
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2020

Game Graphics
Techniques

PART I

Unity 5

DEFERRED APPROACHES

Deferred Rendering - The Principle

• Deferred shading defers (postpones) most of the heavy
rendering (like lighting) to a later stage

• Deferred shading consists of two passes:
– The geometry pass renders the scene once and retrieves all kinds of

geometrical information from the objects that we store in a collection
of textures called the G-buffer

– In the lighting pass, we render a screen-filling quad and calculate the
scene's lighting for each fragment using the geometrical information
stored in the G-buffer

Adapted from https://learnopengl.com/Advanced-Lighting/Deferred-Shading

Multiple Render Targets (1)

• It is often useful to be able to write many fragment operation
results to multiple internal buffers, without re-rendering the
geometry

• Examples:
– Cube map generation (6 buffers, 6 viewing transformations – also

requires retargeting by a geometry shader)
– Deferred rendering (3+ buffers, one viewing transformation)
– Reflective shadow maps (ok, this is still deferred rendering!)

Multiple Render Targets (2)

• This is enabled via the Multiple Render Targets (MRT)
mechanism:
– The geometry is sent once for primitive generation
– The pixel (fragment) shader writes results at the same

location on multiple buffers
– Different calculations and hence output values can be

written to each buffer in the same pixel shader

Multiple Render Targets (3)

Geometry
processing

Rasterization

RT0
RT1

RT2
RT3

Fragment
shader

Deferred Rendering - The Principle

Albedo Normal vectors

Depth Glossy params

Deferred Rendering - The Principle

• Instead of shading the fragments of each individual triangle in
isolation, compute the final color for the resolved, visible
geometry only

Screen-space shading pass

Geometry pass MRT

Source: AUEB Graphics Group XEngine

Deferred Rendering – Pros

• Geometry is rendered once, regardless of number of lights
• Shading rate is proportional to image size and NOT the

amount of rendered geometry or depth complexity
– Predictable, controllable and stable

• Capable of handling many more light sources
• Simplification of rendering pipeline

Deferred Rendering – Pros

• Lighting algorithms and other rendering passes have access to
global image data, not only the current fragment (e.g. see GI)

Direct +Diffuse GI +Specular GI

Radiance caching Screen-space reflections
Source: AUEB Graphics Group XEngine

Deferred Rendering – Cons

• Cannot handle transparent geometry. Still need a separate
(forward) pass fro such surfaces.

• Does not mix well with antialiasing
– MSAA pixel resolve requires a final color to be already

available at the pixel samples. DR delays this computation
– No sense in having MSAA filtered geometry attributes (not

even correct).
• Limits the amount of different materials that can be used

(requiring additional buffers to write their properties and IDs)

Tiled Rendering

• One problem with both forward and deferred
rendering is the presence of a large number of light
sources:
– For each one, a lighting pass must be made OR
– A large number of sources must be iterated within a loop

in the fragment shader

Tiled Rendering

• Solution: Divide visible domain into tiles and assign
light sources only to affected regions

• Prerequisite: each light source has a bounded area of
effect (not really physically correct, but ok).

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

Clustered Rendering

• Tiling can also be done in the Z direction (clustered
rendering):

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

Clustered Rendering

• Clustered rendering also helps treat lights differently
according to depth:

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

FAST APPROXIMATE LIGHTING

Light Maps

• Storage of pre-calculated (“baked”), view-independent
illumination

• Store incident direct and/or indirect diffuse illumination in the
texels of the map

• When object is rendered, the pre-recorded information on
the light map is used, provided that:
– Geometry is part of a static environment
– Moving objects' contribution to diffuse illumination is negligible
– Light-mapping is extensively used for the accelerated real-time

rendering of realistic scenes

• Resolution of the light map does not need to be very high
since illumination varies more slowly on a surface than a color
or bump pattern

Light Maps

Texture Atlases

• A texture atlas is a surface parameterization where connected
parts of the object's surface (charts), are each mapped onto
contiguous regions of the texture domain

• Atlas ensures the unique mapping between Cartesian
coordinates on the surface & locations on the bounded
texture domain of the image map

• Construction:
– Surface partitioning into charts
– Unfold chart on a 2-D domain to ensure unique mapping
– Pack chart parametric partitions into a single texture (NP-complete

problem)

19

Texture Atlases

Criteria for chart partitioning and unfolding:
– Minimize texture distortion and artifacts
– Distribute the texels over the surface as evenly as possible
– Ensure continuity & conformity of mapping among the charts,

if possible
– Maximize the area coverage of the charts & minimize the # of

separate charts

20

• Common and simple
approach: polypacks

• Cut surface into
regions (polypacks)
and map each one to
a plane with as little
distortion as possible

Texture Atlases - Polypacks

Atlas Generation Issues:

