

Τεχνητή Νοημοσύνη

23η διάλεξη (2024-25)

Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/

Τι θα ακούσετε σήμερα

- Συνελικτικά νευρωνικά δίκτυα (CNNs).
- Εφαρμογές στην υπολογιστική όραση.
- Προ-εκπαιδευμένα νευρωνικά δίκτυα.
- Επαύξηση δεδομένων (data augmentation).

Averaging each pixel with its neighboring values blurs an image:

0000

From the blog post "Understanding Convolutional Neural Networks for NLP" of Denny Britz, 2015. <u>http://www.wildml.com/</u> <u>2015/11/understanding-</u> <u>convolutional-neural-</u> <u>networks-for-nlp/</u>

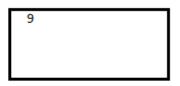
Feature Map

		Input				Ker	mel (Fil	ter)		
-							_			
-1	1	-1	-1	-1	-1		_	-1	1	-1
1	1	1	-1	-1	-1			1	1	1
-1	1	-1	-1	-1	-1			-1	1	-1
-1	-1	-1	1	-1	1					
-1	-1	-1	-1	1	-1					
-1	-1	-1	1	-1	1					

- **Input: black/white image** with pixel values -1 or +1.
- Check if the input contains any crosses and report where.

Input

Kernel (Filter)


Feature Map

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	-1 -1 -1 1 -1 1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

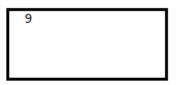
-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	-1 -1 -1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1 -1 -1	-1	-1	1	-1	1

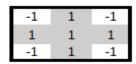
-1	1	-1	
1	1	1	
-1	1	-1	

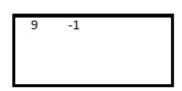
Input

Kernel (Filter)


Feature Map

-1	1 1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1 -1 -1 -1	-1	-1	1	-1	1

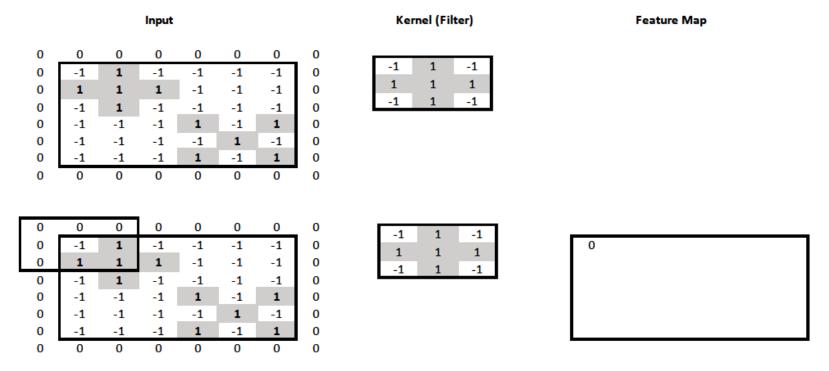

-1	1	-1
1	1	1
-1	1	-1


-1	1	-1	-1	-1	-1 -1 -1 1 -1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	-1	-1 -1 -1 -1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

		Inp	ut			Kernel (Filter)	Feature Map
-1 1 -1	1 1 1	-1 1 -1	-1 -1 -1	-1 -1 -1	-1 -1 -1	-1 1 -1 1 1 1 -1 1 -1	9 -1 1
-1 -1 -1	-1 -1 -1	-1 -1 -1	1 -1 1	-1 1 -1	1 -1 1		


- Let X be the part of the input where we apply the kernel (filter).
- Let *W* be the kernel.
- The resulting **feature** of the feature map is: $\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,j} X_{i,j}$
- In practice, we would also use an **activation function** and **bias term**: $f(\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,j}X_{i,j} + b)$

	Input		Kernel (Filter)	Feature Map
-1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1	-1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 .1	-1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1	-1 1 -1 1 1 1 -1 1 -1	9 -1 1
-1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1	-1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1	-1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1	-11-1111-11-1	9 -1 1 -1 -1 -1 -1 -5 1 -1 -1 5 -1 -5 5 -7

• We can think of the resulting **feature map as a new "image"** that indicates the **position(s) of the cross(es)** in the original image.

