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DEFERRED APPROACHES 



Deferred Rendering - The Principle 

• Deferred shading defers (postpones) most of the heavy 
rendering (like lighting) to a later stage  

• Deferred shading consists of two passes:  
– The geometry pass renders the scene once and retrieves all kinds of 

geometrical information from the objects that we store in a collection 
of textures called the G-buffer 

– In the lighting pass, we render a screen-filling quad and calculate the 
scene's lighting for each fragment using the geometrical information 
stored in the G-buffer 

Adapted from https://learnopengl.com/Advanced-Lighting/Deferred-Shading 



Multiple Render Targets (1) 

• It is often useful to be able to write many fragment operation 
results to multiple internal buffers, without re-rendering the 
geometry 

• Examples: 
– Cube map generation (6 buffers, 6 viewing transformations – also 

requires retargeting by a geometry shader) 
– Deferred rendering (3+ buffers, one viewing transformation) 
– Reflective shadow maps (ok, this is still deferred rendering!)  



Multiple Render Targets (2) 

• This is enabled via the Multiple Render Targets (MRT) 
mechanism: 
– The geometry is sent once for primitive generation 
– The pixel (fragment) shader writes results at the same 

location on multiple buffers 
– Different calculations and hence output values can be 

written to each buffer in the same pixel shader 



Multiple Render Targets (3) 

Geometry 
processing 

Rasterization 
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Deferred Rendering - The Principle 

Albedo Normal vectors 

Depth Glossy params 



Deferred Rendering - The Principle 

• Instead of shading the fragments of each individual triangle in 
isolation, compute the final color for the resolved, visible 
geometry only 

Screen-space shading pass 

Geometry pass  MRT 

Source: AUEB Graphics Group XEngine 



Deferred Rendering – Pros 

• Geometry is rendered once, regardless of number of lights 
• Shading rate is proportional to image size and NOT the 

amount of rendered geometry or depth complexity 
– Predictable, controllable and stable  

• Capable of handling many more light sources 
• Simplification of rendering pipeline 



Deferred Rendering – Pros 

• Lighting algorithms and other rendering passes have access to 
global image data, not only the current fragment (e.g. see GI) 

Direct +Diffuse GI +Specular GI 

Radiance caching Screen-space reflections 
Source: AUEB Graphics Group XEngine 



Deferred Rendering – Cons 

• Cannot handle transparent geometry. Still need a separate 
(forward) pass fro such surfaces. 

• Does not mix well with antialiasing 
– MSAA pixel resolve requires a final color to be already 

available at the pixel samples. DR delays this computation 
– No sense in having MSAA filtered geometry attributes (not 

even correct). 
• Limits the amount of different materials that can be used 

(requiring additional buffers to write their properties and IDs) 



Tiled Rendering 

• One problem with both forward and deferred 
rendering is the presence of a large number of light 
sources: 
– For each one, a lighting pass must be made OR 
– A large number of sources must be iterated within a loop 

in the fragment shader 

 
 

 



Tiled Rendering 

• Solution: Divide visible domain into tiles and assign 
light sources only to affected regions 

• Prerequisite: each light source has a bounded area of 
effect (not really physically correct, but ok). 
 
 

 

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf 
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Clustered Rendering 

• Tiling can also be done in the Z direction (clustered 
rendering): 

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf 
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Clustered Rendering 

• Clustered rendering also helps treat lights differently 
according to depth: 

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf 

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf


FAST APPROXIMATE LIGHTING 



Light Maps 

• Storage of pre-calculated (“baked”), view-independent 
illumination   

• Store incident direct and/or indirect diffuse illumination in the 
texels of the map 

• When object is rendered, the pre-recorded information on 
the light map is used, provided that:  
– Geometry is part of a static environment  
– Moving objects' contribution to diffuse illumination is negligible 
– Light-mapping is extensively used for the accelerated real-time 

rendering of realistic scenes  

• Resolution of the light map does not need to be very high 
since illumination varies more slowly on a surface than a color 
or bump pattern 
 



Light Maps 



Texture Atlases 

• A texture atlas is a surface parameterization where connected 
parts of the object's surface (charts), are each mapped onto 
contiguous regions of the texture domain  

• Atlas ensures the unique mapping between Cartesian 
coordinates on the surface & locations on the bounded 
texture domain of the image map 

