

Ειδικά Θέματα Αλγορίθμων Ασκήσεις Φροντιστηρίου #9 Approximation Algorithms

1. Give a greedy approximation algorithm for the MAX COVERAGE problem.

(Max coverage: Given a universe $\mathcal{U}=\{e_1,e_2,...,e_n\}$, a list of sets $S_i\subseteq\mathcal{U}$ (possibly overlapping) and a bound k, the goal is to pick k sets $S_1',S_2',...,S_k'$ such that $|\bigcup_{i=1}^k S_i'|$ is maximized.)

- 2. a) Design an optimal algorithm for the fractional version of knapsack problem.
- b) Design an approximation algorithm for the 0-1 version of KNAPSACK problem.

(knapsack: As input, Knapsack takes a set of n items, $S = \{a_1, ..., a_n\}$, each with a weight $w(a_i) \in \mathbb{Z}^+$ and a value $v(a_i) \in \mathbb{Z}^+$, a "knapsack capacity" $B \in \mathbb{Z}^+$.

Find a subset of objects whose total weight is bounded by B and total value is maximized.)