
Αλληλεπίδραση Ανθρώπου–Υπολογιστή

B6. Επεξεργασία φυσικής γλώσσας με
ανατροφοδοτούμενα νευρωνικά δίκτυα

(2024–25)

Ίων Ανδρουτσόπουλος
http://www.aueb.gr/users/ion/

1

http://www.aueb.gr/users/ion/

2

Contents
• Recurrent neural networks (RNNs), GRUs/LSTMs.
• Applications in token classification (e.g., named entity recognition).
• RNN language models.
• Layer normalization.
• RNNs with self-attention and applications in text classification.
• Bidirectional and stacked RNNs.
• Sequence-to-sequence RNN models with attention, and applications

in machine translation.

3

Extracting contract elements

I. Chalkidis, I. Androutsopoulos, A. Michos, “Extracting Contract Elements”, ICAIL 2017,
http://nlp.cs.aueb.gr/pubs/icail2017.pdf .

Identify start/end dates,
duration, contractors, amount,

legislations refs, jurisdiction
etc. Similar to Named Entity

Recognition (NER).

http://nlp.cs.aueb.gr/pubs/icail2017.pdf

4

Window-based token classification

yesterday language tech announced that…

𝑖-th word of the text being classified

𝑥⃗! =

0
0
1
0
…
0

𝑥⃗!"# =

1
0
0
0
…
0

𝑥⃗!$# =

0
0
0
0
…
1

3-word window (often larger)

1-hot vectors (|𝑉|×1) of the
words in the window. (𝑉 is

the vocabulary size).

𝑒! =

2.4
−3
9.3
5.1
…
3.9

𝑒!"# =

1.8
2.3
−1.4
3.7
…

−1.1

𝑒!$# =

2.2
3.8
1.2
−6.4
…
7.1

Embeddings (𝑑×1) of the
words in the window. (𝑑
is the dimensionality of
the word embeddings).

Let 𝑬 be a matrix (𝑑×|𝑉|) that
contains all the embeddings of

the vocabulary as columns. Then:
𝑒!"# = 𝐸𝑥⃗!"#, 𝑒! = 𝐸𝑥⃗!, …

5

Window-based token classification

𝑥⃗!"#

1-hot vectors of the
words of the window

We learn 𝑾(𝟏),𝑾(𝟐) with backpropagation. We can also learn (or modify)
the word embeddings 𝑬 during backpropagation! But when we don’t have
large training datasets (e.g., corpus manually annotated with B-I-O tags), it
may be better to use pre-trained embeddings, which can be obtained from

large non-annotated corpora (e.g., via Word2Vec, GloVe).

𝑥⃗!

𝑥⃗!$#

𝐸

𝐸

𝐸

𝑒!"#

𝑒!

𝑒!$#

Embeddings of the
words of the window

+

Sum or concatenation
of the embeddings

tanh
𝑊(") smax

𝑜⃗($) = tanh 𝑊($)𝑒

𝑜⃗(")

𝑜⃗(") = softmax 𝑊(")𝑜⃗($)

𝐶𝑟𝐸𝑛𝑡 𝑡
𝑜⃗($)

Correct output (e.g., correct
B-I-O tag, 1-hot vector)

𝑊($)

𝑒

We can use the same window-based approach for POS-tagging, chunking, …

6

Reminder: cross-entropy loss

yesterday language tech announced that…

Word being classified.

𝑜⃗ =

𝑃) 𝐶 = 𝑐#
𝑃) 𝐶 = 𝑐*
𝑃) 𝐶 = 𝑐+

…
𝑃) 𝐶 = 𝑐,

=

0.05
0.12
0.08
…
0.14

3-word window (often larger).

Probability estimates produced
by the classifier for the class of

the word “tech”.

𝑡 =

𝑃 𝐶 = 𝑐#
𝑃 𝐶 = 𝑐*
𝑃 𝐶 = 𝑐+

…
𝑃 𝐶 = 𝑐,

=

0
1
0
…
0

The correct “probabilities” for
the class of “tech”. A 1-hot

vector.