• Construction: 
– Surface partitioning into charts 
– Unfold chart on a 2-D domain to ensure unique mapping 
– Pack chart parametric partitions into a single texture (NP-complete 

problem) 

19 



Texture Atlases 

Criteria for chart partitioning and unfolding: 
– Minimize texture distortion and artifacts 
– Distribute the texels over the surface as evenly as possible 
– Ensure continuity & conformity of mapping among the charts, 

if possible 
– Maximize the area coverage of the charts & minimize the # of 

separate charts 

20 



• Common and simple 
approach: polypacks 

• Cut surface into 
regions (polypacks) 
and map each one to 
a plane with as little 
distortion as possible 
 

Texture Atlases - Polypacks 



Atlas Generation Issues: 

• As number of charts increases, so does the unused space: 
– Charts are not tightly packed to ensure some “guard 

space” between them to allow texel interpolation and 
mipmaping to work correctly 
 

 
 
 

• Texel area coverage must be as close to uniform as possible: 
– Avoid stretching 
– Ensure proper and proportional scale of charts in packed 

atlas 



23 

Atlas Packing: kd-tree approach 



Atlas Packing: horizon approach 

• Suitable for large polygon charts with low compactness  
• Operates in the discrete texture space 
• Construction: 

– Rotate the charts so that their longest diameter is vertically aligned  
– Sort charts according to height and insert into the atlas  
– Incoming charts are stacked on top of the existing clusters in the atlas 
– Topmost texels occupied by the charts already in the atlas form a 

“horizon”, which the new chart's underside texels (“bottom horizon”) 
cannot penetrate  

 
 



Lightmap Computation 

• Lightmap texels are uniquely mapped to triangle 
locations and their attributes 

• Iterate over valid lightmap texels  
– Compute lighting in texture space 

 

• At runtime, transfer lighting onto shaded triangle 
fragments via texture mapping 



Practical Lightmaps in Games 

• Complex geometry limits the efficiency of lightmap 
packing 

• Use simpler “proxy” geometry for lightmap 
calculation 

• Map proxies to corresponding polygon groups  
• Transfer proxy lighting onto detailed geometry 



Practical Lightmaps in Games 

Source: https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf 

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf


Complex Light Sources 

• Large and complex-shaped emitters are challenging 
in real time: 
– Cannot use MC integration effectively in the time 

constraints of a real-time engine 

• Typical useful emitters: spheres, quads, tubes 
• Resolve to: 

– Analytical approximations for diffuse BRDFs 
– Image-based solutions for glossy/specular BRDFs and ray 

tracing 



Area Lights – Diffuse BRDFs 

• For a convex light source and a diffuse surface, the 
contribution of a light source boils down to computing 
irradiance from the projected visible surface (e.g. disk for a 
sphere): 
 

= 𝐿𝐿𝑖𝑖𝑖𝑖 �
𝐧𝐧 ∙ 𝐥𝐥 𝐧𝐧a ∙ −𝐥𝐥
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒2

𝑑𝑑a
𝐴𝐴

 



Area Lights – Diffuse BRDFs 

• The Form Factor integral can be approximated using MC 
samples or analytically estimated. However: 

• The drop of the source below the horizon of the surface must 
be carefully handled! 

• Sample representative points on emitter to compute FF. 
 



Area Lights – Glossy BRDFs 

• Necessary but crude approximation 
• Treat all light coming from the emitter as coming from a single 

representative point on its surface 
• A reasonable choice is the point with the largest contribution 
• For a Phong distribution, this is the point on the light source 

with the smallest angle to the reflection ray 
 

• Only reasonably good for emitters above the horizon 
– Apply some form of attenuation to handle horizon 



Area Lights – Glossy BRDFs 

• Example: Spherical sources 
 

𝐜𝐜𝐜 = 𝐫𝐫 𝐥𝐥 ∙ 𝐫𝐫 − 𝐥𝐥 

𝐜𝐜 = 𝐞𝐞 +
𝐜𝐜𝐜
𝐜𝐜𝐜 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑 

𝐫𝐫: ideal reflection vector 

𝐥𝐥: 𝐞𝐞 − 𝐩𝐩 

𝐫𝐫𝐜 =
𝐜𝐜 − 𝐩𝐩
𝐜𝐜 − 𝐩𝐩  

Use this vector to light for shading 



Area Lights – Glossy BRDFs 

• Modified NDF requires normalization (too bright here) 

Reference 



Area Lights – Glossy BRDFs 

Image source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf 

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf


IMAGE-BASED LIGHTING 



Why image-based lighting? 

