
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2015

Texturing

INTRODUCTION

What is Texturing?

• Spatio-temporal modification of material attributes,
independent of the geometry itself

• Why do we need it?

– It is impossible to capture these variations as geometric
attributes:

Ok, this can be done with

geometry modification

This cannot…

Spatial Variation of Material Properties

Types of Texturing

Image texturing:

• The spatial/temporal patterns are
expressed in the form of a digitized
bitmap

• A bitmap texture can be an array of
values of 1/2/3 + time dimensions

• Textures are stored in GPU/CPU
memory and sampled during rendering

Procedural texturing:

• The spatial/temporal patterns are
generated using a function or algorithm

Image texture

Procedural

Combined

IMAGE TEXTURING

Image Texture Space

• A 1D-3D image texture is defined in a texture parametric
space

• The parametric space is usually considered normalized w.r.t
the dimensions of the raster

– For example, a 2D raster is defined on a plane with two
parameters (e.g. u,v)

1D 2D 3D

Texture Mapping (1)

• In order to apply an image texture to a surface (or solid
interior), we must define a mapping from the point or vector
coordinate system to the texture space

Texture Mapping (2)

• The texture mapping can be performed from any coordinate
system (OCS,WCS,ECS,CSS)

• Usually, we calculate the texture parameters at modeling time
(OCS) and store them on the model vertices

• The calculation of the texture parameters is done via a texture
projection function

Object space texture mapping World space texture mapping

Texture Elements (1)

• The smallest accessible element in a 1D/2D/3D raster texture
is the texel (texture element)

• Texels are considered discrete samples on the raster and their
integral coordinates correspond to corners of the raster
elements

𝑢, 𝑣 = (0,0)

𝑢, 𝑣 = (
𝑖 + 0.5

𝑤
,
𝑗 + 0.5

ℎ
)

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (0,0)

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (𝑤 − 1, ℎ − 1)

𝑢

𝑣

Texture Elements (2)

• Sampling centers do not coincide with the integral texel
coordinates!

• They are mapped to the centers of the texels, as shown below

𝑢, 𝑣 = (0,0)

𝑢, 𝑣 = (
0.5

𝑤
,
0.5

ℎ
)

𝑢, 𝑣 = (
𝑖 + 0.5

𝑤
,
𝑗 + 0.5

ℎ
)

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (0,0)

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (𝑤 − 1, ℎ − 1)

𝑢

𝑣

• Texture coordinates on arbitrary locations on the triangles are
interpolated from the tex. coordinates of the triangle vertices,
using the same barycentric coordinates used for other
attributes

Texture Mapping Triangles (1)

𝐯0

𝐯1

𝐯2
(𝑢0, 𝑣0)

(𝑢1, 𝑣1)

(𝑢2, 𝑣2)

(𝑢𝑞, 𝑣𝑞)𝐩𝑞

1

1

0 𝑢

𝑣

Texture Mapping Triangles (2)

Asset from the Unity 5.0 game engine example projects

• Fine adjustments of the triangle
texture coordinates can be done
directly on the parametric space

– Vertex texture coordinates can be
manipulated using a 2D editor,
the UV Editor

– Texture coordinates with vertex
connectivity can be rendered
with orthographic projection as
(u,v,0) points

Texture Coordinate Wrapping (1)

• In general, multiple points on the geometry may index the
same texture coordinates  The mapping is not necessarily
bijective

Texture Coordinate Wrapping (2)

• The parametric space coordinates lie in the range [0,1]

• Therefore, all texture coordinates are conformed to this range
using a texture wrapping function. Typical examples:

𝑠 = 𝑠 − 𝑠 𝑠 = ቊ
𝑠 − 𝑠

1 − 𝑠 + 𝑠
, 𝑠 𝑒𝑣𝑒𝑛
, 𝑠 𝑜𝑑𝑑

𝑠 = max(min 1, 𝑠 − 𝑠 , 0)

𝑐𝑜𝑙𝑜𝑟 = ቊ
𝑆𝑎𝑚𝑝𝑙𝑒(𝑠)
𝑏𝑜𝑟𝑑𝑒𝑟

,0 ≤ 𝑠 ≤ 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Image from: http://learnopengl.com/#!Getting-started/Textures

Texture Coordinate Wrapping (2)