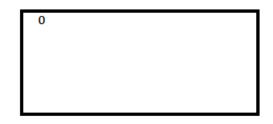
No need to have the crosses at particular parts of the image.

• The new "image" is **4x4 instead of 6x6**, because the **kernel could not slide outside the boundaries** of the original image.

- We can **pad** the surrounding of the image with zeros, to allow the kernel to slide outside the image boundaries.
- We can now obtain a **feature map** with the **same resolution as the input** image (6x6).

Input

Kernel (Filter)


Feature Map

0	0	0	0	0	0	0	
0	-1	1	-1	-1	-1	-1	0 0 0 0 0
0	1	1	_	-1	-1	-1	0
0	-1	1 -1	-1	-1 1	-1	-1	0
0	-1	-1				1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0

-1	1	-1
1	1	1
-1	1	-1

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1	-1	-1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0
				_			
0	0	0	0	0	0	0	0
0	0 -1	0	0 -1	0 -1	0 -1	0 -1	0 0
0 0	0 -1 1						
0 0 0	-1	1	-1	-1	-1	-1 -1 -1	0
0 0 0 0	-1 1	1 1	-1 1	-1 -1	-1 -1	-1 -1	0 0
0 0 0	-1 1 -1	1 1 1	-1 1 -1	-1 -1 -1	-1 -1 -1	-1 -1 -1	0 0 0

-1	1	-1
1	1	1
-1	1	-1

1 1 1	-1	1	-1	
-1 1 -1	1	1	1	
-1 I -1	-1	1	-1	

0	-2	

Input

Kernel (Filter)

Feature Map

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1 -1 -1 1 -1	-1	-1 -1 -1 1 -1 1 -1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0

....

0

-1

1

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

-1

1

-1

0

0

-1

-1

-1

-1

1

-1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

1

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

-1

-1

-1

0

0

1

1

1

-1

-1

-1

-1	1	-1
1	1	1
-1	1	-1

0	-2	0	

-1	1	-1
1	1	1
-1	1	-1

0	-2	0	-4	-2	-2
-2					

-1	1	-1
1	1	1
-1	1	-1

0	-2	0	-4	-2	-2
-2	9				

Input

Kernel (Filter)

Feature Map

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1 1 1 -1 -1 -1	-1	-1	-1	-1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1 -1 -1	-1	1	-1	1	0
0	0	0	0	0	0	0	0

-1	1	-1
1	1	1
-1	1	-1

()	-2	0	-4	-2	-2
-	2	9	-1			

0	0	0	0	0	0	0	
-1	1	-1	-1	-1	-1	0	
1	1	1	-1	-1	-1	0	
-1	1	-1	-1	-1	-1	0	
-1	-1	-1	1			0	
-1	-1	-1	-1	1 -1	-1	0	
-1	-1	-1	1	-1	1	0	
0	0	0	0	0	0	0	

-	1	1	-1
1	L	1	1
-	1	1	-1

0	-2	0	-4	-2	-2
-2	9	-1	1	-1	-2
0	-1	-1	-1	-5	0
-4	1	-1	-1	5	-2
-2	-1	-5	5	-7	4
-2	-2 9 -1 1 -1 -2	0	-2	4	-2

- X: entire input image. F: feature map.
- W: kernel, but with rows and columns numbered -1, 0, 1.
- Feature map values: $F_{i,j} = \sum_{k=-1}^{1} \sum_{l=-1}^{1} W_{k,l} X_{i+k,j+l}$
- In practice: $F_{i,j} = f(\sum_{k=-1}^{1} \sum_{l=-1}^{1} W_{k,l} X_{i+k,j+l} + b)$