• As number of charts increases, so does the unused space:
– Charts are not tightly packed to ensure some “guard

space” between them to allow texel interpolation and
mipmaping to work correctly

• Texel area coverage must be as close to uniform as possible:
– Avoid stretching
– Ensure proper and proportional scale of charts in packed

atlas

23

Atlas Packing: kd-tree approach

Atlas Packing: horizon approach

• Suitable for large polygon charts with low compactness
• Operates in the discrete texture space
• Construction:

– Rotate the charts so that their longest diameter is vertically aligned
– Sort charts according to height and insert into the atlas
– Incoming charts are stacked on top of the existing clusters in the atlas
– Topmost texels occupied by the charts already in the atlas form a

“horizon”, which the new chart's underside texels (“bottom horizon”)
cannot penetrate

Lightmap Computation

• Lightmap texels are uniquely mapped to triangle
locations and their attributes

• Iterate over valid lightmap texels
– Compute lighting in texture space

• At runtime, transfer lighting onto shaded triangle
fragments via texture mapping

Practical Lightmaps in Games

• Complex geometry limits the efficiency of lightmap
packing

• Use simpler “proxy” geometry for lightmap
calculation

• Map proxies to corresponding polygon groups
• Transfer proxy lighting onto detailed geometry

Practical Lightmaps in Games

Source: https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf

Complex Light Sources

• Large and complex-shaped emitters are challenging
in real time:
– Cannot use MC integration effectively in the time

constraints of a real-time engine

• Typical useful emitters: spheres, quads, tubes
• Resolve to:

– Analytical approximations for diffuse BRDFs
– Image-based solutions for glossy/specular BRDFs and ray

tracing

Area Lights – Diffuse BRDFs

• For a convex light source and a diffuse surface, the
contribution of a light source boils down to computing
irradiance from the projected visible surface (e.g. disk for a
sphere):

= 𝐿𝐿𝑖𝑖𝑖𝑖 �
𝐧𝐧 ∙ 𝐥𝐥 𝐧𝐧a ∙ −𝐥𝐥
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒2

𝑑𝑑a
𝐴𝐴

Area Lights – Diffuse BRDFs

• The Form Factor integral can be approximated using MC
samples or analytically estimated. However:

• The drop of the source below the horizon of the surface must
be carefully handled!

• Sample representative points on emitter to compute FF.

Area Lights – Glossy BRDFs

• Necessary but crude approximation
• Treat all light coming from the emitter as coming from a single

representative point on its surface
• A reasonable choice is the point with the largest contribution
• For a Phong distribution, this is the point on the light source

with the smallest angle to the reflection ray

• Only reasonably good for emitters above the horizon
– Apply some form of attenuation to handle horizon

Area Lights – Glossy BRDFs

• Example: Spherical sources

𝐜𝐜𝐜 = 𝐫𝐫 𝐥𝐥 ∙ 𝐫𝐫 − 𝐥𝐥

𝐜𝐜 = 𝐞𝐞 +
𝐜𝐜𝐜
𝐜𝐜𝐜 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑

𝐫𝐫: ideal reflection vector

𝐥𝐥: 𝐞𝐞 − 𝐩𝐩

𝐫𝐫𝐜 =
𝐜𝐜 − 𝐩𝐩
𝐜𝐜 − 𝐩𝐩

Use this vector to light for shading

Area Lights – Glossy BRDFs

• Modified NDF requires normalization (too bright here)

Reference

Area Lights – Glossy BRDFs

Image source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf

IMAGE-BASED LIGHTING

Why image-based lighting?

• Very important in CG
• Helps transfer complex distant lighting to surfaces

very fast
• Helps a rendered image blend with a real

surrounding
– Mix synthesized and real imagery (films, games, AR)

Environment Maps

• An environment map is a representation of distant radiance
parameterized w.r.t. an incoming direction 𝜔𝜔𝑖𝑖

• Usually this information is discretely encoded on a set of
images

• Other typical representations include spherical function
coefficients

Environment Maps

• Environment maps typically encode incoming illumination
from the entire sphere around a point

• But can also be:
– Hemispherical (e.g. sky lighting)
– Cylindrical

Environment Maps

• Mostly in real time graphics, it is convenient to store the
spherical environment in cube maps:

Light Probes

• Environment lighting images can be captured using physical
light probes:

• Highly polished metallic spheres photographed to capture the
real environment
– Multiple exposures are typically taken to capture an HDR environment

map

Light Probes

• To properly map the environment:
– with low distortion and
– Elimination of the photographic equipment from the image

• Multiple photos of the probe are captured
• The results are merged into an (inverse) panorama

Using an Environment Map

• The basic assumption about environment maps is that the
environment is distant

• If assumed distant, incoming light is parameterized only by
direction, as different points on the geometry will still index
the same location on the environment map

Using an Environment Map

• Using as lighting the environment map on each point instead
of using light sources:
– Can provide a very natural look to artificial objects
– Can blend the synthetic geometry with the captured environment

• This has been extensively used in movies and AR

http://www.fxguide.com/featured/vfx-roll-call-for-the-avengers/

Using an Environment Map

• When environment distances are
comparable to the size of the synthetic
objects, a single environment map
cannot do the trick

• Env. maps are also only valid for a
particular region near the capture point

Virtual Light Probes

• In the previous example, the environment map was not
captured from a real scene, but rather from a synthetic
environment

Why do this?
• To significantly speed up indirect lighting calculations
• To apply indirect lighting to real-time rendering!

