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Texturing



INTRODUCTION



What is Texturing?

• Spatio-temporal modification of material attributes, 
independent of the geometry itself

• Why do we need it?

– It is impossible to capture these variations as geometric 
attributes:

Ok, this can be done with 

geometry modification

This cannot…



Spatial Variation of Material Properties



Types of Texturing

Image texturing: 

• The spatial/temporal patterns are 
expressed in the form of a digitized 
bitmap

• A bitmap texture can be an array of 
values of 1/2/3 + time dimensions

• Textures are stored in GPU/CPU 
memory and sampled during rendering

Procedural texturing:

• The spatial/temporal patterns are 
generated using a function or algorithm

Image texture

Procedural

Combined



IMAGE TEXTURING



Image Texture Space 

• A 1D-3D image texture is defined in a texture parametric
space

• The parametric space is usually considered normalized w.r.t
the dimensions of the raster

– For example, a 2D raster is defined on a plane with two
parameters (e.g. u,v)

1D 2D 3D



Texture Mapping (1)

• In order to apply an image texture to a surface (or solid
interior), we must define a mapping from the point or vector
coordinate system to the texture space



Texture Mapping (2)

• The texture mapping can be performed from any coordinate
system (OCS,WCS,ECS,CSS)

• Usually, we calculate the texture parameters at modeling time
(OCS) and store them on the model vertices

• The calculation of the texture parameters is done via a texture
projection function

Object space texture mapping World space texture mapping



Texture Elements (1)

• The smallest accessible element in a 1D/2D/3D raster texture 
is the texel (texture element)

• Texels are considered discrete samples on the raster and their 
integral coordinates correspond to corners of the raster 
elements

𝑢, 𝑣 = (0,0)

𝑢, 𝑣 = (
𝑖 + 0.5

𝑤
,
𝑗 + 0.5

ℎ
)

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (0,0)

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (𝑤 − 1, ℎ − 1)

𝑢

𝑣



Texture Elements (2)

• Sampling centers do not coincide with the integral texel
coordinates!

• They are mapped to the centers of the texels, as shown below 

𝑢, 𝑣 = (0,0)

𝑢, 𝑣 = (
0.5

𝑤
,
0.5

ℎ
)
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𝑤
,
𝑗 + 0.5

ℎ
)
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𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑒𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑠 (𝑤 − 1, ℎ − 1)

𝑢

𝑣



• Texture coordinates on arbitrary locations on the triangles are
interpolated from the tex. coordinates of the triangle vertices,
using the same barycentric coordinates used for other
attributes

Texture Mapping Triangles (1)

𝐯0

𝐯1

𝐯2
(𝑢0, 𝑣0)

(𝑢1, 𝑣1)

(𝑢2, 𝑣2)

(𝑢𝑞, 𝑣𝑞)𝐩𝑞

1

1

0 𝑢

𝑣



Texture Mapping Triangles (2)

Asset from the Unity 5.0 game engine example projects

• Fine adjustments of the triangle
texture coordinates can be done
directly on the parametric space

– Vertex texture coordinates can be
manipulated using a 2D editor,
the UV Editor

– Texture coordinates with vertex
connectivity can be rendered
with orthographic projection as
(u,v,0) points



Texture Coordinate Wrapping (1)

• In general, multiple points on the geometry may index the 
same texture coordinates  The mapping is not necessarily 
bijective



Texture Coordinate Wrapping (2)

• The parametric space coordinates lie in the range [0,1]

• Therefore, all texture coordinates are conformed to this range 
using a texture wrapping function. Typical examples:

𝑠 = 𝑠 − 𝑠 𝑠 = ቊ
𝑠 − 𝑠

1 − 𝑠 + 𝑠
, 𝑠 𝑒𝑣𝑒𝑛
, 𝑠 𝑜𝑑𝑑

𝑠 = max(min 1, 𝑠 − 𝑠 , 0)

𝑐𝑜𝑙𝑜𝑟 = ቊ
𝑆𝑎𝑚𝑝𝑙𝑒(𝑠)
𝑏𝑜𝑟𝑑𝑒𝑟

,0 ≤ 𝑠 ≤ 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Image from: http://learnopengl.com/#!Getting-started/Textures



Texture Coordinate Wrapping (2)

• However, wrapping is not performed during assignment to 
vertices

• Interpolation may fold them back, producing erroneous 
results



Sample Evaluation

• Given a (u,v) coordinate pair, the simplest (albeit not the best) 
way to evaluate the texture at (u,v) is to retrieve the nearest 
texel to the parametric coordinates: 

Integral texel coordinates 
used in interpolation

Texel centers

Sample (u,v) coordinates

𝑥 = 𝑢𝑤
𝑦 = 𝑣ℎ

ℎ

𝑤

𝑢

𝑣

𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 = 𝑇𝑒𝑥𝑒𝑙( 𝑥 , 𝑦 )



Texture Magnification

• However, nearest neighbor texture sampling produces visible 
artifacts (pixelization) when the texture is magnified (many 
pixels index the same texel)
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Bilinear Texture Interpolation (1)