• However, wrapping is not performed during assignment to
vertices

• Interpolation may fold them back, producing erroneous
results

Sample Evaluation

• Given a (u,v) coordinate pair, the simplest (albeit not the best)
way to evaluate the texture at (u,v) is to retrieve the nearest
texel to the parametric coordinates:

Integral texel coordinates
used in interpolation

Texel centers

Sample (u,v) coordinates

𝑥 = 𝑢𝑤
𝑦 = 𝑣ℎ

ℎ

𝑤

𝑢

𝑣

𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 = 𝑇𝑒𝑥𝑒𝑙(𝑥 , 𝑦)

Texture Magnification

• However, nearest neighbor texture sampling produces visible
artifacts (pixelization) when the texture is magnified (many
pixels index the same texel)

128 pixels

1
2
8
 p

ix
e
ls

Bilinear Texture Interpolation (1)

• To create smooth sample transitions, we can interpolate the
texel values according to the distance of the (u,v) coordinate
from the 4 nearest texels:

Integral texel coordinates
used in interpolation

Texel centers

Sample (u,v) coordinates
𝑥 , 𝑦 𝑥 , 𝑦

𝑥 , 𝑦𝑥 , 𝑦

𝑠
𝑡

𝑥 = 𝑢𝑤 − 0.5
𝑦 = 𝑣ℎ − 0.5

𝑠 = 𝑥 − 𝑥
𝑡 = 𝑦 − 𝑦

ℎ

𝑤

Bilinear Texture Interpolation (2)

Integral texel coordinates
used in interpolation

Texel centers

Sample (u,v) coordinates
𝑥 , 𝑦 𝑥 , 𝑦

𝑥 , 𝑦𝑥 , 𝑦

𝑠
𝑡

𝑥 = 𝑢𝑤 − 0.5
𝑦 = 𝑣ℎ − 0.5

𝑠 = 𝑥 − 𝑥
𝑡 = 𝑦 − 𝑦

ℎ

𝑤

𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 = 𝑇𝐿 1 − 𝑡 + 𝑇𝑈𝑡

𝑇𝐿 = 𝑇𝑒𝑥𝑒𝑙 𝑥 , 𝑦 1 − 𝑠 + 𝑇𝑒𝑥𝑒𝑙 𝑥 , 𝑦 𝑠
𝑇𝐻 = 𝑇𝑒𝑥𝑒𝑙(𝑥 , ⌈𝑦⌉) 1 − 𝑠 + 𝑇𝑒𝑥𝑒𝑙 𝑥 , ⌈𝑦⌉ 𝑠

• Using (bi-)linear interpolation:

Bilinear Texture Interpolation (3)

• The bilinear interpolation is standard in the GPU hardware
and all production rendering software

Other Texture Interpolation Functions

• Many other methods for interpolating the texel samples can
be used such as the above

Cosine-weighted “sharp”

interpolation

Bi-linear
16-tap radially weighted

“smooth” interpolation

Rendered with custom path tracing framework

Texture Minification

• When many texels correspond to
a single pixel sample (area), then
we have texture minification

• The texture is insufficiently
sampled, resulting in distortion
and noise

Texture Minification - Aliasing

• This is due to the signal aliasing that occurs, since the rate of
projected texels on screen is higher than half the sampling
rate (pixel samples) – sampling theorem

Texture Antialiasing – Supersampling? (1)

• Can we use a higher sampling rate to correct the aliasing?

– No. Even if we effectively multiply the pixel shading rate,
we only mitigate the problem to higher frequencies

– We have no way of predicting the highest frequency of the
projected texels in image space

Texture Antialiasing – Supersampling? (2)

Texture Antialiasing with Band Limiting

• The only way to get rid of aliasing is to deliberately limit the
frequency of the texture before sampling (pre-filtering) so
that the image sampling rate always suffices

• Therefore we apply an antialiasing filter per pixel sample

• The antialiasing filter is a low-pass filter and can be
implemented in the texture domain as a weighted average

Determining the Texture Filter Shape (1)

• To determine the weighted average sample 𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 , we
must account for all texels projected in the pixel sample area
of influence (a “square pixel“ in the example below)

Pixel boundaries

Projected pixel boundaries in texture space

“pixel pre-image”

Image space Texture space

Texture boundaries

Pixel

boundaries

Determining the Texture Filter Shape (2)

• For relatively small image-space distortions of the projected
texels in image space, we can approximate the pixel pre-
image with a parallelogram

• We determine the shape of the linear approximation using
the pixel derivatives of the texture parameters

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑦

𝑑𝑣

𝑑𝑦

𝑑𝑥

𝑑𝑦

≈

Mip-Mapping (1)

• It is impractical to determine the pre-image texels and filter
them at run-time

– The filter may just as well cover up to the entire image!