Two kernels

			Input					Two Kernels	Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
0 0 0	0 -1 1 -1	0 1 1 1	0 -1 1 -1	0 -1 -1 -1	0 -1 -1 -1	0 -1 -1 -1	0 0 0	-1 1 -1 1 1 1 -1 1 -1		
0 0 0 0	-1 -1 -1 0	-1 -1 -1 0	-1 -1 -1 0	1 -1 1 0	-1 1 -1 0	1 -1 1 0	0 0 0	1 -1 1 -1 1 -1 1 -1 1		
0 0 0	0 -1 1	0 1 1	0 -1 1	0 -1 -1	0 -1 -1	0 -1 -1	0 0 0	-1 1 -1 1 1 1 -1 1 -1	0	-2
0 0 0 0	-1 -1 -1 -1 0	1 -1 -1 -1 0	-1 -1 -1 -1	-1 1 -1 1 0	-1 -1 1 -1 0	-1 1 -1 1	0 0 0 0	1 -1 1 -1 1 -1 1 -1 1		

- We now want to check the input image for crosses and "X"s.
- We use **two kernels**, one for crosses, one for "X"s.

Two kernels

			Input					
0	0	0	0	0	0	0	0	
0	-1	1	-1	-1	-1	-1	0	
0	1	1	1	-1	-1	-1	0	
0	-1	1	-1	-1	-1	-1	0	
0	-1	-1	-1	1	-1	1	0	
0	-1	-1	-1	-1	1	-1	0	
0	-1	-1	-1	1	-1	1	0	
0	0	0	0	0	0	0	0	

Incode

-1	1	-1
1	1	1
-1	1	-1
1	-1	1
-1	1	-1

Two Kernels

-1 1 -1 1 1 1 -1 1 -1	0	-2
1 -1 1 -1 1 -1 1 -1 1		
-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1	0 -2	-2 4
1 -1 1 -1 1 -1 1 1 1 -1 1 -1	0 -2 0	-2 4 -2

-1

-1

1

-1

0

-1

-1

1

0

1

-1

1

-1

1

0

0

Feature Map of Kernel 1 ("+")

Feature Map of Kernel 2 ("X")

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1	-1	-1	0 0 0 0 0
0 0 0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0 0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

1

-1

-1

-1

0

0

1

1

1

-1

-1

-1

0

0

0

0

0

0

0

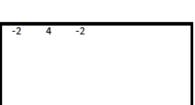
0

0

0

0

0


0

0	1	
0	-1	
0		
0	1	
0	-1	
0	1	
0		

	-			_	
0	0	0	0		-
-1	-1	-1	0		1
-1	-1	-1	0		1
-1	-1	-1	0		
1 -1	-1	1	0		1
-1	1	-1	0		-
1	-1	1	0		1
0	0	0	0		

-1	1	-1
1	1	-1 1 -1
-1	1	-1
1	-1	1
-1	1	1 -1 1
1	-1	1

0	-2	0		-2

Two kernels

We can **think of the two feature maps as two "channels" of the new image**, one for "+" info, one for "X" info.

Input

_	0	0	0	0	0	0	0
I	0	-1	1	-1	-1	-1	-1
I	0	1	1	1	-1	-1	-1
I	0	-1	1	-1	-1	-1	-1
	0	-1	-1	-1	1	-1	1
	0	-1	-1	-1	-1	1	-1
	0	-1	-1	-1	1	-1	1
	0	0	0	0	0	0	0

0

-1

1

-1

-1

-1

-1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0 -1

> 1 -1

-1

-1

-1

0

-1

1

-1

-1

-1

-1

0

1

1

-1

-1

-1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

-1

1

-1

0

0

-1

-1

-1

1

-1

1

0

-1	1	-1
1	1	1
-1	1	-1
1	-1	1
-1	1	-1
1	-1	1

-1

1

-1

1

-1

1

-1

1

1

-1

-1

1

-1

0
0
0

0

0

0

0

0

0

0

0

00000

Two Kernels

0 -2	-2	0	-4	-2	-2
-2					

Feature Map of Kernel 1 ("+")

-2 4	4	-2	2	0	0

Feature Map of Kernel 2 ("X")

0 -2	-2 9	0	-4	-2	-2
-2	9				

-2 4	4 -7	-2	2	0	0

0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1
0	1	1	1	-1	-1	-1
0	-1	1	-1	-1	-1	-1
0	-1	-1	-1	1	-1	1
0	-1	-1	-1	-1	1	-1
0	-1	-1	-1	1	-1	1
0	0	0	0	0	0	0