• To create smooth sample transitions, we can interpolate the 
texel values according to the distance of the (u,v) coordinate 
from the 4 nearest texels:

Integral texel coordinates 
used in interpolation

Texel centers

Sample (u,v) coordinates
𝑥 , 𝑦 𝑥 , 𝑦

𝑥 , 𝑦𝑥 , 𝑦

𝑠
𝑡

𝑥 = 𝑢𝑤 − 0.5
𝑦 = 𝑣ℎ − 0.5

𝑠 = 𝑥 − 𝑥
𝑡 = 𝑦 − 𝑦

ℎ

𝑤



Bilinear Texture Interpolation (2)

Integral texel coordinates 
used in interpolation

Texel centers

Sample (u,v) coordinates
𝑥 , 𝑦 𝑥 , 𝑦

𝑥 , 𝑦𝑥 , 𝑦

𝑠
𝑡

𝑥 = 𝑢𝑤 − 0.5
𝑦 = 𝑣ℎ − 0.5

𝑠 = 𝑥 − 𝑥
𝑡 = 𝑦 − 𝑦

ℎ

𝑤

𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 = 𝑇𝐿 1 − 𝑡 + 𝑇𝑈𝑡

𝑇𝐿 = 𝑇𝑒𝑥𝑒𝑙 𝑥 , 𝑦 1 − 𝑠 + 𝑇𝑒𝑥𝑒𝑙 𝑥 , 𝑦 𝑠
𝑇𝐻 = 𝑇𝑒𝑥𝑒𝑙( 𝑥 , ⌈𝑦⌉) 1 − 𝑠 + 𝑇𝑒𝑥𝑒𝑙 𝑥 , ⌈𝑦⌉ 𝑠

• Using (bi-)linear interpolation:



Bilinear Texture Interpolation (3)

• The bilinear interpolation is standard in the GPU hardware 
and all production rendering software



Other Texture Interpolation Functions

• Many other methods for interpolating the texel samples can 
be used such as the above

Cosine-weighted “sharp”

interpolation

Bi-linear
16-tap radially weighted 

“smooth” interpolation

Rendered with custom path tracing framework



Texture Minification

• When many texels correspond to 
a single pixel sample (area), then 
we have texture minification

• The texture is insufficiently 
sampled, resulting in distortion 
and noise



Texture Minification - Aliasing

• This is due to the signal aliasing that occurs,  since the rate of 
projected texels on screen is higher than half the sampling 
rate (pixel samples) – sampling theorem



Texture Antialiasing – Supersampling? (1)

• Can we use a higher sampling rate to correct the aliasing?

– No. Even if we effectively multiply the pixel shading rate, 
we only mitigate the problem to higher frequencies

– We have no way of predicting the highest frequency of the 
projected texels in image space



Texture Antialiasing – Supersampling? (2)



Texture Antialiasing with Band Limiting

• The only way to get rid of aliasing is to deliberately limit the 
frequency of the texture before sampling (pre-filtering) so 
that the image sampling rate always suffices

• Therefore we apply an antialiasing filter per pixel sample

• The antialiasing filter is a low-pass filter and can be 
implemented in the texture domain as a weighted average



Determining the Texture Filter Shape (1)

• To determine the weighted average sample 𝑆𝑎𝑚𝑝𝑙𝑒 𝑢, 𝑣 , we 
must account for all texels projected in the pixel sample area 
of influence (a “square pixel“ in the example below)

Pixel boundaries

Projected pixel boundaries in texture space

“pixel pre-image”

Image space Texture space

Texture boundaries

Pixel 

boundaries



Determining the Texture Filter Shape (2)

• For relatively small image-space distortions of the projected 
texels in image space, we can approximate the pixel pre-
image with a parallelogram

• We determine the shape of the linear approximation using 
the pixel derivatives of the texture parameters 

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑦

𝑑𝑣

𝑑𝑦

𝑑𝑥

𝑑𝑦

≈



Mip-Mapping (1)

• It is impractical to determine the pre-image texels and filter 
them at run-time 

– The filter may just as well cover up to the entire image!

• We pre-filter the texture data using square filters of increasing 
size and store them

• This process is called MIP-Mapping: “Multum In Parvo” (many 
things in a small place)



Mip-Mapping (2)

• At run time, we determine the most compatible filtered 
“version” of the texture and use the corresponding pre-
filtered data at (u,v)

• The pre-image is approximated by a square region centered at 
(u,v)



MIP-Mapping (3)

Image source: Wikipedia

MIP storage. The total storage 

area is increased by 33%

MIP Map hierarchy. We select 

which pre-filtered version of the 

image to use, according to the 

pixel derivatives of the uv

coordinates



MIP Map Determination

𝑃𝑥 =
𝑑𝑢

𝑑𝑥

2

+
𝑑𝑣

𝑑𝑥

2

𝑃𝑦 =
𝑑𝑢

𝑑𝑦

2

+
𝑑𝑣

𝑑𝑦

2

𝑃𝑦

𝑃𝑥

𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑦

𝑑𝑣

𝑑𝑦

𝑃 = max{𝑃𝑥, 𝑃𝑦}

𝜆 = log2(𝑃)