• Very important in CG 
• Helps transfer complex distant lighting to surfaces 

very fast  
• Helps a rendered image blend with a real 

surrounding 
– Mix synthesized and real imagery (films, games, AR) 

 



Environment Maps 

• An environment map is a representation of distant radiance 
parameterized w.r.t. an incoming direction 𝜔𝜔𝑖𝑖  

• Usually this information is discretely encoded on a set of 
images 

• Other typical representations include spherical function 
coefficients 



Environment Maps 

• Environment maps typically encode incoming illumination 
from the entire sphere around a point 

• But can also be: 
– Hemispherical (e.g. sky lighting) 
– Cylindrical  



Environment Maps 

• Mostly in real time graphics, it is convenient to store the 
spherical environment in cube maps: 



Light Probes 

• Environment lighting images can be captured using physical 
light probes: 

• Highly polished metallic spheres photographed to capture the 
real environment 
– Multiple exposures are typically taken to capture an HDR environment 

map 



Light Probes 

• To properly map the environment:  
– with low distortion and  
– Elimination of the photographic equipment from the image 

• Multiple photos of the probe are captured  
• The results are merged into an (inverse) panorama 



Using an Environment Map 

• The basic assumption about environment maps is that the 
environment is distant 

• If assumed distant, incoming light is parameterized only by 
direction, as different points on the geometry will still index 
the same location on the environment map 



Using an Environment Map 

• Using as lighting the environment map on each point instead 
of using light sources: 
– Can provide a very natural look to artificial objects 
– Can blend the synthetic geometry with the captured environment 

• This has been extensively used in movies and AR  

http://www.fxguide.com/featured/vfx-roll-call-for-the-avengers/ 



Using an Environment Map 

• When environment distances are 
comparable to the size of the synthetic 
objects, a single environment map 
cannot do the trick  
 

• Env. maps are also only valid for a 
particular region near the capture point 



Virtual Light Probes  

• In the previous example, the environment map was not 
captured from a real scene, but rather from a synthetic 
environment 

Why do this? 
• To significantly speed up indirect lighting calculations 
• To apply indirect lighting to real-time rendering! 

– “Bake” incident light from a rendered environment 
– This lighting is the contribution of the env. Lighting to a surface 
– Can be combined with local shading from light sources  

 



Virtual Light Probes 

• Generation: 
– Via cube maps: setup 6 views and render the scene  



Virtual Light Probes 

• Generation: 
– Directly sample the geometry and store a compressed 

spherical representation (see RT GI slides)  



Environment Mapping in RT Applications 

• Used for baking both rough indirect lighting and sky / ambient 
lighting  

 Call of Duty: Ghosts 



Multiple Light Probes 

• To alleviate the invalidation of environment maps in different 
scene positions, multiple (virtual or physical) light maps can 
be generated from different locations 

• At runtime, their contribution is interpolated  

http://www.fxguide.com/featured/game-environments-parta-remember-me-rendering/ 



Irradiance Maps 

• Environment maps encode the incoming light from a single 
direction 𝜔𝜔𝑖𝑖 

• So, in order to compute the reflected light on a surface, the 
contribution of all directions in the normal-aligned  
hemisphere must be accounted for, according to the 
reflectance equation: 
 
 
 
 

• This is obviously computationally impractical in real time. 
 

𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 = � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟 𝐱𝐱,𝜑𝜑𝑜𝑜,𝜃𝜃𝑜𝑜, 𝜑𝜑𝑖𝑖 ,𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖)
Ω𝑖𝑖

 



Irradiance Maps 

• However, for the diffuse part of the BRDF, the 
integral can be greatly simplified: 
 
 
 

• The integral has no dependence on 𝜔𝜔𝑜𝑜 and can be 
therefore pre-computed via MC integration with 
cosine-weighted IS for every possible hemisphere 
direction 

𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 =
𝜌𝜌
𝜋𝜋 � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖)
Ω𝑖𝑖

 



Irradiance Maps 

• Dropping the dependence on location (as in 
reflection maps), from the surface normal n: 

𝐿𝐿𝑜𝑜 𝜔𝜔𝑜𝑜 =
𝜌𝜌
𝜋𝜋 𝐼𝐼𝑀𝑀(𝐧𝐧) 

Image source: https://learnopengl.com/PBR/IBL/Diffuse-irradiance 

https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/PBR/IBL/Diffuse-irradiance


What about Glossy BRDFs? 