– “Bake” incident light from a rendered environment
– This lighting is the contribution of the env. Lighting to a surface
– Can be combined with local shading from light sources

Virtual Light Probes

• Generation:
– Via cube maps: setup 6 views and render the scene

Virtual Light Probes

• Generation:
– Directly sample the geometry and store a compressed

spherical representation (see RT GI slides)

Environment Mapping in RT Applications

• Used for baking both rough indirect lighting and sky / ambient
lighting

 Call of Duty: Ghosts

Multiple Light Probes

• To alleviate the invalidation of environment maps in different
scene positions, multiple (virtual or physical) light maps can
be generated from different locations

• At runtime, their contribution is interpolated

http://www.fxguide.com/featured/game-environments-parta-remember-me-rendering/

Irradiance Maps

• Environment maps encode the incoming light from a single
direction 𝜔𝜔𝑖𝑖

• So, in order to compute the reflected light on a surface, the
contribution of all directions in the normal-aligned
hemisphere must be accounted for, according to the
reflectance equation:

• This is obviously computationally impractical in real time.

𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 = � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟 𝐱𝐱,𝜑𝜑𝑜𝑜,𝜃𝜃𝑜𝑜, 𝜑𝜑𝑖𝑖 ,𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖)
Ω𝑖𝑖

Irradiance Maps

• However, for the diffuse part of the BRDF, the
integral can be greatly simplified:

• The integral has no dependence on 𝜔𝜔𝑜𝑜 and can be
therefore pre-computed via MC integration with
cosine-weighted IS for every possible hemisphere
direction

𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 =
𝜌𝜌
𝜋𝜋 � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖)
Ω𝑖𝑖

Irradiance Maps

• Dropping the dependence on location (as in
reflection maps), from the surface normal n:

𝐿𝐿𝑜𝑜 𝜔𝜔𝑜𝑜 =
𝜌𝜌
𝜋𝜋 𝐼𝐼𝑀𝑀(𝐧𝐧)

Image source: https://learnopengl.com/PBR/IBL/Diffuse-irradiance

https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/PBR/IBL/Diffuse-irradiance
https://learnopengl.com/PBR/IBL/Diffuse-irradiance

What about Glossy BRDFs?

• The same cannot be done in the general case of
glossy BRDFs, due to their dependence on 𝜔𝜔𝜊𝜊

• However, if we consider that contributing directions
are centered around the ideal reflection direction of
𝜔𝜔𝑖𝑖 , an approximate solution is possible:

• For different roughness values:
– Precompute the irradiance inside a constricted solid angle

centered at each 𝜔𝜔𝑟𝑟 direction, according to the spread of
the BRDF

– Store the versions as mipmaps of the same env. Map.

Pre-Convolved Environment Maps

https://learnopengl.com/PBR/IBL/Specular-IBL

𝐿𝐿𝑜𝑜 𝜔𝜔𝑜𝑜 = � 𝐿𝐿 𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟 𝜔𝜔𝑜𝑜, 𝜔𝜔𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖) ≅
Ω

� 𝐿𝐿 𝜔𝜔𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖) � 𝑓𝑓𝑟𝑟 𝜔𝜔𝑜𝑜, 𝜔𝜔𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖) ≅
ΩhemiΩ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐸𝐸𝑀𝑀𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝜔𝜔𝑟𝑟) ∙ 𝑀𝑀(𝛚𝛚𝑜𝑜 ∙ 𝐧𝐧, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑)

https://learnopengl.com/PBR/IBL/Specular-IBL
https://learnopengl.com/PBR/IBL/Specular-IBL
https://learnopengl.com/PBR/IBL/Specular-IBL

Pre-Convolved Environment Maps

Image source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf

VISIBILITY DETERMINATION

Shadows and Perception (1)

• Wherever there is light, there are shadows
• Presence of shadows:

– Not only for aesthetic purposes
– Provides clues for the shape of the geometry in the image

• Helps place the objects in the environment. Gives clues about relative
distances

• Enhances depth perception: In monocular vision the HVS relies on clues
and recognizable configurations to discern the ordering and distances of
objects

• Indicates the direction of incident light or light sources

• Enhances the visual detail of the displayed surfaces by enhancing
local contrast

Shadows and Perception (2)

Shadows and Perception (3)

• (a) No shadow: We cannot possibly know the relative position
or size of the ball w.r.t. the steps

• (b) Possible position/ball size configurations that lead to the
same image (a)

• (c,d,e) The resulting images of the configurations in (b) when
shadows are enabled

Shadows and Visual Detail

(no shadows)
Coarse, uninteresting surfaces

(with shadows)
Same geometry, higher visual detail

How are Shadows Generated?

