=1$ and every integer y
By induction hypothesis, assume that it holds for any integer $<\mathrm{b}$: let $\operatorname{gcd}(b, a \bmod b)=b x^{\prime}+(a \bmod b) y^{\prime}$
Induction Then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})=b x^{\prime}+(\mathrm{a} \bmod \mathrm{b}) \mathrm{y}^{\prime}$ Step:

$$
=b x^{\prime}+\left(a-\left\lfloor\frac{a}{b}\right\rfloor b\right) y^{\prime}=a y^{\prime}+b\left(x^{\prime}-\left\lfloor\frac{a}{b}\right\rfloor y^{\prime}\right)
$$

Hence, $x=y$ ' and $y=x^{\prime}-a / b y^{\prime}$

Extended Euclid's Algorithm - Examples

One way to think at it is to run Euclid backwards:

- $a=1742, b=494$
- $1742=3.494+260$
- $494=1 \cdot 260+234$
- $260=1.234+26$
- $234=9.26$
- $(1742,494)=26$
- 26 = 260-234

$$
=260-(494-260)
$$

$$
=2 \cdot 260-494
$$

$$
=2 \cdot(1742-3 \cdot 494)-494
$$

$$
=2.1742-7.494
$$

- $a=132, b=35$
- $132=3.35+27$
- $35=1.27+8$
- $27=3 \cdot 8+3$
- $8=2 \cdot 3+2$
- $3=1 \cdot 2+1$
- $2=2 \cdot 1$
- $(132,35)=1$
- $1=3-2$
$=3-(8-2 \cdot 3)$
$=3 \cdot 3-8$
$=3 \cdot(27-3.8)-8$
$=3.27-10 \cdot 8$
$=3.27-10 \cdot(35-27)$
= 13.27-10.35
$=13 \cdot(132-3 \cdot 35)-10 \cdot 35$
$=13.132-49.35$

Extended Euclid's Algorithm

ExtEUCLID (a, b)
Input: $\mathrm{a}, \mathrm{b} \in \mathbb{N} ; \mathrm{a} \geq \mathrm{b} \geq 0$;
Output: $x, y, d \in \mathbb{Z}: \operatorname{gcd}(a, b)=d=a x+b y$
if $b=0$ then return $(1,0, a)$
else $\left(x^{\prime}, y^{\prime}, d\right)=E x t E U C L I D(b, a \bmod b) ;$
$\operatorname{return}\left(y^{\prime}, x^{\prime}-\left\lfloor\frac{a}{b}\right\rfloor y^{\prime}, d\right)$

Correctness: follows by the existence proof Complexity: $\mathrm{O}(\log \mathrm{b})$ as $\operatorname{EUCLID}(\mathrm{a}, \mathrm{b})$

Extended Euclid's Algorithm

Example

			y^{\prime}		$x^{\prime}-$	$\frac{a}{b}$	y^{\prime}
\mathbf{a}	\mathbf{b}	\mathbf{a} / \mathbf{b}	\mathbf{x}	\mathbf{y}	\mathbf{d}		
99	78	1	-11	14	3		
78	21	3	3	-11	3		
21	15	1	-2	3	3		
15	6	2	1	-2	3		
6	3	2	0	1	3		
3	0	-	1	0	3		