𝐻*! 𝐶 = −(
!+#

,

𝑃 𝐶 = 𝑐! log- 𝑃. 𝐶 = 𝑐! = − log- 𝑃. 𝐶 = 𝑐-

The log-likelihood of the
correct class according to the
classifier (with a minus sign).

7

RNN-based token classification

ℎ!
𝑊(-)

𝑥⃗!

𝑒! = 𝐸𝑥⃗!

𝐸

𝑊(.)State: vector acting as a
memory (remembering
things about the words

of the input seen so far).

Embedding of the
current word.

𝑜⃗! = softmax 𝑊(/)ℎ!

1-hot vector of the
current word.

ℎ! = tanh 𝑊(-)ℎ!"# +𝑊(.)𝑒!

Predicted probability distribution
(|𝐶|×1) over the classes (e.g., B-Person,
I-Person, B-Location, Other) in Named

Entity Recognition.
𝐶𝑟𝐸𝑛𝑡

𝑡% Correct class probabilities for
the current word (|𝐶|×1, 1-hot).

𝑊(/)

Cross-entropy loss for
the current word.

The new state (memory) is a
combination of the previous one
and the new word embedding.

We can think of
𝑾(𝒐) as containing
class embeddings.

8

Unrolled RNN

ℎ*ℎ# ℎ+ℎ1 … ℎ!

𝑥⃗#

𝑒#

𝐸

𝑊(-) 𝑊(-) 𝑊(-) 𝑊(-) 𝑊(-) 𝑊(-)

𝑊(.)

𝑥⃗*

𝑒*

𝐸

𝑊(.)

𝑥⃗+

𝑒+

𝐸

𝑊(.)

𝑥⃗!

𝑒!

𝐸

𝑊(.)

1-hot vector of the 1st
word of the sentence

Embedding of the 2nd
word of the sentence

𝑜⃗# 𝑜⃗* 𝑜⃗+ 𝑜⃗!

History
up to the
3rd word.

ℎ! = tanh 𝑊(-)ℎ!"# +𝑊(.)𝑒!
𝑜⃗! = softmax 𝑊(/)ℎ!

𝑊(/) 𝑊(/) 𝑊(/) 𝑊(/)

𝐶𝑟𝐸𝑛𝑡

𝑡$

𝐶𝑟𝐸𝑛𝑡

𝑡"

𝐶𝑟𝐸𝑛𝑡

𝑡&

𝐶𝑟𝐸𝑛𝑡

𝑡%Correct prediction
for the 3rd word
(|𝐶|×1, 1-hot).+

𝐿𝑜𝑠𝑠

2
𝜕𝐿𝑜𝑠𝑠
𝜕𝑊(")

9

RNN language model

ℎ!
𝑊(-)

𝑥⃗!

𝑒! = 𝐸𝑥⃗!

𝐸

𝑊(.)

Embedding of the
current word.

𝑜⃗!$# = softmax 𝑊(/)ℎ!

1-hot vector of the
current word.

ℎ! = tanh 𝑊(-)ℎ!"# +𝑊(.)𝑒!

Probability
distribution (|𝑉|×1)
over the vocabulary.
Shows which words

the LM expects to see
next.

𝐶𝑟𝐸𝑛𝑡

𝑡%'$ Correct prediction for next
word (|𝑉|×1, 1-hot).

𝑊(/)

Cross-entropy loss
for the prediction of

the next word.

State: vector acting as a
memory (remembering
things about the words

of the input seen so far).
The new state (memory) is a

combination of the previous one
and the new word embedding.

𝑾(𝒐) contains
alternative (output)
word embeddings.

Some RNN LMs use
𝐸2as 𝑊(/).

Reminder: LMs as next word predictors
• Sequence probability using a bigram LM:

! ! ! " !# $ # % % $ # $ # & $!
!" # " # # " # " # #= = ⋅ ⋅!

! "
! " # $ " "% & ' (% & (% & (!

!" # # # " # # " # # −⋅ ! "

! " ! # " !$ % & $ % & $ % & $ % &! !" # $%&'% " # # " # # " # # −⋅ ⋅ !