• Partial or full obstruction of a source’s light by geometry
• Indirect illumination reaching a surface is in general of lower

luminance compared to the direct, unshadowed light
• Illuminance of points in shadows is significantly lower than

that of the lit points

Shadow Types

• The size and type of shadows depend on the size and
distance of the light emitting surfaces:
– Infinitely distant light (directional) sources cause parallel

shafts o shadows
– Non-directional light sources cause radially projected

shadow profiles

Umbra and Penumbra

• Umbra is part of the shadow due to complete light
obstruction

• Penumbra is the shadow part where partial occlusion occurs
and creates a soft transition to the lit surface (soft shadows)

• A punctual (point) light source creates hard shadows with no
penumbra

• A light source with a non-negligible size and comparable
distance to the occluding geometry causes shadows with
penumbrae (soft shadows)
– Larger emitters and smaller distances to occluders larger

penumbrae

Shadow Examples

Shadow Maps

• Basic principle:
– The occlusion of light on a surface due to a given (point)

light source is a similar problem to the visibility
determination from the user’s view point

– A point is lit if the point is the closest one to the light
source in this direction, i.e. if it is “visible” from the light
source

• We can use the depth buffer mechanism to perform
HSE and determine the nearest visible points from
the light source’s view point

• We call the depth buffer generated from the light
source view point a shadow map

Shadow Map - Setup

• A projection is set up
from the light source’s
point of view (a) and the
shadow map is captured
(b)

• The scene is rendered
normally form the
camera view point and
fragments are tested
against the shadow map
(c)

Transforming Fragments to S.M. Space

Shadow Calculations

• Render the scene from the light source view point
– Transform geometry by
– Record the depth (shadow) map

• Render the scene normally, from the camera view point
– Transform each fragment from the camera CSS to the light source’s

CSS:

– Compare the fragment’s light space 𝑧𝑧𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ value with the
corresponding depth in the shadow map 𝑍𝑍𝐿𝐿(𝑥𝑥𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ,𝑦𝑦𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′)

– If 𝑧𝑧𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ≤ 𝑍𝑍𝐿𝐿(𝑥𝑥𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′ ,𝑦𝑦𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟′) the fragment is lit, otherwise it lies in
shadow

(, , ,)L L L L−p u v n

1
L
−MLP

LZ

1 1(, ,)frag frag frag frag L L C C fragx y z − −′ ′ ′ ′= = ⋅ ⋅ ⋅ ⋅p P M M P p

Shadow Maps – Remarks (1)

• The shadow map needs to be updated only if:
– The light source is moving
– Geometry within the light’s field of view changes

• The shadow map rendering time is significantly lower
than the normal rendering time:
– Only fragment depth is captured
– No pixel shading occurs (pass through shader), no color

attachment

Shadow Maps – Remarks (2)

• WYSIWYG: Whatever geometric entity can be rasterized or
otherwise drawn in a depth map, can be used as an occluder:
– E.g. foliage modelled as polygons with transparent textures

Advantages of Shadow Maps

• A simple and intuitive 2-pass algorithm
• Any renderable entity can generate shadow
• Easily combined with other effects, such as

volumetric lighting
• Low complexity, takes advantage of GPU’s early

culling mechanisms
• Linear dependence on scene complexity
• Adjustable SM size performance/quality trade off
• Can generate soft shadows (via extra samples)

Shadow Map Problems (1)

• Only works for conical/directional light sources
– For omnidirectional lights, we need a cube map

configuration of shadow maps

http://devmaster.net/p/3002/shader-effects-shadow-mapping

Shadow Map Problems (2)

• Accuracy depends on relative light-camera position and orientation
• Strong aliasing artifacts due to undersampling and arithmetic precision

Typical Shadow Map Artifacts

Shadow “acne” “Peter Panning”

http://devmaster.net/p/3002/shader-effects-shadow-mapping

Shadow Map Antialiasing

• Typical bilinear filtering on the shadow map does not
work

• If we pre-filter (mipmap) the shadow maps:
– We filter depths! Erroneous depth comparisons and we

do not get rid of artifacts

• We need to change the order of filtering and
comparisons: post-filtering

Percentage Closer Filtering

• Draw samples from the shadow map in the
neighborhood of the query shadow map coordinate