• We pre-filter the texture data using square filters of increasing
size and store them

• This process is called MIP-Mapping: “Multum In Parvo” (many
things in a small place)

Mip-Mapping (2)

• At run time, we determine the most compatible filtered
“version” of the texture and use the corresponding pre-
filtered data at (u,v)

• The pre-image is approximated by a square region centered at
(u,v)

MIP-Mapping (3)

Image source: Wikipedia

MIP storage. The total storage

area is increased by 33%

MIP Map hierarchy. We select

which pre-filtered version of the

image to use, according to the

pixel derivatives of the uv

coordinates

MIP Map Determination

𝑃𝑥 =
𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝑃𝑦 =
𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝑃𝑦

𝑃𝑥

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑦

𝑑𝑣

𝑑𝑦

𝑃 = max{𝑃𝑥, 𝑃𝑦}

𝜆 = log2(𝑃)

𝑑 = ቐ
𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥 𝜆 > 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥

0 𝜆 < 0
𝜆 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Problem of Isotropic Filtering

• The square filter shape is not appropriate for elongated pre-
images, as its cannot represent the required area of support

• Results in over-blurring along the minor pre-image direction

Image source: Wikipedia

Practical Anisotropic Filtering (1)

Method for Adding Detail to a Texture Map, Patent US2007070078 (A1) ― 2007-03-29

• Replace the single uniformly-sized
filter with multiple smaller mipmap
samples

• Approximate anisotropy by aligning
the taps along the longest texture
gradient axis

• Implemented in graphics harware

– Maximum taps determined by the
“maximum anisotropy” level

Practical Anisotropic Filtering (2)

Source: OpenGL specification

𝑃𝑥 =
𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝑃𝑦 =
𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝑃𝑦

𝑃𝑥

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑦

𝑑𝑣

𝑑𝑦

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 =
1

𝑁
෍

𝑖=1

𝑁

𝜏𝑖(𝑢, 𝑣)

𝑃𝑚𝑖𝑛 = m𝑖𝑛{𝑃𝑥, 𝑃𝑦}

𝑁 = m𝑖𝑛{𝑎𝑚𝑎𝑥 ,
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
}

𝑑 =
𝑃𝑚𝑎𝑥

𝑁

𝑑

𝑃𝑚𝑎𝑥 = max{𝑃𝑥, 𝑃𝑦}

𝜏𝑖 𝑢, 𝑣 = 𝜏(𝑢 +
𝑑𝑢

𝑑𝜉

𝑖

𝑁 + 1
− 0.5 , 𝑣 +

𝑑𝑣

𝑑𝜉

𝑖

𝑁 + 1
− 0.5)

𝜉 = ቊ
𝑥 𝑃𝑥 > 𝑃𝑦
𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Practical Anisotropic Filtering (3)

Isotropic filtering

Linear MIP map selection

Anisotropic filtering

Linear MIP map selection

Image source: Wikipedia

TEXTURE PROJECTION FUNCTIONS

(Texture) Mapping Functions

• Mapping functions are used to apply two-dimensional
textures to surfaces

• They define a transformation of a 3D to a 2D texturing
coordinate pair

• The can be used for the automatic generation of texture
coordinates

– Typically used by artists as a rough uv pair assignment to
vertices

– Can be used at run-time from within shaders for automatic
texture coordinate assignment

Linear Mapping - Planar Projection (1)

• In general, a linear mapping binds a texture parameter to a
direction vector in 3D space and can be written in the form:

• This simple transformation collapses points onto a plane
embedded in 3D

𝐬 = 𝐓𝐿𝑖𝑛𝑒𝑎𝑟 ∙ 𝐩 or equivalently (𝑢, 𝑣) =
𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑥
𝑦
𝑧

Linear Mapping - Planar Projection (2)

• Simple, common example: Projection on the xy plane (a)

• The z coordinate is collapsed: All points with the same x, y
coordinates have equal texture coordinates regardless of z (b)