• We can think of the LM as a system that provides the
probabilities 𝑷 𝒘𝒊 𝒘𝒊"𝟏 , which we then multiply.

o Or the probabilities 𝑷 𝒘𝒊 𝒘𝒊"𝟐, 𝒘𝒊"𝟏) for a trigram LM.
o Or the probabilities 𝑷 𝒘𝒊 𝒉) for an LM that considers all the

“history” (previous words) 𝒉, e.g., in an RNN LM.
o An LM typically provides a distribution 𝑷(𝒘|𝒉) showing

how probable it is for every word 𝑤 ∈ 𝑉 to be the next one.
10

11

RNN LM with GRU cells

ℎ!
𝑊(-)

𝑥⃗!

𝑒! = 𝐸𝑥⃗!

𝐸

𝑊(.)

Reset gate (σ is the
sigmoid function).

𝑜⃗! = softmax 𝑊(/)ℎ!

GRU cell:
Lℎ! = tanh 𝑟! ∘ 𝑊(-)ℎ!"# +𝑊(.)𝑒!
ℎ! = 𝑧! ∘ ℎ!"# + 1 − 𝑧! ∘ Lℎ!
𝑟! = 𝜎 𝑊(3)ℎ!"# + 𝑈(3)𝑒!
𝑧! = 𝜎 𝑊(4)ℎ!"# + 𝑈(4)𝑒!

𝐶𝑟𝐸𝑛𝑡

𝑡% Candidate new history (∘ denotes pairwise multiplication).
For 𝑟! ≈ 1, same as the ℎ! of a simple RNN cell. For 𝒓𝒊 ≈ 𝟎,
forgets 𝒉𝒊"𝟏 and considers only the current word embedding.

𝑊(/)

New history. For 𝑧! ≈ 0, same
as Lℎ!. For 𝒛𝒊 ≈ 𝟏, ignores Lℎ!
and maintains 𝒉𝒊"𝟏 as ℎ!.

Update gate.
LSTM cells are similar,
but with more gates. See
http://colah.github.io/posts/201
5-08-Understanding-LSTMs/

Optional study

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

12

More about RNNs
• Trained by backpropagation (with unrolled view).

o For each sentence (or window), feed it to the unrolled RNN,
compute the loss and backpropagate, adding gradients
obtained for the same matrix (e.g., same 𝑊(9) at each cell).

o GRU or LSTM cells help avoid vanishing gradients.
o The norms of the gradients can be clipped (when larger than a

max value) to avoid exploding gradients.
o Use layer normalization, not batch normalization in RNNs.

• We can also learn the word embeddings (𝐸) with an RNN
LM. Billions of free training examples!
o We can then use the word embeddings in other NLP tasks.
o With a large vocabulary, softmax is too slow (alternatives:

small vocabulary, hierarchical softmax, negative sampling).

13

What about the right-context of each token?

ℎ*ℎ# ℎ+ℎ1 … ℎ6

𝑒# 𝑒* 𝑒+ 𝑒6

Embedding of the 2nd
word of the sentence

`

Embedding of the 1st
word of the sentence

Revised embedding of
the 1st word. Knows

we are at the beginning
of a sentence.

Revised embedding of
the 2nd word. Knows

the left-context.

We can also treat the ℎ!
vectors as the memory

of the RNN, but in recent
NLP work, it’s easier to
think of them as revised

word embeddings.

ℎ! = 𝑔 𝑊(-)ℎ!"# +𝑊(.)𝑒! + 𝑏(-)

𝑔	is an activation
function (e.g., sigmoid).

More complex update
mechanisms in practice:
LSTM or GRU cells.