• Individually test each shadow map tap with the
fragment z

• Average the shadow test results to get the fraction of
occlusion

PCF Shadow Maps Example

Cascaded Shadow Maps

• Cascaded shadow maps (CSMs) are the best way to
combat one of the most prevalent errors with
shadowing: perspective aliasing
– Different areas of the camera frustum require shadow

maps with different resolutions
– Objects nearest the eye require a higher resolution than

do more distant objects

Cascaded Shadow Maps

• Basic idea:
– Partition the frustum into multiple segments
– A shadow map is rendered for each sub-frustum
– The pixel shader samples from the map that most closely

matches the required resolution

Image source: https://doc.babylonjs.com/babylon101/shadows_csm#references

https://doc.babylonjs.com/babylon101/shadows_csm%23references

Cascaded Shadow Maps

• Typical setup:
• Multiple, same resolution

cascades, but
• Covering an increasingly

wider area
– Decreasing fidelity away from

user
– Countered by perspective

foreshortening

• Switch according to distance
from user

Image source: https://devansh.space/cascaded-shadow-maps

https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps
https://devansh.space/cascaded-shadow-maps

Cascaded Shadow Maps

• Construction:
– Partition the frustum into sub-frusta.
– Compute an orthographic projection for each sub-frustum.
– Render a shadow map for each sub-frustum.
– Render the scene.

Image source: https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/

https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/
https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/

Shadows from Area Lights

• Typically soft shadows are approximated by dynamically
changing the PCF kernel size according to distance of occluded
point from occluded geometry:

• 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃(𝐩𝐩) = 𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃(1 + 𝐩𝐩𝐸𝐸𝑃𝑃𝐸𝐸 − 𝑑𝑑𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠𝑠𝑠𝑑𝑑𝑝𝑝𝐸𝐸𝑃𝑃𝐸𝐸)

Per-object Shadow Maps

• Shadow maps can be focused also on certain high impact (e.g.
close to the user) objects

• Dedicated SMs that are used for specific objects, instead of
the global SMs or CSMs

Image source: https://www.cryengine.com/features/view/visuals

https://www.cryengine.com/features/view/visuals

Screen-space Self-shadowing

• Screen-space shadowing is introduced to alleviate
problems of shadow maps due to:
– distance bias used for correcting shadow acne problem
– Low resolution of SMs at close object inspection

• Idea:
– March a ray (take samples on a short distance on the

direction) from the shaded point towards the light source
– Check for occlusion with depth buffer
– Requires deferred shading

Screen-space Self-shadowing

Radius usually compatible with depth bias

Z buffer

Shadows

• Raytraced shadows
• Shadows from area lights
• Contact shadows
• Ambient occlusion
• Transparency

Ambient Occlusion

• A cheap way to simulate contribution of ambient (global)
lighting
– Though only convincing for outdoor scenes mostly

• Accentuates crevices increases image contrast

• Estimates the overall drop of irradiance on the shaded point
from occlusion due to near-field geometry

Ambient Occlusion Estimation

• Local or global illumination model?
• Hybrid!

– Does not exchange light with other
locations

– Potentially search for occlusion up to a
distance

– Still requires visibility checks
intersections with other geometry

Ambient Occlusion Estimation (2)

• The value of occlusion shading can be easily determined if we
set 𝐿𝐿𝑖𝑖 in the reflectance equation to 1 and replace visibility
with an attenuation score:

• Where 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖 is the distance to the closest hit point within
a radius 𝑑𝑑𝑚𝑚𝑓𝑓𝑚𝑚 (or +∞ if no hit occurred)
– 𝑑𝑑𝑚𝑚𝑓𝑓𝑚𝑚 can be set to ∞

𝑠𝑠 𝐩𝐩 =
1
𝜋𝜋
� 𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖 𝑑𝑑𝜎𝜎⊥(𝜔𝜔𝑖𝑖)
Ω

Ambient Occlusion – Attenuation Function

• 𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖 can be any intuitive function
• Simplest case:

• But other forms can be used to limit the impact of distant
occluders

𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖 = �1, 𝑑𝑑𝑟𝑟 𝑟𝑑𝑑𝑑𝑑
0, 𝑟𝑟𝑑𝑑𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑑𝑑𝑑𝑑𝑒𝑒

A.O. : How is it Applied?