• The same cannot be done in the general case of 
glossy BRDFs, due to their dependence on 𝜔𝜔𝜊𝜊 

• However, if we consider that contributing directions 
are centered around the ideal reflection direction of 
𝜔𝜔𝑖𝑖  , an approximate solution is possible: 

• For different roughness values: 
– Precompute the irradiance inside a constricted solid angle 

centered at each 𝜔𝜔𝑟𝑟 direction, according to the spread of 
the BRDF 

– Store the versions as mipmaps of the same env. Map. 
 



Pre-Convolved Environment Maps 

https://learnopengl.com/PBR/IBL/Specular-IBL 

𝐿𝐿𝑜𝑜 𝜔𝜔𝑜𝑜 = � 𝐿𝐿 𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟 𝜔𝜔𝑜𝑜, 𝜔𝜔𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖) ≅
Ω

 

� 𝐿𝐿 𝜔𝜔𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖) � 𝑓𝑓𝑟𝑟 𝜔𝜔𝑜𝑜, 𝜔𝜔𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖) ≅
ΩhemiΩ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 

 
𝐸𝐸𝑀𝑀𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝜔𝜔𝑟𝑟) ∙ 𝑀𝑀(𝛚𝛚𝑜𝑜 ∙ 𝐧𝐧, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑) 

 

https://learnopengl.com/PBR/IBL/Specular-IBL
https://learnopengl.com/PBR/IBL/Specular-IBL
https://learnopengl.com/PBR/IBL/Specular-IBL


Pre-Convolved Environment Maps 

Image source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf 

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
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https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
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VISIBILITY DETERMINATION 



Shadows and Perception (1) 

• Wherever there is light, there are shadows 
• Presence of shadows: 

– Not only for aesthetic purposes 
– Provides clues for the shape of the geometry in the image  

• Helps place the objects in the environment. Gives clues about relative 
distances  

• Enhances depth perception: In monocular vision the HVS relies on clues 
and recognizable configurations to discern the ordering and distances of 
objects 

• Indicates the direction of incident light or light sources 

• Enhances the visual detail of the displayed surfaces by enhancing 
local contrast 



Shadows and Perception (2) 



Shadows and Perception (3) 

• (a) No shadow: We cannot possibly know the relative position 
or size of the ball w.r.t. the steps 

• (b) Possible position/ball size configurations that lead to the 
same image (a)  

• (c,d,e) The resulting images of the configurations in (b) when 
shadows are enabled 



Shadows and Visual Detail 

(no shadows) 
Coarse, uninteresting surfaces 
 
 
 
 
(with shadows) 
Same geometry, higher visual detail  



How are Shadows Generated? 

• Partial or full obstruction of a source’s light by geometry 
• Indirect illumination reaching a surface is in general of lower 

luminance compared to the direct, unshadowed light   
• Illuminance of points in shadows is significantly lower than 

that of the lit points 



Shadow Types 

• The size and type of shadows depend on the size and 
distance of the light emitting surfaces: 
– Infinitely distant light (directional) sources cause parallel 

shafts o shadows 
– Non-directional light sources cause radially projected 

shadow profiles 



Umbra and Penumbra 

• Umbra is part of the shadow due to complete light 
obstruction 

• Penumbra is the shadow part where partial occlusion occurs 
and creates a soft transition to the lit surface (soft shadows) 

• A punctual (point) light source creates hard shadows with no 
penumbra 

• A light source with a non-negligible size and comparable 
distance to the occluding geometry causes shadows with 
penumbrae (soft shadows) 
– Larger emitters and smaller distances to occluders  larger 

penumbrae  

 



Shadow Examples 



Shadow Maps 

• Basic principle: 
– The occlusion of light on a surface due to a given (point) 

light source is a similar problem to the visibility 
determination from the user’s view point 

– A point is lit if the point is the closest one to the light 
source in this direction, i.e. if it is “visible” from the light 
source 

• We can use the depth buffer mechanism to perform 
HSE and determine the nearest visible points from 
the light source’s view point 

• We call the depth buffer generated from the light 
source view point a shadow map 



