
Android
Application Development
Lab 1
Human-Computer Interaction, AUEB
Εαρινό εξάμηνο 2024-2025

Lab Assistant: Sofia Eleftheriou

Slides created by Ilias Chalkidis

Android Development Fundamentals

● Android SDK and Development Tools
● Android State Machine
● Android Manifest

Android SDK & Development Tool

A software development kit that enables developers to create applications
for the Android platform. The Android SDK includes:

● sample projects with source code,
● development tools,
● an emulator,
● a debugger, and
● required libraries to build Android applications.

Applications are written using the Java programming language and run on Dalvik,
a custom virtual machine designed for embedded use which runs on top of a Linux
kernel.

Android State Machine

Android State Machine

public class Activity extends ApplicationContext {
protected void onCreate(Bundle savedInstanceState);
protected void onStart();

protected void onRestart();

protected void onResume();

protected void onPause();

protected void onStop();

protected void onDestroy();

}

Android Manifest

The Android Application Manifest file includes nodes for each of the following components:

● Activities: Represent the user interface and handle user interactions
● Services: Run in the background to perform long-running operations
● Content providers: Manage and share data between apps
● Broadcast Receivers: Respond to system-wide broadcast messages

that make up your application and uses Intent Filters and Permissions to determine how they interact
with each other and other applications. It also offers you attributes that you can use to specify
application metadata like icon and theme among other things.

Android Manifest

application – A manifest can contain only one application node. This uses attributes to specify the metadata
for your android application(title, icon and theme). Besides that, it acts as a container that includes the Activity,
Service, Content Provider and Broadcast Receiver tags for specifying the application components:

activity – For every activity displayed by your android application, an activity tag is required. It must include
the main launch Activity and any other screen or dialog that can be displayed. If you try to start an Activity that
is not defined, you will get a runtime exception. Each Activity node supports intent-filter child tags which
specify which Intents launch the activity.

service – Just like the activity, you must create a new service for each Service class used inside your
application. Service tags also support intent-filter child tags to allow late runtime binding.

Android Manifest

provider – provider tags are used for each of your application’s Content Providers. Content Providers are used
to manage database access and sharing within and between applications.

receiver – You can register a Broadcast Receiver by adding a receiver tag without having to launch your
application first. Broadcast Receivers are more like global event listeners – once registered, they will execute
whenever a matching Intent is broadcast by an application.

Android Manifest

uses-permission – this is part of the security model. It declares permissions you have determined that your
application needs to operate properly. The permissions you include will always be presented to the user to
either grant or deny during installation. Many native android services require permissions for example those
that have cost or security implications. Examples : location services, SMS, Camera etc.

permission – You need to define a permission in the android application manifest file before restricting access
to any application component. Other apps will then need to include a uses-permission tag in their manifest file
and have it granted before they can use these protected components.

Android Manifest

Android Development Studio

● Create Project - Default Activity
● Change Application Icon
● Build and Run Project
● Create new Activity
● Add mock data - Preview in

Activity

Create Project - Default Activity

Create new project

Select Template (Basic
Activity)

Select Language (Java) and Minimum
SDK

Core functionality in MainActivity

Preview screen layout in Design
Mode

Preview screen layout in XML

Preview screen layout (Split View →
Code/Graphics)

Main Activity Layout includes Main content

1st Fragment (Text +
Button)

(1) Show fragment and (2) onClick move to next
fragment

Change Application Icon

Create new Image
asset

Select
Image

Manifest defines application icon

Build and Run Project

Select virtual device for
emulation

Create new Activity

Remove text and button from second
fragment

Replace with ListView

<ListView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:id="@+id/listview_forecast" />

Create new layout file

Create a TextView for List
items

TextView specifications

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent" android:layout_height="match_parent"
android:minHeight="?android:attr/listPreferredItemHeight"
android:gravity="center_vertical"
android:id="@+id/list_item_forecast_textview">

</TextView>

http://schemas.android.com/apk/res/android

Add mock data - Preview in Activity

Old business logic / Move back
button

New business logic / Populate list with mock (fake)
data

Fix imports

binding = FragmentSecondBinding.inflate(inflater, container, false);

String[] data = {
 "Today 3/11 - Sunny - 17 C",
 "Fri 4/11 - Cloudy - 18 C",
 "Sat 5/11 - Rainy - 17 C",
 "Sun 6/11 - Sunny - 19 C",
 "Mon 7/1 - Sunny - 19 C",
 "Tues 8/11 - Rainy - 18 C",
 "Wed 9/11 - TRAPPED IN WEATHERSTATION - 10 C"
};

List<String> weekForecast = new ArrayList<String>(Arrays.asList(data));
ArrayAdapter<String> mForecastAdapter = new ArrayAdapter<String>(requireContext(), // Returns a non-null context from the fragment itself
 R.layout.list_item_forecast, // The name of the layout ID.
 R.id.list_item_forecast_textview, // The ID of the textview to populate.
 weekForecast);

ListView listView = (ListView) binding.listviewForecast;
listView.setAdapter(mForecastAdapter);
return binding.getRoot();

import java.util.*;
import android.widget.ArrayAdapter;
import android.widget.ListView;

Review of Lab
1

● Android Development Fundamentals
○ Android SDK and Development Tools
○ Android State Machine
○ Android Manifest

● Android Development Studio
○ Create Project - Default Activity
○ Change Application Icon
○ Build and Run Project
○ Create new Activity
○ Add mock data - Preview in Activity