-1	1	-1
1	1	1
-1	1	-1
1	-1	1
1 -1	-1 1	1 -1
1 -1 1		1 -1 1

-2	0	-4	-2	-2
9	-1			
			-2 0 -4 9 -1	-2 0 -4 -2 9 -1

-2	4	-2	2	0	0
4	-7	3			

0	0	0	0	0	0	
1	-1	-1	-1	-1	0	
1	1	-1	-1	-1	0	
1	-1	-1	-1	-1	0	
-1	-1	1	-1	1	0	_
-1	-1	-1	1	-1	0	
-1	-1	1	-1	1	0	
0	0	0	0	0	0	

	-1	1	-1
	1	1	1
	-1	1	-1
_			
	1	-1	1
- E	-1	1	-1
	-1 1	1 -1	-1 1

0	-2	0	-4	-2	-2
0 -2 0 -4 -2 -2	9	-1	1	-1	-2
0	-1	-1	-1	-5	0
-4	1	-1	-1	5	-2
-2	-1	-5	5	-7	4
-2	-2	0	-2	4	-2

-2	4	-2	2	0	0
4	-7	3	-3	-1	0
-2	3	-1	-1	3	-2
2	-3	-1	3	-7	4
0	-1	3	-7	9	-6
0	0	-2	4	-6	4

Two input channels too

		Input	Chann	nel 1						Inpu	rt Chanr	nel 2				Two Two-chann	el Kernels	Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
0 0 0 0 0 0 0	0 -1 -1 -1 -1 -1 -1 0	0 1 1 -1 -1 -1 0	0 -1 -1 -1 -1 -1 -1 0	0 -1 -1 0,9 -1 0,9 0	0 -1 -1 -1 -1 0,9 -1 0	0 -1 -1 0,9 -1 0,9 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 -1 0,9 -1 -1 -1 -1 0	0 0,9 0,9 -1 -1 -1 0	0 -1 0,9 -1 -1 -1 -1 0	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 -1 -1 -1 0	0 -1 -1 -1 1 -1 1 1 0	0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1		
0 0 0 0 0 0	0 -1 1 -1 -1 -1 -1 -1	-1	0 -1 -1 -1 -1 -1 -1	0 -1 -1 -1 0,9 -1 0,9	0 -1 -1 -1 -1 0,9 -1	0 -1 -1 -1 0,9 -1 0,9			0 -1 0,9 -1 -1 -1 -1 -1	0 0,9 0,9 -1 -1 -1 -1	0 -1 0,9 -1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 1 1		$\begin{array}{cccccccc} -1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & -1 \\ \end{array}$	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1	-0,1	-3,9

• The **input image** now also has **two channels** (e.g., from grayscale and depth cameras). **Each kernel** now operates on **both input channels**.

• It has **two slices**, one per input channel (c = 1, c = 2).

- We have **two kernels**, so the **output** also has **two channels**.
- At the output feature map of kernel $W^{(m)}$, the value at cell (i, j) is:

$$F_{i,j,m} = \sum_{k=-1}^{1} \sum_{l=-1}^{1} \sum_{c=1}^{2} W_{k,l,c}^{(m)} X_{i+k,j+l,c}$$

• In practice, we would also have an activation function and bias term.

Two input channels too

Input Channel 1	Input Channel 2	Two Two-channel Kernels	Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4	-3,9 7,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4 -0,1	-3,9 7,8 -3,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4 -0,1 -7,9 -4 -4 -4	-3,9 7,8 -3,9 3,9 0 0 7,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4 -0,1 -7,9 -4 -4 -4 17,5	-3,9 7,8 -3,9 3,9 0 0 7,8