Shadow Map - Setup 

• A projection is set up 
from the light source’s 
point of view (a) and the 
shadow map is captured 
(b) 

• The scene is rendered 
normally form the 
camera view point and 
fragments are tested 
against the shadow map 
(c) 



Transforming Fragments to S.M. Space 

 



Shadow Calculations 

• Render the scene from the light source view point 
– Transform geometry by 
– Record the depth (shadow) map 

• Render the scene normally, from the camera view point 
– Transform each fragment from the camera CSS to the light source’s 

CSS:  
 
 

– Compare the fragment’s light space 𝑧𝑧𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′  value with the 
corresponding depth in the shadow map 𝑍𝑍𝐿𝐿(𝑥𝑥𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ,𝑦𝑦𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ) 

– If 𝑧𝑧𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ≤ 𝑍𝑍𝐿𝐿(𝑥𝑥𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ,𝑦𝑦𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ) the fragment is lit, otherwise it lies in 
shadow 
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Shadow Maps – Remarks (1) 

• The shadow map needs to be updated only if: 
– The light source is moving 
– Geometry within the light’s field of view changes 

• The shadow map rendering time is significantly lower 
than the normal rendering time:  
– Only fragment depth is captured 
– No pixel shading occurs (pass through shader), no color 

attachment 



Shadow Maps – Remarks (2) 

• WYSIWYG: Whatever geometric entity can be rasterized or 
otherwise drawn in a depth map, can be used as an occluder: 
– E.g. foliage modelled as polygons with transparent textures 



Advantages of Shadow Maps 

• A simple and intuitive 2-pass algorithm 
• Any renderable entity can generate shadow 
• Easily combined with other effects, such as 

volumetric lighting 
• Low complexity, takes advantage of GPU’s early 

culling mechanisms 
• Linear dependence on scene complexity 
• Adjustable SM size  performance/quality trade off 
• Can generate soft shadows (via extra samples) 



Shadow Map Problems (1) 

• Only works for conical/directional light sources 
– For omnidirectional lights, we need a cube map 

configuration of shadow maps 

http://devmaster.net/p/3002/shader-effects-shadow-mapping 



Shadow Map Problems (2) 

• Accuracy depends on relative light-camera position and orientation 
• Strong aliasing artifacts due to undersampling and arithmetic precision 



Typical Shadow Map Artifacts 

Shadow “acne” “Peter Panning” 

http://devmaster.net/p/3002/shader-effects-shadow-mapping 



Shadow Map Antialiasing 

• Typical bilinear filtering on the shadow map does not 
work 

• If we pre-filter (mipmap) the shadow maps: 
– We filter depths!  Erroneous depth comparisons and we 

do not get rid of artifacts 

• We need to change the order of filtering and 
comparisons: post-filtering 



Percentage Closer Filtering 

• Draw samples from the shadow map in the 
neighborhood of the query shadow map coordinate 

• Individually test each shadow map tap with the 
fragment z 

• Average the shadow test results to get the fraction of 
occlusion 



PCF Shadow Maps Example 

 



Cascaded Shadow Maps 

• Cascaded shadow maps (CSMs) are the best way to 
combat one of the most prevalent errors with 
shadowing: perspective aliasing 
– Different areas of the camera frustum require shadow 

maps with different resolutions  
– Objects nearest the eye require a higher resolution than 

do more distant objects 



Cascaded Shadow Maps 

• Basic idea:  
– Partition the frustum into multiple segments 
– A shadow map is rendered for each sub-frustum 
– The pixel shader samples from the map that most closely 

matches the required resolution 

 

Image source: https://doc.babylonjs.com/babylon101/shadows_csm#references 

https://doc.babylonjs.com/babylon101/shadows_csm%23references


Cascaded Shadow Maps 

• Typical setup: 
• Multiple, same resolution 

cascades, but 
• Covering an increasingly 

wider area 
– Decreasing fidelity away from 

user 
– Countered by perspective 

foreshortening 

• Switch according to distance 
from user 

Image source: https://devansh.space/cascaded-shadow-maps 

https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps


Cascaded Shadow Maps 

• Construction: 
– Partition the frustum into sub-frusta. 
– Compute an orthographic projection for each sub-frustum. 
– Render a shadow map for each sub-frustum. 
– Render the scene. 