(𝑢, 𝑣) =
1 0 0
0 1 0

𝑥
𝑦
𝑧

Cylindrical Mapping

• It is essentially the conversion of the Cartesian coordinates to
cylindrical ones. Typically, the radius (distance to the cylinder
axis) is ignored

Spherical Mapping (1)

• It is essentially the conversion of the Cartesian coordinates to
spherical ones. Typically, the radius (distance to the cylinder
axis) is ignored

Spherical Mapping (2)

• Quite useful mapping, especially for environment effects and
spherical objects

Ε
μ

β
α

δ
ό

ν
 t

e
x
e

ls

Distortion

Spherical mapping inherently suffers from

distortions at the poles (singularity) and

variable tex. coord density

A Practical Note

• Mapping functions can be applied in isolated surface groups
to optimize coverage, uniformity and smoothness

• For example, in the figure below, all surfaces parallel to a
primary plane use this plane for linear mapping:

Projective Mapping (1)

• Consider a vector 𝐯 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) by either:

– Connecting a reference center of projection point (e.g. 0)
to a point in space or

– Using a direction vector (e.g. a surface normal)

• Apply perspective projection to two of its coordinates using
the third as projection direction

• Without loss of generality, using the 𝑧 axis for the projection:

𝑢, 𝑣 = (𝑣𝑥/𝑣𝑧, 𝑣𝑦/𝑣𝑧)

𝑣𝑥

𝑣𝑦

𝑣𝑧

Projective Mapping (2)

• If we additionally make sure that we project along the
maximum vector coordinate (or clamp the fractions to ±1):

where 𝑚𝑎 is the maximum vector coordinate or projection axis,
and 𝑢𝑐, 𝑣𝑐 the projected coordinates corresponding to u and v

• If a random projection direction is required, we just change
the basis of the input vector to the desired one using a
rotation (see change of basis transformation)

𝑢, 𝑣 =
1

2
(
𝑢𝑐
𝑚𝑎

+ 1,
𝑣𝑐
𝑚𝑎

+ 1)

Projective Mapping – The Cube Map (1)

• An application of projective mapping is the cube map, where
a direction is projected on one of the six sides of a cube using
the longest half-axis as projection direction

• Each side of the cube uses a separate texture image, so the
entire domain of directions can be uniquely mapped to a
(stored) value

Projective Mapping – The Cube Map (2)

   

   

   

   

   

   

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

c c a z y x

c c a z y x

c c a x z y

c c a x z y

c c a x y z

c c a x y z

u v m v v v x

u v m v v v x

u v m v v v y

u v m v v v y

u v m v v v z

u v m v v v z

   

  

 

  

  

   

𝑢 =
1

2

𝑢𝑐
𝑚𝑎

+ 1

𝑣 =
1

2

𝑣𝑐
𝑚𝑎

+ 1

Projective Mapping – The Cube Map (3)

• Cube maps are often used for the encoding of incoming
luminance from a distant environment (environment
mapping)

• Can be used to apply “baked” illumination onto surfaces, such
as global illumination

Reflection Mapping (1)

• Reflection mapping is a simple form of environment mapping,
where the reflection vector at a shaded point is used to index
a spherical environment map representing the surrounding
space of an object

– The map can be a spherical one or a cube map

• Gives the impression that the surface captures the smooth
reflection of an environment

• Use the reflection vector:

 12 2   r r v n nv v 
1r vr

n



Reflection Mapping (2)

No reflection

map

Spherical

environment

map

With reflection

map

Reflection Mapping (3)

• In general, environment mapping
assumes that the incident radiance is
coming from distant geometry so
that:

• 𝐿𝑖(𝐩, 𝜔) ≃ 𝐿𝑖(𝜔), ∀𝐩 on the object

• i.e. the scale of the object is small
enough (relative to the environment)
so that all positions map to the same
env. map texel for a given direction 𝜔

Reflection Mapping with Cube Maps (1)

• Same principle, different mapping function

• Environment is recorded in 6 separate projections

Reflection Mapping with Cube Maps (2)

Transforming Texture Coordinates (1)

• Texture coordinates describe a domain, in which all known
(linear) transformations apply, as usual. So we can:

– Translate (offset)

– Rotate

– Scale

texture coordinates to modify the appearance of models

Transforming Texture Coordinates (2)