Two input channels too

		Inp	ut Char	nel 1						Inp	out Chan	nel 2				Two Two-channel Kernels Feature Map of Kernel 1 ("+") Feature Map of Kernel	el 2 ("X")
0 0 0 0 0	0 -1 -1 -1 -1 -1 -1	0 1 1 -1 -1 -1	0 -1 1 -1 -1 -1 -1	0 -1 -1 -1 0,9 -1 0,9	0 -1 -1 -1 -1 0,9 -1	0 -1 -1 -1 0,9 -1 0,9	0 0 0 0 0		0,9 -1 -1	0 0,9 0,9 -1 -1 -1	0 -1 0,9 -1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 1 1	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 1 1	0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3,9 0 0
0	0	0	0 	0	0	0	0	0	0	0	0 	0	0	0	0		
	0 -1 -1 -1 -1 -1 -1 0	0 1 1 -1 -1 -1 0	0 -1 1 -1 -1 -1 -1 0	0 -1 -1 -1 0,9 -1 0,9	0 -1 -1 -1 -1 0,9 -1	0 -1 -1 0,9 -1 0,9		0 0 0 0 0 0 0 0	-1 -1	0 0,9 0,9 -1 -1 -1 -1 0	0 -1 0,9 -1 -1 -1 -1 -1 0	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 -1 -1 -1 0	0 -1 -1 -1 1 -1 1 0		-1 1 -1 1 -1 -1 -4 17,5 -2 1,9 -2 -4 7,8 -13,7 5,8 -3,9 5,8 -2 1 -1 1 -1 1 -1 1 -7,9 1,9 -2 -2 -9,8 -0,1 -3,9 5,8 -2 -1 1 -1 1 -1 1 -7,9 1,9 -2 -2 9,7 -4 3,9 -5,9 -2 -1 1 -1 1 -1 -1 -4 -2 -9,8 9,7 -13,7 7,7 0 -2 5,8 -2	3,9 0 0 -5,9 -2 0 -2 5,8 -3,9 5,8 -13,7 7,8 13,7 17,5 -11,7 7,8 -11,7 7,8

- We now have a mechanism, a "convolutional layer", that maps an input image of any number of channels to a new output "image" of any number of channels (feature maps).
 - The kernels will have as many slices as the input channels.
 - The number of kernels will be equal to the number of output channels.
- We can stack multiple convolutional layers.
 - Each one will operate on the "image" produced by the previous layer.
 - All kernels will be randomly initialized and learned via backpropagation.

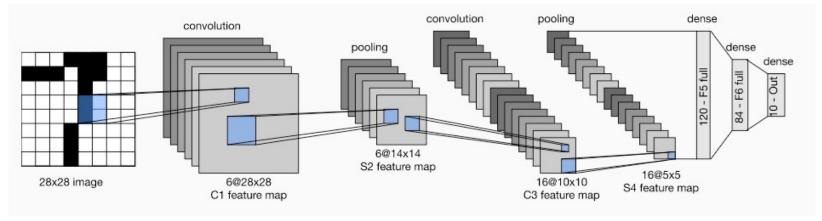
Max-pooling

Feature Map of Kernel 1 ("+")

Feature Map of Kernel 2 ("X")

Max-Pooling (2,2) with Stride (2,2)

-0,1	-4	-0,1	-7,9	-4	-4		-3,9	7,8	-3,9	3,9	0	0	17,5				7,8		
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5,9	-2	0							
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9							
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8				•			
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7							
-4	-4	-0,1	-4	7,7	-4		0	0	-3,9	7,8	-11,7	7,8							
						•													
-0,1	-4	-0,1	-7,9	-4	-4		-3,9	7,8	-3,9	3,9	0	0	17,5	1,9			7,8	5,8	
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5,9	-2	0							
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9							
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8				•			
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7							
-4	-4	-0,1	-4	7,7	-4		0	0	-3,9	7,8	-11,7	7,8							
						•													
-0,1	-4	-0,1	-7,9	-4	-4		-3,9	7,8	-3,9	3,9	0	0	17,5	1,9	-2		7,8	5,8	0
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5,9	-2	0							
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9							
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8							
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7							
-4	-4	-0,1	-4	7,7	-4		0	0	-3,9	7,8	-11,7	7,8							


- We keep the **max value of each window**, separately from each channel.
- The stride determines how much the window shifts vertically & horizontally.