14

Bidirectional RNN (biRNN)

ℎ*ℎ# ℎ+ℎ1 … ℎ6

𝑒# 𝑒* 𝑒+ 𝑒6

ℎ*ℎ# ℎ+ … ℎ6

𝑒# 𝑒* 𝑒+ 𝑒6

ℎ1

ℎ⃡*ℎ⃡# ℎ⃡+ … ℎ⃡6

𝑒# 𝑒* 𝑒+ 𝑒6

ℎ⃡! = [ℎ!; ℎ!] (concatenation)

15

Stacked bidirectional RNN

…

𝑒# 𝑒* 𝑒+ 𝑒6

…

…

… … … …

ℎ⃡#
(#) ℎ⃡*

(#) ℎ⃡+
(#) ℎ⃡6

(#)

ℎ⃡#
(*) ℎ⃡*

(*) ℎ⃡+
(*) ℎ⃡6

(*)

ℎ⃡#
(7) ℎ⃡*

(7) ℎ⃡+
(7)

ℎ⃡6
(7)

Each layer revises the word embeddings of the previous (lower) layer. The
embeddings become increasingly more context-aware and also increasingly

more appropriate for the particular task we address…

16

Token classification with a stacked biRNN

…

𝑒# 𝑒* 𝑒+ 𝑒6

…

… … … …

ℎ⃡#
(#) ℎ⃡*

(#) ℎ⃡+
(#) ℎ⃡6

(#)

ℎ⃡#
(7) ℎ⃡*

(7) ℎ⃡+
(7)

ℎ⃡6
(7)

Person 0.75
Location 0.05

Organization 0.1
Other 0.1

𝑜⃗! = softmax 𝑊ℎ!
(#)
+ 𝑏⃗

Person 0.05
Location 0.05

Organization 0.1
Other 0.8

Person 0.8
Location 0.05

Organization 0.1
Other 0.05

Person 0.1
Location 0.8

Organization 0.05
Other 0.05

dense +
softmax

𝑊 𝑊 𝑊 𝑊

Compare to the correct predictions (sum the cross-entropy loss for all token positions)
and backpropagate to adjust all the weights, including the weights of the stacked biRNN.

Moderation Panel

85%

88%

0%

85%

Hello there try to relax

Go and hang yourself !

You are ignorant and vandal ! Stop it !

Thanks . Please go f#$@ yourself . Ty !

User comment moderation

A moderation panel assists the
moderators to detect abusive comments,
and leads to quicker publication of non-

abusive comments.

Highlighting suspicious
words using an RNN with

self-attention.

17

dense 𝑊(%)
& softmax

acceptance
probability

rejection
probability

Logistic
Regression

RNN with deep self-attention

x1 x2 xk...

...h0 h1 h2 hk RNN

α2
(l)α1

(l)

...

At
te

nt
io

n
M

LP

αk
(l)

αkα2α1 ×h1 h2 hk× × ...

softmax

Hello there relax...

18

J. Pavlopoulos, P. Malakasiotis and I. Androutsopoulos, “Deeper Attention to Abusive User Content
Moderation”, EMNLP 2017, http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf.

Could be the top-level
revised embeddings of

a stacked biRNN.

Initial word embeddings (e.g., via Word2Vec).

𝑒! 𝑒" 𝑒#

We use an MLP (the same at all time-
steps) to obtain an attention score

(importance) 𝑎$ for each word from its
revised embedding ℎ$. We could also
use a single dense layer: 𝑎$ = 𝑊(%)ℎ$.

The softmax ensures all the 𝑎$ scores are
between 0 and 1, and that they sum to 1.

The entire input text is now represented
by the weighted (by 𝒂𝒊	scores) sum of
the revised embeddings of its words.

http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf

dense 𝑊(%)
& softmax

acceptance
probability

rejection
probability

Logistic
Regression

x1 x2 xk...

...h0 h1 h2 hk RNN

α2
(l)α1

(l)

...

At
te

nt
io

n
M

LP

αk
(l)

αkα2α1 ×h1 h2 hk× × ...

softmax

Hello there relax...

19

J. Pavlopoulos, P. Malakasiotis and I. Androutsopoulos, “Deeper Attention to Abusive User Content
Moderation”, EMNLP 2017, http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf.

𝑒! 𝑒" 𝑒#

The entire input text is now represented
by the weighted (by 𝒂𝒊	scores) sum of
the revised embeddings of its words. We pass the weighted sum vector

(point) through another dense layer and
softmax to obtain a probability score for

each class (here accept, reject).