• We usually apply AO as a visibility function to attenuate
ambient / sky color

• Some implementations also blend AO with diffuse or even
specular lighting (not really correct…)

A.O. Example

A.O. Example

A.O. - Effect of maximum distance

Ambient Occlusion vs Uniform Light

Hemispherical light Ambient occlusion

Ambient Occlusion Calculation

• For every visible point x:
– Compute AO as Monte Carlo hemispherical integral. Sample the

hemisphere with N rays:

• Find closest intersection y with occluding geometry (the most
expensive calculation)

• Compute distance d(x,y)
• Compute attenuation ρ(d)

Screen-space Ambient Occlusion

• The most widely used technique for AO in real-time graphics
• Uses the Z buffer as source of occluder geometry information
• Idea:

– Generate a number of samples up to 𝑟𝑟𝑚𝑚𝑓𝑓𝑚𝑚 distance away from the
shaded point (typically in hemisphere)

– Test if sample is “above” (in front of) the corresponding z value at that
z buffer location

• Many variations

Z buffer

Screen-space Ambient Occlusion

• View-dependent behaviour:
– Can only use available geometry in view
– Hidden layers of geometry do not correctly contribute to the result

(either over- or under-estimation)

Contact Shadows

• A form of directional ambient occlusion
• Used for attenuating light on surfaces only in directions

obscured by nearby geometry
• From the AO samples, compute the average open direction or

“bent normal”

Z buffer

𝐧𝐧 𝐧𝐧AO

𝐿𝐿𝑜𝑜𝑟𝑟𝑜𝑜′ = 𝐿𝐿𝑜𝑜𝐧𝐧AO ∙ 𝐥𝐥

Attenuate local illumination by the
divergence of the bent normal from the
light direction

Visibility and Ray Tracing

• Shadows (direct light source visibility) can be also
evaluated in real time using ray tracing, on high-end
graphics hardware
– Removes all problematic artifacts of shadow mapping
– Generally slower

HIGH-DYNAMIC-RANGE RENDERING

Dynamic Range

• Dynamic range: the minimum to maximum luminance level
achieved by a system

• The human visual system adapts to the level of illumination
incident to the photoreceptors
– Rods (scotoptic light): 10-6cd/m2 – 10cd/m2
– Cones (photoptic light): 10-2cd/m2 – 108 cd/m2

• Total luminance range: 108:10-6
• Cannot achieve these levels simultaneously!

High Dynamic Range

High Dynamic Range Images - Why

• Physically measured or simulated radiance (therefore
luminance) in a natural environment matches the HVS levels

• Typical displays can achieve a dynamic contrast ratio of
6000:1 and an actual luminance level of 1-120cd/m2

• Screens are far from capable to display physically correct
images!
– Even if they were, the HVS field of view is different from a screen’s

our eyes will not adapt to bright/dark regions appropriately

• We need methods to adapt the computed radiance to the
output intensity of a graphics system

High Dynamic Range Images - Storage

• To be able to adjust the tonal range of the image output we
need:
– High precision (float/double) imaging algorithms
– More than 8bits/color for storage (>255 levels)
– Floating point precision buffers

• Common settings:

– RGB16F (48bpp) RGBA16F (64bpp) R11G11B10F - half
– RGBA12 (48bpp) RGBA16 (64bpp) - int
– RGB32F (96bpp) RGBA32F (128bpp) - float

Tone Mapping

• Is the process of fitting a potentially huge luminance level to
the tonal range of graphics display hardware

• Can be
– Static
– Adaptive
– Delayed adaptive (to simulate the time required for the eyes to adjust

to sudden change of illumination levels)

• According to image coverage, it can be
– Global (same equation and params for all pixels)
– Local (different adaptation for each pixel)

Tone Mapping - Goals

• De-saturate useful range of information
• Enhance contrast of useful ranges
• Human visual system discriminates changes, not absolute

values
• Local contrast enhancement:

– Separates tone levels of adjacent pixels
– accentuates details

• Simulate the retinal response to physical luminance levels
(see blurring and bloom)

Tone Mapping – Maximum to white

• Global operator
• Simple to implement (offline/real-time)

• Assuming normalized output: Lo = Li /Lmax
• Ensures mapping of entire range to visible scale

• Reduces contrast for Lmax>1
• Increases contrast for Lmax<1
• Prone to significantly reduce levels if isolated high values are

present

Tone Mapping – Max to white Implementation

• To measure Lmax:
• Set Blending mode to MAX
• Prepare a 1X1 buffer (single pixel image!)
• Draw the frame
• Read the pixel’s value

Tone Mapping – Average Luminance

• In more sophisticated global tone mapping approaches, we
evaluate the “general appearance” of an image instead of strict
ranges

• We need to evaluate average luminance
• It is preferable to find the log-average of luminance and not the

linear one:

• Because:
– Perceived intensity on photoreceptors follows the power law

– So does the working luminance Lw (isolated pixel luminance against a
uniform – average – background)

,

1exp log((,)) , small floatw w
x y

L L x y
N

δ δ

= + =

∑

Tone Mapping – Ave. Luminance Implementation

• Goal: measure :
• Set Blending mode to ADD (normal blending)
• Prepare a small floating point texture as a frame buffer (e.g.