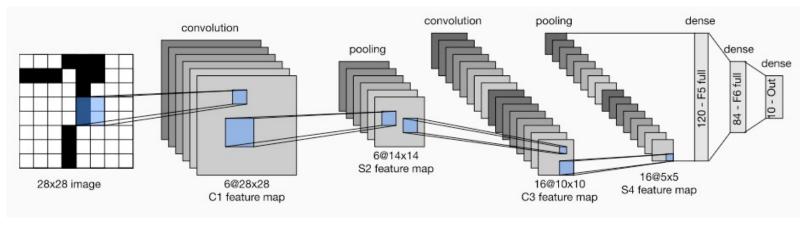
Max-pooling

Fea	ture Ma	p of Ke	ernel 1	("+")		Feat	ure Maj	p of Ke	rnel 2 ("X")			Max-Po	ooling (2,2) wi	th Strid	e (2,2)	
-0,1 -4 -0,1 -7,9 -4	-4 17,5 -2 1,9 -2	-0,1 -2 -2 -2 -9,8	-7,9 1,9 -2 -2 9,7	-4 -2 -9,8 9,7 -13,7	-4 -4 -0,1 -4 7,7	-3,9 7,8 -3,9 3,9 0	7,8 -13,7 5,8 -5,9 -2	-3,9 5,8 -2 -2 5,8	3,9 -5,9 -2 5,8 -13,7	0 -2 5,8 -13,7 17,5	0 0 -3,9 7,8 -11,7	17,5 1,9	1,9	-2		7,8 5,8	5,8	0
-4	-4	-0,1	-4	7,7	-4	0	0	-3,9	7,8	-11,7	7,8							
-0,1	-4	-0,1	-7,9	-4	-4	-3,9	7,8	-3,9	3,9	0	0	17,5	1,9	-2		7,8	5,8	0
-4	17,5	-2	1,9	-2	-4	7,8	-13,7	5,8	-5,9	-2	0	1,9	-2	9,7		<mark>5,8</mark>	5,8	7,8
-0,1	-2	-2	-2	-9,8	-0,1	-3,9	5,8	-2	-2	5,8	-3,9	-2	9,7	7,7		0	7,8	17,5
-7,9	1,9	-2	-2	9,7	-4	3,9	-5,9	-2	5,8	-13,7	7,8				-			
-4	-2	-9,8	9,7	-13,7	7,7	0	-2	5,8	-13,7	17,5	-11,7							
-4	-4	-0,1	-4	7,7	-4	0	0	-3,9	7,8	-11,7	7,8							

• Max-pooling layers are usually placed between stacked convolutional layers.

Stacking convolution, pooling, dense layers

- Max-pooling gradually reduces the resolution at higher layers, allowing us to use more channels (for the same total number of trainable parameters).
- It also helps increase more quickly the receptive field.