 

 

Image source: https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/ 

https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/


Shadows from Area Lights 

• Typically soft shadows are approximated by dynamically 
changing the PCF kernel size according to distance of occluded 
point from occluded geometry: 

• 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃(𝐩𝐩) = 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃(1 + 𝐩𝐩𝐸𝐸𝑃𝑃𝐸𝐸 − 𝑑𝑑𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑𝑝𝑝𝐸𝐸𝑃𝑃𝐸𝐸) 



Per-object Shadow Maps 

• Shadow maps can be focused also on certain high impact (e.g. 
close to the user) objects 

• Dedicated SMs that are used for specific objects, instead of 
the global SMs or CSMs 

Image source: https://www.cryengine.com/features/view/visuals 

https://www.cryengine.com/features/view/visuals


Screen-space Self-shadowing 

• Screen-space shadowing is introduced to alleviate 
problems of shadow maps due to:  
– distance bias used for correcting shadow acne problem 
– Low resolution of SMs at close object inspection 

• Idea: 
– March a ray (take samples on a short distance on the 

direction) from the shaded point towards the light source 
– Check for occlusion with depth buffer 
– Requires deferred shading 



Screen-space Self-shadowing 

Radius usually compatible with depth bias 

Z buffer 



Shadows 

• Raytraced shadows 
• Shadows from area lights 
• Contact shadows 
• Ambient occlusion 
• Transparency 

 



Ambient Occlusion 

• A cheap way to simulate contribution of ambient (global) 
lighting 
– Though only convincing for outdoor scenes mostly 

• Accentuates crevices  increases image contrast 
 

• Estimates the overall drop of irradiance on the shaded point 
from occlusion due to near-field geometry  



Ambient Occlusion Estimation 

• Local or global illumination model? 
• Hybrid! 

– Does not exchange light with other 
locations 

– Potentially search for occlusion up to a 
distance 

– Still requires visibility checks  
intersections with other geometry 



Ambient Occlusion Estimation (2) 

• The value of occlusion shading can be easily determined if we 
set 𝐿𝐿𝑖𝑖  in the reflectance equation to 1 and replace visibility 
with an attenuation score: 
 
 
 
 

• Where 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖  is the distance to the closest hit point within 
a radius 𝑑𝑑𝑚𝑚𝑓𝑓𝑚𝑚  (or +∞ if no hit occurred) 
– 𝑑𝑑𝑚𝑚𝑓𝑓𝑚𝑚 can be set to ∞  

𝑠𝑠 𝐩𝐩 =
1
𝜋𝜋
� 𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖 𝑑𝑑𝜎𝜎⊥(𝜔𝜔𝑖𝑖)
Ω

 



Ambient Occlusion – Attenuation Function 

• 𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖  can be any intuitive function  
• Simplest case: 

 
 

• But other forms can be used to limit the impact of distant 
occluders 

𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖 = �1,        𝑑𝑑𝑟𝑟 𝑟𝑑𝑑𝑑𝑑
0, 𝑟𝑟𝑑𝑑𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒  



A.O. : How is it Applied? 

• We usually apply AO as a visibility function to attenuate 
ambient / sky color 

• Some implementations also blend AO with diffuse or even 
specular lighting (not really correct…) 



A.O. Example 



A.O. Example 



A.O. - Effect of maximum distance 



Ambient Occlusion vs Uniform Light 

Hemispherical light                                    Ambient occlusion 



Ambient Occlusion Calculation 

• For every visible point x: 
– Compute AO as Monte Carlo hemispherical integral. Sample the 

hemisphere with N rays: 

• Find closest intersection y with occluding geometry (the most 
expensive calculation) 

• Compute distance d(x,y) 
• Compute attenuation ρ(d)  

 



Screen-space Ambient Occlusion 

• The most widely used technique for AO in real-time graphics 
• Uses the Z buffer as source of occluder geometry information 
• Idea: 

– Generate a number of samples up to 𝑟𝑟𝑚𝑚𝑓𝑓𝑚𝑚 distance away from the 
shaded point (typically in hemisphere) 

– Test if sample is “above” (in front of) the corresponding z value at that 
z buffer location 

• Many variations 

Z buffer 



Screen-space Ambient Occlusion 

• View-dependent behaviour: 
– Can only use available geometry in view 
– Hidden layers of geometry do not correctly contribute to the result 

(either over- or under-estimation) 