• In the following example scaling is applied in texture space
coordinates to magnify the texture appearance:

• The texture coordinates are successively scaled by 1/3 to
achieve a magnification of 3

PROCEDURAL TEXTURING

Procedural Textures (1)

• A surface or volume attribute can be:

– Calculated from a mathematical model

– Derived in a procedural algorithmic manner

• Procedural Texturing:

– Does not use intermediate parametric space

– Often referred to as “procedural shaders”

• Can be used to calculate:

– A color triplet

– A normalized set of coordinates

– A vector direction

– A scalar value

• Some forms of a procedural
texture:

• These output parameters can be
used as:

– Input to another procedural
texture

– A mapping function to index
a texture image

proc

proc

proc

(,),

(,),

(,)t f







v f p a

n f p a

p a

Procedural Textures (2)

Properties of Procedural Textures

• Continuous input parameters and continuous output

• No magnification artifacts

• No distortion due to parametric mapping issues

• Map the entire input domain to the output domain

• Due to lack of local control (something that texture images
provide), we often combine procedural and image texturing

Procedural Textures: Example

Noise

• In nature there are materials and surfaces with irregular
patterns, such as a rough wall, a patch of sand, various
minerals, stones etc.

• A procedurally generated noise texture should:

– Act as a pseudo-number generator

– Have some controllable properties

– Ensure a consistent output

Procedural Noise Properties (1)

• Stateless

– The procedural noise model must be memory-less

– The new output should not depend on previous stages or
past input values

– Necessary if we want an uncorrelated train of outputs

• Time-invariant

– The output has to be deterministic

– Avoid dependence of the noise function on clock-based
random generators

Procedural Noise Properties (2)

• Smooth

– The output signal should be continuous and smooth

– First-order derivatives should be computable

• Band-limited

– A white-noise generator is not useful

– Should control the max (and min) variation rate of the
pattern

Perlin Noise (1)

• Is the most widely used noise function

• Encompasses all the above properties

• Relies on numerical hashing scheme on pre-calculated
random values

• Let Ω𝑖,𝑗,𝑘 be a lattice node at integer location (i, j, k) : i,j,k ∈ ℕ

• We associate a pre-computed random value 𝛾𝑖,𝑗,𝑘 with each

node, deterministically defined w.r.t. (i, j, k)

• The procedural noise output is the weighted sum of the values
on the 8 nodes nearest to the input point 𝐩

Perlin Noise (2)

• The final noise pattern for a point p= (x, y, z)

– is given by trilinear interpolation of the values γi,j,k of the 8
lattice points Ωi,j,k closest to p

– use as the interpolation coefficient, where:

• This function has a support of 2, centered at 0

• ω(t-i) is max at i and drops off to 0 beyond i ± 1

noise ()f p

()t t    

Perlin Noise (3)

3 2

1,2 3 1
()

10

tt t
t

t


  
 



• An extension of the noise procedural texture

• Band-limited noise function

• Has a spectrum profile whose magnitude is inversely
proportional to the corresponding frequency (hence the 1/f
name)

• Overlays suitably scaled harmonics of a basic band-limited noise
function:

where f: the base frequency of the noise

octaves: the max number of overlaid noise signals

octaves

turb 1/ noise

1

1
() () (2 ·)

2

i

f i
i

f f f f
f

  p p p

Turbulence (1/f noise function) (1)

Turbulence (1/f noise function) (2)

• Many interesting patterns can be generated by:

– Adding a bias to the input points of another procedural or
parametric texture

– Using it as part of a composite texture function

• Natural formations can often be achieve with combinations of:

– A base mathematical expression

– Turbulence

– noise

 proc math turb

proc math turb

() () ,

() (· ())

f f f

f f a f



 

p p

p p p

Turbulence (1/f noise function) (3)

• Interleaved solid blocks of 2 different values

– Using a texture image at an arbitrary resolution would blur or
pixelize the transitions

 checker () mod2f x y z            p

Common Procedurals: Checker

• Produces a high-fidelity smooth transition from one value to
another

– There is no danger of generating perceivable bands

• Can use many alternative input parameters, i.e. Cartesian
coordinates, spherical parameters etc.