16X16)
• Enable mip-mapping for this texture
• Create a pixel shader to store the log of color as the fragment’s

resulting color
• Draw the frame
• Read the maximum mip-map level (1X1 texels) and take its

exponent. This is the average (estimate over the samples of the
low-res buffer)

wL

Tone Mapping – Linear Mapping (1)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4 4,8 5,2 5,6 6 6,4 6,8 7,2 7,6 8 8,4

a=0,2

a=0,7

,max(,) min (,),o w o
w

aL x y L x y L
L

=

Tone Mapping – Linear Mapping (2)

• a is the tonal “key”
• Clipping
• Global technique
• Easy to implement (off-line/real-time)

Tone Mapping – Non-linear Compression (1)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4 4,8 5,2 5,6 6 6,4 6,8 7,2 7,6 8 8,4

a=0,2

a=0,7

(,)(,)
1 (,)

o
d

o

L x yL x y
L x y

=
+ ,max(,) min (,),o w o

w

aL x y L x y L
L

=

Tone Mapping – Non-linear Compression (2)

• Enhances low-key tonal range
• No clipping
• Better used with a white point reference value

(expected RGB luminance of “white” – background
luminance):

 2

(,)(,) 1
(,)

1 (,)

o
o

white
d

o

L x yL x y
L

L x y
L x y

+

 ′ =
+

Tone Mapping – Non-linear Compression (3)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4 4,8 5,2 5,6 6 6,4 6,8 7,2 7,6 8 8,4

a=0,7 w hite=8,6

a=0,7 w hite=3,0

a=0,2 w hite=8,6

a=0,2 w hite=3,0

Local Contrast Enhancement

• Local sharpening of the image features gives the illusion of greater
dynamic range:

2

2 2
2

2 2

(,) (,) (,)
(,) (,)(,)

I x y I x y s I x y
I x y I x yI x y

x y

′ = − ⋅∇

∂ ∂
∇ = +

∂ ∂

Local Contrast Enhancement Example

SPECIAL EFFECTS

Common In-game Effects

• Bloom
• Motion blurring
• Defocus blurring
• Lens flare

Bloom (1)

• When very bright light is perceived by the human
eye, a noticeable glow or intensity “spill” is spread
towards the darker regions

• This effect is called bloom and when artificially
reproduced in synthetic images, can fool the HVS
that an image region is brighter than it really is

Bloom (2)

• To simulate bloom:
– Subtract a high threshold from the image
– Blur the result to spread the intensity
– Modulate the blurred image to achieve the desired effect

presence
– Add to original image

Original Blurred original-thres Original+blurred

Real-time Bloom

• For real-time rendering bloom is performed similar
to off-line rendering

• Blurring (convolution) is an expensive operation
• Requires look-ups and updates over the image

better separate read/store images use a “blur
buffer”

• Steps:
– Use a low-resolution frame buffer to store the clipped

image
– Perform upscaling (via bilinear interpolation or/and

multisampling) of the low-res buffer
– Add the result to the image

Real-time Bloom Example

+ =

512X512 upscaled 64X64 bloom

Motion Blurring

• Given a virtual “shutter”, for a fixed exposure time, speed
affects the intensity of the resulting image, as energy is
“spread” to larger distances:

Shutter Profiles (1)

Shutter Profiles (2)

Shutter Profiles (3)

Real-time (RT) Motion Post-filtering

• Re-use samples from previous frames
– Camera jitter + exponential averaging
– Motion vectors help recovering fragment position in the

past

[Kari14]

“Infiltrator” Unreal Engine 4 demo © Epic Games

Motion-blur as Post-process Effect

• Typical solution for video games and real-time
applications

Temporal Pixel Reprojection and Velocity

• Locate the transformed position of the current pixel
in the previous frame
– Retain transformation(s) from the previous frame(s)
– Transform and interpolate vertices
– For each pixel obtain transformed positions
– (optional) store pixel trajectories in velocity buffers

131

?

Temporal Pixel Reprojection and Velocity

Depth buffer

Velocity buffer
2 float channels: dx, dy

http://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/

RT Post-filtering: Re-using Samples

• I found a sample from the previous frame! can I re-
use it?
– Does it come from the right surface?