Contact Shadows 

• A form of directional ambient occlusion 
• Used for attenuating light on surfaces only in directions 

obscured by nearby geometry 
• From the AO samples, compute the average open direction or 

“bent normal” 

Z buffer 

𝐧𝐧 𝐧𝐧AO 

𝐿𝐿𝑜𝑜𝑟𝑟𝑜𝑜′ = 𝐿𝐿𝑜𝑜𝐧𝐧AO ∙ 𝐥𝐥 

Attenuate local illumination by the 
divergence of the bent normal from the 
light direction 



Visibility and Ray Tracing 

• Shadows (direct light source visibility) can be also 
evaluated in real time using ray tracing, on high-end 
graphics hardware 
– Removes all problematic artifacts of shadow mapping 
– Generally slower  



HIGH-DYNAMIC-RANGE RENDERING 



Dynamic Range 

• Dynamic range: the minimum to maximum luminance level 
achieved by a system 

• The human visual system adapts to the level of illumination 
incident to the photoreceptors 
– Rods (scotoptic light): 10-6cd/m2 – 10cd/m2 
– Cones (photoptic light): 10-2cd/m2 – 108 cd/m2 

• Total luminance range: 108:10-6 
• Cannot achieve these levels simultaneously! 
   

 



High Dynamic Range 



High Dynamic Range Images - Why 

• Physically measured or simulated radiance (therefore 
luminance) in a natural environment matches the HVS levels 

• Typical displays can achieve a dynamic contrast ratio of 
6000:1 and an actual luminance level of 1-120cd/m2  

• Screens are far from capable to display physically correct 
images! 
– Even if they were, the HVS field of view is different from a screen’s  

our eyes will not adapt to bright/dark regions appropriately 

• We need methods to adapt the computed radiance to the 
output intensity of a graphics system 



High Dynamic Range Images - Storage 

• To be able to adjust the tonal range of the image output we 
need: 
– High precision (float/double) imaging algorithms 
– More than 8bits/color for storage (>255 levels) 
– Floating point precision buffers 

 
• Common settings: 

– RGB16F (48bpp) RGBA16F (64bpp) R11G11B10F - half 
– RGBA12 (48bpp) RGBA16 (64bpp) - int 
– RGB32F (96bpp) RGBA32F (128bpp) - float 



Tone Mapping 

• Is the process of fitting a potentially huge luminance level to 
the tonal range of graphics display hardware 

• Can be 
– Static 
– Adaptive 
– Delayed adaptive (to simulate the time required for the eyes to adjust 

to sudden change of illumination levels) 

• According to image coverage, it can be 
– Global (same equation and params for all pixels) 
– Local (different adaptation for each pixel) 



Tone Mapping - Goals 

• De-saturate useful range of information 
• Enhance contrast of useful ranges 
• Human visual system discriminates changes, not absolute 

values 
• Local contrast enhancement: 

– Separates tone levels of adjacent pixels  
– accentuates details 

• Simulate the retinal response to physical luminance levels 
(see blurring and bloom) 



Tone Mapping – Maximum to white 

• Global operator 
• Simple to implement (offline/real-time) 

• Assuming normalized output: Lo = Li /Lmax 
• Ensures mapping of entire range to visible scale 

• Reduces contrast for Lmax>1 
• Increases contrast for Lmax<1 
• Prone to significantly reduce levels if isolated high values are 

present 



Tone Mapping – Max to white Implementation 

• To measure Lmax: 
• Set Blending mode to MAX 
• Prepare a 1X1 buffer (single pixel image!) 
• Draw the frame 
• Read the pixel’s value 



Tone Mapping – Average Luminance 

• In more sophisticated global tone mapping approaches, we 
evaluate the “general appearance” of an image instead of strict 
ranges 

• We need to evaluate average luminance 
• It is preferable to find the log-average of luminance and not the 

linear one: 
 
 

• Because: 
– Perceived intensity on photoreceptors follows the power law 

– So does the working luminance Lw (isolated pixel luminance against a 
uniform – average – background) 

,

1exp log( ( , )) , small floatw w
x y

L L x y
N

δ δ
 

= + = 
 
∑



Tone Mapping – Ave. Luminance Implementation  

• Goal: measure      : 
• Set Blending mode to ADD (normal blending) 
• Prepare a small floating point texture as a frame buffer (e.g. 