• Its simplest form: a (tiled) ramp along a primary axis:

gradient ()f y y    p

Common Procedurals: Gradient

74

• Represented as an infinite succession of concentric cylindrical
layers

– Modeled by a ramp function over the cylindrical coordinate r

– Add an amount of perturbation a to the input points

– Use an absolute sine or cosine function to accent the sharp
transition between layers without discontinuity:

  wood

2 2

turb

() cos 2 ,

· ()

f d d

d y z a f

    

  

p

p

Common Procedurals: Wood

• Use a smoothly varying function to generate the compressed
earth layers

• Perturb the input parameters to get a very realistic
approximation

  

 

marble turb2

octaves

turb2 noise

1

1
() sin 2 () ,

2

1
2 ·

2

i

i
i

f x f

f f f
f





  

 

p p

p

Common Procedurals: Marble

SURFACE RELIEF REPRESENTATION

Using Textures to Mimic Surface Detail (1)

• Usually, it is very inefficient to represent
every surface detail using geometry

• We typically resolve to using textures to
mimic the appearance of complex relief
patterns

• The impression of surface detail is created
via the interaction of surface gradient with
light

• We either “bake” lit geometry appearance
on textures or use properly lit photos

Using Textures to Mimic Surface Detail (2)

• In an environment with changing lighting
conditions this can be very problematic

• Baked surface appearance cannot match
the lighting conditions

– Change of emission direction

– Shadows

– Light color

– …

• So the effect breaks

Representing Relief with Texturing

We can use texturing to:

• Locally offset the vertices of an object according to a relief
(bump) map  Displacement Mapping

– The geometry can be subdivided further prior to offsetting
the vertices

• Locally modify attributes of the surface in order to give the
illusion of complex geometric structure, without actually
generating the surface detail:

– Bump Mapping

– Normal Mapping

– Parallax Occlusion Mapping

Displacement Mapping (1)

• Move vertices along the normal according to elevation values:

(,)MAXoffset b u v    s s n

Displacement Mapping (2)

• Requires adequately tessellated surface geometry,
comparable to the scale of texture relief variation

Original Uniform subdivision Adaptive subdivision Shaded result

Displacement Mapping in Real Time

• Displacement mapping is typically used in offline rendering

• In real-time applications, it is expensive to use, even with GPU
tessellation, but is useful when:

– We zoom on detailed surfaces

– View relief patterns at oblique angles or elevation
differences are large: We expect to see self occlusion
caused by the relief pattern

Normal Vector Relief Techniques

• For small-scale surface details, we predominantly perceive the
relief pattern due to lighting variations

– Self-occlusion and/or self-shadowing is more evident only
at very oblique angles

• We can effectively and very efficiently “fake” the presence of
structural detail by locally modifying the key element in a local
shading calculation: the normal vector

The Local Surface Tangent Space (1)

• At every point on a surface we can define a local coordinate
system that is tangential to the surface gradient

– One axis coincides with the local normal vector

– The other two axes can coincide with the tangent (and
bitangent) surface vectors:

The Local Surface Tangent Space (2)

• We can choose any perpendicular directions on the tangent
plane to form a “tangent-space” coordinate system

• It is more convenient if the vectors coincide with the gradient
of the surface w.r.t. the texture coordinates

– We will require in the following to map tangent vectors to
texture map gradients

Bump Mapping (1)

• In the bump mapping technique, we are given a relief pattern
as a height field (i.e. texture intensity represents elevation)
similar to displacement mapping

• We don’t modify the surface elevation but instead calculate
the distorted local normal vectors as if the surface was
actually elevated

Bump Mapping (2)

• If 𝑏 is the given elevation at texture location (𝑢, 𝑣), then the
elevated surface should be:

• By definition, the normal of the new, elevated position is
perpendicular to the tangent vectors at 𝑠′ 𝑢, 𝑣 :

Bump Mapping: Normal Estimation (1)

• To find the new tangent vectors, we calculate the partial
derivatives of the elevated point w.r.t. the texture parameters:

Bump Mapping: Normal Estimation (2)

~0

~0

• And replacing the new tangent vectors in the definition of the
new normal we get:

Bump Mapping: Normal Estimation (3)

0

n̂ ˆb ˆt

Practical Bump Mapping

• According to the bump mapping
calculations, we need:

– The un-modified normal at the
shaded location

– Two tangent vectors along the
u and v parameters

– The bump map derivatives (can
be precalculated and stored in
the texture as color channels)