• Sample could be from a different object or a mix of objects (e.g.
edge → background + foreground)

• Sample comes from the right object but it has drastically different
properties

– e.g. don’t want to re-use samples across the faces of a cube

– Did the current fragment even exist in the previous frame?
• Was partially or completely occluded?
• POV change?
• Were we even rendering it? (i.e. popped into existence in the

current frame)

– …

133 [Salv15]

RT Post-filtering: Artifacts

134

“A boy and his kite” Unreal Engine 4 demo © Epic Games

Pros:
- Very fast run-time
- Easy to integrate in existing applications
Cons:
- Visibility/occlusion is not properly resolved (can result in artifacts,
“incorrect” image)

Additional Reading

• Moving Frostbite to Physically Based Rendering 3.0
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v3
2.pdf

• Real Shading in Unreal Engine 4 https://blog.selfshadow.com/publications/s2013-shading-
course/karis/s2013_pbs_epic_notes_v2.pdf

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf

Contributors

• Georgios Papaioannou

	Slide Number 1
	Deferred Approaches
	Deferred Rendering - The Principle
	Multiple Render Targets (1)
	Multiple Render Targets (2)
	Multiple Render Targets (3)
	Deferred Rendering - The Principle
	Deferred Rendering - The Principle
	Deferred Rendering – Pros
	Deferred Rendering – Pros
	Deferred Rendering – Cons
	Tiled Rendering
	Tiled Rendering
	Clustered Rendering
	Clustered Rendering
	Fast Approximate LIGHTING
	Light Maps
	Light Maps
	Texture Atlases
	Texture Atlases
	Texture Atlases - Polypacks
	Atlas Generation Issues:
	Atlas Packing: kd-tree approach
	Atlas Packing: horizon approach
	Lightmap Computation
	Practical Lightmaps in Games
	Practical Lightmaps in Games
	Complex Light Sources
	Area Lights – Diffuse BRDFs
	Area Lights – Diffuse BRDFs
	Area Lights – Glossy BRDFs
	Area Lights – Glossy BRDFs
	Area Lights – Glossy BRDFs
	Area Lights – Glossy BRDFs
	Image-Based Lighting
	Why image-based lighting?
	Environment Maps
	Environment Maps
	Environment Maps
	Light Probes
	Light Probes
	Using an Environment Map
	Using an Environment Map
	Using an Environment Map
	Virtual Light Probes
	Virtual Light Probes
	Virtual Light Probes
	Environment Mapping in RT Applications
	Multiple Light Probes
	Irradiance Maps
	Irradiance Maps
	Irradiance Maps
	What about Glossy BRDFs?
	Pre-Convolved Environment Maps
	Pre-Convolved Environment Maps
	Visibility Determination
	Shadows and Perception (1)
	Shadows and Perception (2)
	Shadows and Perception (3)
	Shadows and Visual Detail
	How are Shadows Generated?
	Shadow Types
	Umbra and Penumbra
	Shadow Examples
	Shadow Maps
	Shadow Map - Setup
	Transforming Fragments to S.M. Space
	Shadow Calculations
	Shadow Maps – Remarks (1)
	Shadow Maps – Remarks (2)
	Advantages of Shadow Maps
	Shadow Map Problems (1)
	Shadow Map Problems (2)
	Typical Shadow Map Artifacts
	Shadow Map Antialiasing
	Percentage Closer Filtering
	PCF Shadow Maps Example
	Cascaded Shadow Maps
	Cascaded Shadow Maps
	Cascaded Shadow Maps
	Cascaded Shadow Maps
	Shadows from Area Lights
	Per-object Shadow Maps
	Screen-space Self-shadowing
	Screen-space Self-shadowing
	Shadows
	Ambient Occlusion
	Ambient Occlusion Estimation
	Ambient Occlusion Estimation (2)
	Ambient Occlusion – Attenuation Function
	A.O. : How is it Applied?
	A.O. Example
	A.O. Example
	A.O. - Effect of maximum distance
	Ambient Occlusion vs Uniform Light
	Ambient Occlusion Calculation
	Screen-space Ambient Occlusion
	Screen-space Ambient Occlusion
	Contact Shadows
	Visibility and Ray Tracing
	High-Dynamic-Range Rendering
	Dynamic Range
	High Dynamic Range
	High Dynamic Range Images - Why
	High Dynamic Range Images - Storage
	Tone Mapping
	Tone Mapping - Goals
	Tone Mapping – Maximum to white
	Tone Mapping – Max to white Implementation
	Tone Mapping – Average Luminance
	Tone Mapping – Ave. Luminance Implementation
	Tone Mapping – Linear Mapping (1)
	Tone Mapping – Linear Mapping (2)
	Tone Mapping – Non-linear Compression (1)
	Tone Mapping – Non-linear Compression (2)
	Tone Mapping – Non-linear Compression (3)
	Local Contrast Enhancement
	Local Contrast Enhancement Example
	Special Effects
	Common In-game Effects
	Bloom (1)
	Bloom (2)
	Real-time Bloom
	Real-time Bloom Example
	Motion Blurring
	Shutter Profiles (1)
	Shutter Profiles (2)
	Shutter Profiles (3)
	Real-time (RT) Motion Post-filtering
	Motion-blur as Post-process Effect
	Temporal Pixel Reprojection and Velocity
	Temporal Pixel Reprojection and Velocity
	RT Post-filtering: Re-using Samples
	RT Post-filtering: Artifacts
	Additional Reading
	Contributors