16X16) 
• Enable mip-mapping for this texture 
• Create a pixel shader to store the log of color as the fragment’s 

resulting color 
• Draw the frame 
• Read the maximum mip-map level (1X1 texels) and take its 

exponent. This is the average (estimate over the samples of the 
low-res buffer) 
 

wL



Tone Mapping – Linear Mapping (1) 
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Tone Mapping – Linear Mapping (2) 

• a is the tonal “key” 
• Clipping 
• Global technique 
• Easy to implement (off-line/real-time) 
 



Tone Mapping – Non-linear Compression (1) 
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Tone Mapping – Non-linear Compression (2) 

• Enhances low-key tonal range 
• No clipping 
• Better used with a white point reference value 

(expected RGB luminance of “white” – background 
luminance): 
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Tone Mapping – Non-linear Compression (3) 
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Local Contrast Enhancement 

• Local sharpening of the image features gives the illusion of greater 
dynamic range: 

2

2 2
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Local Contrast Enhancement Example 



SPECIAL EFFECTS 



Common In-game Effects 

• Bloom 
• Motion blurring 
• Defocus blurring 
• Lens flare 



Bloom (1) 

• When very bright light is perceived by the human 
eye, a noticeable glow or intensity “spill” is spread 
towards the darker regions 

• This effect is called bloom and when artificially 
reproduced in synthetic images, can fool the HVS 
that an image region is brighter than it really is 

  



Bloom (2) 

• To simulate bloom: 
– Subtract a high threshold from the image 
– Blur the result to spread the intensity 
– Modulate the blurred image to achieve the desired effect 

presence 
– Add to original image 

  

Original                      Blurred original-thres          Original+blurred 



Real-time Bloom 

• For real-time rendering bloom is performed similar 
to off-line rendering 

• Blurring (convolution) is an expensive operation 
• Requires look-ups and updates over the image  

better separate read/store images use a “blur 
buffer” 

• Steps: 
– Use a low-resolution frame buffer to store the clipped 

image 
– Perform upscaling (via bilinear interpolation or/and 

multisampling) of the low-res buffer  
– Add the result to the image 



Real-time Bloom Example 

+                                       = 

512X512                             upscaled 64X64                   bloom 



Motion Blurring 

• Given a virtual “shutter”, for a fixed exposure time, speed 
affects the intensity of the resulting image, as energy is 
“spread” to larger distances:  



Shutter Profiles (1) 

 



Shutter Profiles (2) 

 



Shutter Profiles (3) 

 



Real-time (RT) Motion Post-filtering 

• Re-use samples from previous frames 
– Camera jitter + exponential averaging 
– Motion vectors help recovering fragment position in the 

past 
 

 
 
 

[Kari14] 

“Infiltrator” Unreal Engine 4 demo © Epic Games 



Motion-blur as Post-process Effect 

• Typical solution for video games and real-time 
applications 



Temporal Pixel Reprojection and Velocity 

• Locate the transformed position of the current pixel 
in the previous frame 
– Retain transformation(s) from the previous frame(s) 
– Transform and interpolate vertices 
– For each pixel obtain transformed positions 
– (optional) store pixel trajectories in velocity buffers  
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Temporal Pixel Reprojection and Velocity 

Depth buffer 

Velocity buffer  
2 float channels: dx, dy 

http://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/ 



RT Post-filtering: Re-using Samples 

• I found a sample from the previous frame! can I re-
use it?  
– Does it come from the right surface?  

• Sample could be from a different object or a mix of objects (e.g. 
edge → background + foreground) 

• Sample comes from the right object but it has drastically different 
properties 

– e.g. don’t want to re-use samples across the faces of a cube 

– Did the current fragment even exist in the previous frame? 
• Was partially or completely occluded? 
• POV change? 
• Were we even rendering it? (i.e. popped into existence in the 

current frame) 

– … 
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RT Post-filtering: Artifacts 

134 

“A boy and his kite” Unreal Engine 4 demo © Epic Games 

Pros: 
- Very fast run-time 
- Easy to integrate in existing applications 
Cons: 
- Visibility/occlusion is not properly resolved (can result in artifacts, 
“incorrect” image) 



Additional Reading 

• Moving Frostbite to Physically Based Rendering 3.0 
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v3
2.pdf 

• Real Shading in Unreal Engine 4 https://blog.selfshadow.com/publications/s2013-shading-
course/karis/s2013_pbs_epic_notes_v2.pdf 
 

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
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