The attention scores 𝑎$ 	can also be used to highlight
the words that influence the system’s decision most.

Compare to the correct predictions with a
cross-entropy loss and backpropagate to
adjust the weights of the entire neural

net, including the MLP and RNN(s).

RNN with deep self-attention

http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf

acceptance
probability

rejection
probability

Logistic
Regression

x1 x2 xk...

...h0 h1 h2 hk RNN

α2
(l)α1

(l)

...

At
te

nt
io

n
M

LP

αk
(l)

αkα2α1 ×h1 h2 hk× × ...

softmax

Hello there relax...

20

RNN with deep self-attention

J. Pavlopoulos, P. Malakasiotis and I. Androutsopoulos, “Deeper Attention to Abusive User Content
Moderation”, EMNLP 2017, http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf.

http://nlp.cs.aueb.gr/pubs/emnlp2017.pdf

21

Text classification with stacked biRNN

…

𝑒# 𝑒* 𝑒+ 𝑒6

…

… … … …

ℎ⃡#
(#) ℎ⃡*

(#) ℎ⃡+
(#) ℎ⃡6

(#)

ℎ⃡#
(7) ℎ⃡*

(7) ℎ⃡+
(7)

ℎ⃡6
(7)

Compare (via categorical cross entropy) the predicted 𝒐 to the correct 1-hot distribution
and backpropagate to adjust all the weights, including the weights of the stacked biRNN.

ℎ)89 = max ℎ⃡∗,#
(7) , max ℎ⃡∗,*

(7) , … ,max ℎ⃡∗,6
(7) <

Global max-pooling creates a
single vector containing the

max per dimension of all the
ℎ⃡!
(#). We pass it through a dense

layer and softmax (or MLP) to
obtain a probability per class.

𝑜⃗ = softmax 𝑊ℎ)89 + 𝑏

22

RNNs for Machine Translation
From the slides of R. Socher’s

course “Deep Learning for NLP”,
2015. http://cs224d.stanford.edu/

From the slides of R.
Socher’s course “Deep

Learning for NLP”, 2015.
http://cs224d.stanford.edu/

Last 𝒉𝒊 of the
encoder RNN.

Treated as
embedding of
the entire input

sentence.

Embedding of
the previously

generated word.

23

24

RNN-based Machine Translation

Easier to explain
step by step…

Google’s paper:
https://arxiv.org/abs/1609.08144

Images from Stephen Merity’s
http://smerity.com/articles/2016/

google_nmt_arch.html

https://arxiv.org/abs/1609.08144
http://smerity.com/articles/2016/google_nmt_arch.html
http://smerity.com/articles/2016/google_nmt_arch.html

25

Basic Encoder-Decoder NMT
The last state of the encoder tries to
represent the meaning of the entire

source sentence.

Google’s paper: https://arxiv.org/abs/1609.08144
Images from Stephen Merity’s http://smerity.com/articles/2016/google_nmt_arch.html

During training, at each time-step of the decoder, we can use the correct previous
word of the human translation (teacher forcing), or we can randomly use the

correct or the predicted previous word (scheduled sampling).

During testing (inference), we always use the predicted previous word; and we
either greedily select the most probable next word, or we use beam search to find

the translation 𝑦"# of 𝑥"$ with the highest probability:
𝑝 𝑦" 𝑥"$)	𝑝 𝑦% 𝑦", 𝑥"$ 	𝑝 𝑦& 𝑦"%, 𝑥"$ … 	𝑝(𝑦#|𝑦"#'", 𝑥"$)

https://arxiv.org/abs/1609.08144
http://smerity.com/articles/2016/google_nmt_arch.html

26

Encoder-Decoder with attention
The source sentence is now represented by the weighted sum of the encoder states:

ℎ=>) =]
?
𝑎?ℎ?