(,)b u v (,)b u v

u





(,)b u v

v





Bump Mapping - Results

Albedo map

Bump map

Normal Mapping

• In bump mapping we implicitly find the diverted normal due
to the underlying elevation

• Normal mapping dispenses with the calculations by directly
replacing the local normal with a new normal vector stored in
a texture

Tangent Space Normal Mapping (1)

• We directly apply the new tangent-space normal fetched from
the texture map

• The texture encodes the tangent space coordinates of the
modified vector

Ԧ𝐭 Ԧ𝐭Ԧ𝐛 Ԧ𝐛

𝐧

𝐧′

𝐝 𝑢, 𝑣

Tangent Space Normal Mapping (2)

• If 𝐝 𝑢, 𝑣 is the local, bent normal direction, and 𝐧, Ԧ𝐭, Ԧ𝐛 are
the normal and tangent vectors expressed in any reference
frame (e.g. WCS or ECS), then:

Ԧ𝐭 Ԧ𝐭Ԧ𝐛 Ԧ𝐛

𝐧

𝐧′

𝐧′ = 𝑑𝒙Ԧ𝐭 + 𝑑𝒚Ԧ𝐛 + 𝑑𝒛𝐧

𝐝 𝑢, 𝑣

Practical Shading using Normal Maps

• Calculate and store one tangent vector as additional vertex
attribute

• In the vertex shader, calculate and emit the normal and
tangent in the same space as the light sources (WCS, ECS), but
not in post-projective space

• In the fragment shader:

– Calculate bitangent via cross product of normal and
tangent

– Fetch new normal from normal map 𝐝 𝑢, 𝑣

– Replace old normal with 𝐧′ = 𝑑𝒙Ԧ𝐭 + 𝑑𝒚Ԧ𝐛 + 𝑑𝒛𝐧

Normal Vector Techniques - Deficiencies

Displacement mapping Bump mapping

Silhouettes don’t match

with the relief pattern
No proper self-occlusion

or self-shadow

Parallax Occlusion Mapping (POM) (1)

• The key idea behind POM is to consider the surface as a
“shell” of a more complex geometry and trace a line from the
visible shell point inwards until we hit the relief height field

– The new location will be used for any shading calculations

Normal mapping POM

Images from [GD13]

Parallax Occlusion Mapping (POM) (2)

Images from [GD13]

POM Steps

• Convert eye and light positions to tangent space

• Calculate incident light direction and viewing direction to
tangent space

• Trace a ray inwards (assuming a start position at max
elevation) – see next slide – until closest elevation point to
entry is reached

• Use the current (u,v) position of the hit point to shade the
surface (including tangent space normal mapping)

POM - Tracing in Tangent Space

• We sample the elevation map at
regular intervals along the tangent-
space view direction

– Until ray sample “depth” below
map elevation

– Shade according to the attributes
at the hit point u,v coordinates

• Must ensure dense (texel-sized)
sampling

– Fixed number of samples cannot
guarantee this for oblique view
directions

u,v trace

direction

Height = max

Height = 0

Ԧ𝐭

Ԧ𝐛

𝐧

POM Results

PUTTING IT ALL TOGETHER

Using Multiple Textures

• To achieve the desired effect and re-
use textures, we often combine
multiple layers of texture during
shading

• We additionally use textures as:

– Masks: provide a blend factor
between layers

– Decals: local overlays to represent
stickers, dirt, marks etc.

– Indices: specify which texture to
use at each location

Texture Graphs: An Example

We can combine image and

procedural textures to achieve

the desired effect

Detail Textures (1)

• For large surfaces, in order to create enough visual variation,
we often use large, non-repeated textures

• However, they cannot withstand close inspection due to the
limited texture density

Detail Textures (2)

• To diversify the result, we superimpose (usually
multiplicatively) a small repeatable texture many times over
the main texture to add detail

• We typically multiply the texture coordinates used for the
“detail texture” by a large factor to repeat it that many times

Detail Textures (3)

• Now the textured surface looks detailed even at high
magnification

Before After

Texture and Material Layering Example

Image: Allegorithmic Substance Painter 2

Texture and Material Layering Example

Image: Allegorithmic Substance Painter 2

References

• [GD13]
https://www.gamedev.net/articles/programming/graphics/a-
closer-look-at-parallax-occlusion-mapping-r3262

Contributors

• Georgios Papaioannou