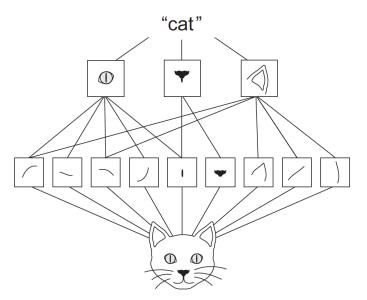

		Input	Chann	el 1							Inpu	rt Chan	nel 2						Tw	o Two-	chann	el Kern	els		F	eature	Map of	Kernel	1 ("+")		Fe	ature N	lap of I	(ernel :	2 ("X")				Max-P	ooling	(2,2) wi	th Strid	e (2,2)	
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	Г	-1	1	-1		-1	1	-1																					
0	-1	1	-1	-1	-1	-1	0		0	-1	0,9	-1	-1	-1	-1	0		1	1	1	&	1	1	1	-0,	1-4	-0,	1-7,	9 -	4 -4	٦	-3,9	7,8	-3,9	3,9	0	0	T	17,5	1,9	-2	I I	7,8	5,8	0
0	1	1	1	-1	-1	-1	0	(0	0,9	0,9	0,9	-1	-1	-1	0		-1	1	-1		-1	1	-1	-4	17,	5 -2	1,9	9 -	2 -4		7,8	-13,	7 5,8	-5,9	∂ -2	0		1,9	-2	9,7		5,8	5,8	7,8
0	-1	1	-1	-1	-1	-1	0	(0	-1	0,9	-1	-1	-1	-1	0	_								-0,	1 -2	-2	-2	-9	,8 -0,:	L	-3,9	5,8	-2	-2	5,8	-3,9		-2	9,7	7,7		0	7,8	17,5
0	-1	-1	-1	0,9	-1	0,9	0	(0	-1	-1	-1	1	-1	1	0		1	-1	1		1	-1	1	-7,	9 1,9	-2	-2	9,	7 -4		3,9	-5,9	-2	5,8	-13,7	7,8	1							
0	-1	-1	-1	-1	0,9	-1	0	(0	-1	-1	-1	-1	1	-1	0		-1	1	-1	&	-1	1	-1	-4	-2	-9,	8 9,7	7 -13	3,7 7,7		0	-2	5,8	-13,	7 17,5	-11,7								
0	-1	-1	-1	0,9	-1	0,9	0	(0	-1	-1	-1	1	-1	1	0		1	-1	1		1	-1	1	-4	-4	-0,	1 -4	7,	7 -4		0	0	-3,9	7,8	-11,7	7,8	1							
0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0						-			-							-													

- Each feature of the max-pooled feature maps is derived from (is "looking at") 4 features of the pre-pooled feature maps, and 16 features of the input.
- By stacking convolution and pooling layers, we can get features that are increasingly aware of larger parts of the input (larger "receptive field").

ustrated

in Dive

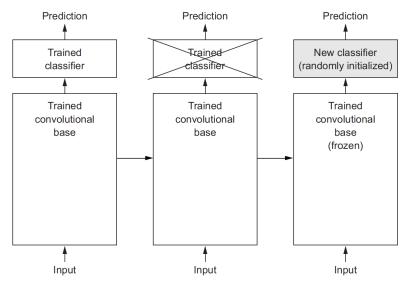
Stacking convolution, pooling, dense layers


- The features of the top feature maps are concatenated to a single vector and passed to a dense (fully connected) layer or an MLP (with hidden layers).
 - To recognize the digit (0-9) in an image, the dense layer (or output layer of the MLP) would have 10 neurons with softmax, and we would use cross-entropy loss.
 - To output the **coordinates of the eyes** in images (or video frames) of faces, the **dense layer** (or output layer of the MLP) could have **4 neurons** (x1, y1, x2, y2) with no activation function, and we could use the **mean squared error** as loss. (But better, more advanced models can be used...)
 - The training examples would be digit or face images (or video frames) annotated with the correct responses (digits or coordinates of the eyes).
- In practice we would also include **dropout** layers and **residuals**.

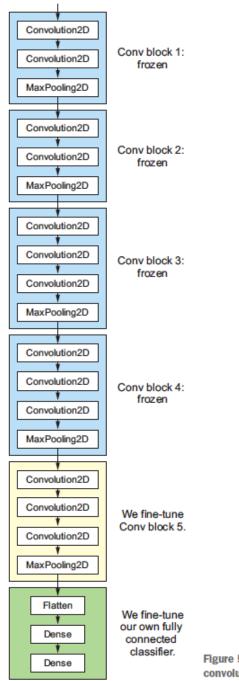
nitecture

ustrated

in Dive


What do the layers learn?

- The kernels of lower layers tend to detect low-level features (e.g., edges of different directions). The kernels of higher layers tend to detect higher-level features (e.g., eyes, ears).
- Pre-trained kernels of lower levels can be useful in many different tasks.
 Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. Optionally consult Chapter 5 (Deep Learning for Computer Vision) for ways to visualize what CNN layers learn. <u>https://www.manning.com/books/deep-learning-with-python</u>


https://www.manning.com/books/deep-learning-with-python-second-edition

Re-using pretrained layers

- In practice, we start with a CNN pre-trained on a very large dataset.
 - o Often ImageNet, 1.4 million images, 1,000 classes (e.g., dogs, cats).
- We replace the top layers with a task-specific classification/regression layer.
 - We train the task-specific layer on task-specific data, keeping the pre-trained convolutional layers frozen (no weight updates in the frozen layers).
 - We may then **gradually unfreeze some of the convolutional layers too** (weight updates in both the task-specific layers and the unfrozen convolutional layers).