𝑎*
ℎ*

For each German word, the attention scores over the English words change!
Each “attention” weight 𝒂𝒋 is a function of the corresponding encoder state 𝒉𝒋
and the previous state 𝒛𝒊"𝟏	of the decoder (memory of translation so far), e.g.:
𝑎̀? = 𝑣2 ⋅ 𝑓 𝑊(-)ℎ? +𝑊(4)𝑧!"# = 𝑣2 ⋅ 𝑓 𝑊 ℎ?; 𝑧!"# , 𝑎? = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎̀?

with a softmax to make the 𝒂𝒋	weights sum to 1.

𝑧!"#

Google’s paper: https://arxiv.org/abs/1609.08144
Images from Stephen Merity’s http://smerity.com/articles/2016/google_nmt_arch.html

https://arxiv.org/abs/1609.08144
http://smerity.com/articles/2016/google_nmt_arch.html

27

Bidirectional LSTM encoder
The encoder is now a bidirectional LSTM. The encoder state for the 𝑗-th word of

the source sentence is the concatenation of the corresponding states of the
forward and backward LSTM.

Google’s paper: https://arxiv.org/abs/1609.08144
Images from Stephen Merity’s http://smerity.com/articles/2016/google_nmt_arch.html

https://arxiv.org/abs/1609.08144
http://smerity.com/articles/2016/google_nmt_arch.html

28

Stacking RNNs and residuals

“Residual”
connections (a kind
of skip-connections)

helps fight
vanishing gradients
in backpropagation

(sum-nodes copy the
gradients to their

inputs). Also allows
upper layers to learn
only modifications
(differences) from
representations of

lower layers.

Google’s paper: https://arxiv.org/abs/1609.08144
Images from Stephen Merity’s http://smerity.com/articles/2016/google_nmt_arch.html

https://arxiv.org/abs/1609.08144
http://smerity.com/articles/2016/google_nmt_arch.html

29

RNN-based Machine Translation
Google’s paper:

https://arxiv.org/abs/1609.08144

Images from Stephen Merity’s
http://smerity.com/articles/2016/

google_nmt_arch.html

Attention based on the previous state of the bottom
decoder only, to speed up computations.

https://arxiv.org/abs/1609.08144
http://smerity.com/articles/2016/google_nmt_arch.html
http://smerity.com/articles/2016/google_nmt_arch.html

30

Recommended reading
• M. Surdeanu and M.A. Valenzuela-Escarcega, Deep

Learning for Natural Language Processing: A Gentle
Introduction, Cambridge Univ. Press, 2024.
• Chapters 11, 12, 14. See https://clulab.org/gentlenlp/text.html
• Also available at AUEB’s library.

• Y. Goldberg, Neural Network Models for Natural Language
Processing, Morgan & Claypool Publishers, 2017.
o Mostly chapters 14–17.

• Jurafsky and Martin’s, Speech and Language Processing is
being revised (3rd edition) to include DL methods.
o http://web.stanford.edu/~jurafsky/slp3/

https://clulab.org/gentlenlp/text.html
http://web.stanford.edu/~jurafsky/slp3/

31

Recommended reading
• F. Chollet, Deep Learning in Python, 1st edition, Manning

Publications, 2017.
o 1st edition freely available (and sufficient for this part of the

course): https://www.manning.com/books/deep-learning-
with-python

o See mostly sections 6.1–6.3, section 8.1.
o 2nd edition (2022) now available, requires payment. Highly

recommended.
• See also the recommended reading and resources of the

previous part (NLP with MLPs) of this course.

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python

• Αν έχετε από το μάθημα της ΤΝ το βιβλίο των Russel &
Norvig «Τεχνητή Νοημοσύνη – Μια σύγχρονη
προσέγγιση», 4η έκδοση, Κλειδάριθμος, 2021, μπορείτε να
συμβουλευτείτε τα κεφάλαια 21 και 24.
o Κυρίως τις ενότητες 21.6, 21.8.2, 24.1, 24.2, 24.3.
o Άλλες ενότητες αυτών των κεφαλαίων θα καλυφθούν σε

επόμενες διαλέξεις.

Βιβλιογραφία – συνέχεια

32