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. <u>https://www.manning.com/books/deep-learning-</u> <u>with-python</u> <u>https://www.manning.com/books/deep-learning-with-python-second-edition</u>

Re-using pretrained layers

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. <u>https://www.manning.com/books/deeplearning-with-python</u> <u>https://www.manning.com/books/deeplearning-with-python-second-edition</u>

Figure 5.19 Fine-tuning the last convolutional block of the VGG16 network

Data augmentation

Figure 5.11 Generation of cat pictures via random data augmentation

- We can **increase the number of task-specific training examples** by adding artificial training examples.
 - For example, we can **rotate**, **squeeze**, **flip** etc. the task-specific **training images**.
 - **Big improvements** usually.

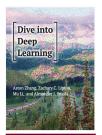
Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers data augmentation in Keras. <u>https://www.manning.com/books/deep-learning-with-python</u> https://www.manning.com/books/deep-learning-with-python-second-edition

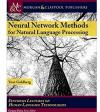
NLP with CNNs and Transformers

- CNNs can also be **applied to texts**.
 - Viewed as **1D images**. Each **"pixel" is a word**. The **channels of the input** 1D image are the **dimensions of the word embeddings**.
 - Faster than RNNs, but usually worse results.
- **Pre-trained layers** recently led to big improvements NLP.
 - Mostly using **Transformers**, a type of neural nets not covered here. Used in **BERT**, **ChatGPT**, ...
- More information on CNNs for text and Transformers in the Human-Computer Interaction course and the MSc courses "Natural Language Processing" and "Text Analytics" (slides/videos available on AUEB's e-class/MS Stream).
- **Transformers** are being used in **Computer Vision** too.

Convolution or cross-correlation?

- **Cross-correlation**: $F_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} W_{k,l} X_{i+k,j+l}$ Optional study
- Convolution: $F_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} W_{k,l} X_{i-k,j-l} = W * X$
- We are actually computing cross-correlations, not convolutions.
 - The **cross-correlations** we compute are **equal to convolutions with the kernel (or the image) flipped** both vertically and horizontally.
 - Convolution is like cross-correlation, but flips one of the two signals. We don't flip the kernel inside the cross-correlation, which is equivalent to giving the kernel already flipped to the convolution; the convolution will flip the kernel once more, ending up using the kernel without flipping.
 - So we actually compute **convolutions with flipped kernels** or **crosscorrelations with the original kernels**.
 - The example kernels were symmetric, so no difference.
 - In CNNs (Convolutional Neural Networks), the kernels are learned, so we don't care if they are flipped in the "convolutions" we compute.
 - So we usually say CNNs "compute convolutions", though we actually use the formulae of cross-correlations.


Βιβλιογραφία


- Russel & Norvig (4^η έκδοση): ενότητες 21.3, 25.4, μόνο όσα αναφέρουν οι διαφάνειες.
 - Όσοι ενδιαφέρονται μπορούν να μελετήσουν προαιρετικά και τις υπόλοιπες ενότητες αυτών των κεφαλαίων.
- Βλαχάβας κ.ά: ενότητα 19.9.1.
 - Όσοι ενδιαφέρονται μπορούν να μελετήσουν προαιρετικά ολόκληρο το κεφάλαιο 19.

Recommended reading

- F. Chollet, *Deep Learning in Python*, Manning Publications, 1st edition, 2017, Chapter 5.
 - The 1st edition is freely available: <u>https://www.manning.com/books/deep-learning-with-python</u>
 - 2nd edition also available, requires payment, recommended: <u>https://www.manning.com/books/deep-learning-with-python-</u> <u>second-edition</u>
- A. Zhang et al., *Dive into Deep Learning*, Chapter 6.
 Freely available at: <u>https://d21.ai/</u>
- Y. Goldberg, *Neural Network Models for Natural Language Processing*, Morgan & Claypool Publishers, 2017.
 - Chapter 13 discusses applying CNNs to text.
- J. Johnson, *Deep Learning for Computer Vision* course.
 - o <u>https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r</u>