𝑑 = ቐ
𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥 𝜆 > 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥

0 𝜆 < 0
𝜆 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Problem of Isotropic Filtering

• The square filter shape is not appropriate for elongated pre-
images, as its cannot represent the required area of support

• Results in over-blurring along the minor pre-image direction 

Image source: Wikipedia



Practical Anisotropic Filtering (1)

Method for Adding Detail to a Texture Map, Patent US2007070078 (A1) ― 2007-03-29

• Replace the single uniformly-sized 
filter with multiple smaller mipmap
samples

• Approximate anisotropy by aligning 
the taps along the longest texture 
gradient axis

• Implemented in graphics harware

– Maximum taps determined by the 
“maximum anisotropy” level   



Practical Anisotropic Filtering (2)

Source: OpenGL specification
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Practical Anisotropic Filtering (3)

Isotropic filtering 

Linear MIP map selection

Anisotropic filtering 

Linear MIP map selection

Image source: Wikipedia



TEXTURE PROJECTION FUNCTIONS



(Texture) Mapping Functions

• Mapping functions are used to apply two-dimensional 
textures to surfaces

• They define a transformation of a 3D to a 2D texturing 
coordinate pair

• The can be used for the automatic generation of texture 
coordinates

– Typically used by artists as a rough uv pair assignment to 
vertices

– Can be used at run-time from within shaders for automatic 
texture coordinate assignment



Linear Mapping - Planar Projection (1)

• In general, a linear mapping binds a texture parameter to a 
direction vector in 3D space and can be written in the form:

• This simple transformation collapses points onto a plane 
embedded in 3D

𝐬 = 𝐓𝐿𝑖𝑛𝑒𝑎𝑟 ∙ 𝐩 or equivalently (𝑢, 𝑣) =
𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑥
𝑦
𝑧



Linear Mapping - Planar Projection (2)

• Simple, common example: Projection on the xy plane (a)

• The z coordinate is collapsed: All points with the same x, y 
coordinates have equal texture coordinates regardless of z (b)

(𝑢, 𝑣) =
1 0 0
0 1 0

𝑥
𝑦
𝑧



Cylindrical Mapping

• It is essentially the conversion of the Cartesian coordinates to 
cylindrical ones. Typically, the radius (distance to the cylinder 
axis) is ignored



Spherical Mapping (1)

• It is essentially the conversion of the Cartesian coordinates to 
spherical ones. Typically, the radius (distance to the cylinder 
axis) is ignored



Spherical Mapping (2)

• Quite useful mapping, especially for environment effects and 
spherical objects
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Distortion

Spherical mapping inherently suffers from 

distortions at the poles (singularity) and 

variable tex. coord density  



A Practical Note

• Mapping functions can be applied in isolated surface groups 
to optimize coverage, uniformity and smoothness

• For example, in the figure below, all surfaces parallel to a 
primary plane use this plane for linear mapping:



Projective Mapping (1)

• Consider a vector 𝐯 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) by either:

– Connecting a reference center of projection point (e.g. 0) 
to a point in space or

– Using a direction vector (e.g. a surface normal)

• Apply perspective projection to two of its coordinates using 
the third as projection direction

• Without loss of generality, using the 𝑧 axis for the projection:

𝑢, 𝑣 = (𝑣𝑥/𝑣𝑧, 𝑣𝑦/𝑣𝑧)

𝑣𝑥

𝑣𝑦

𝑣𝑧



Projective Mapping (2)

• If we additionally make sure that we project along the 
maximum vector coordinate (or clamp the  fractions to  ±1):

where 𝑚𝑎 is the maximum vector coordinate or projection axis, 
and 𝑢𝑐, 𝑣𝑐 the projected coordinates corresponding to u and v

• If a random projection direction is required, we just change 
the basis of the input vector to the desired one using a 
rotation (see change of basis transformation)

𝑢, 𝑣 =
1

2
(
𝑢𝑐
𝑚𝑎

+ 1,
𝑣𝑐
𝑚𝑎

+ 1)



Projective Mapping – The Cube Map (1)

• An application of projective mapping is the cube map, where 
a direction is projected on one of the six sides of a cube using 
the longest half-axis as projection direction

• Each side of the cube uses a separate texture image, so the 
entire domain of directions can be uniquely mapped to a 
(stored) value



Projective Mapping – The Cube Map (2)
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Projective Mapping – The Cube Map (3)

• Cube maps are often used for the encoding of incoming 
luminance from a distant environment (environment 
mapping)

• Can be used to apply “baked” illumination onto surfaces, such 
as global illumination 



Reflection Mapping (1)

• Reflection mapping is a simple form of environment mapping, 
where the reflection vector at a shaded point is used to index 
a spherical environment map representing the surrounding 
space of an object

– The map can be a spherical one or a cube map

• Gives the impression that the surface captures the smooth 
reflection of an environment

• Use the reflection vector:

 12 2   r r v n nv v 
1r vr

n





Reflection Mapping (2)

No reflection 

map

Spherical 

environment 

map

With reflection 

map



Reflection Mapping (3)

• In general, environment mapping 
assumes that the incident radiance is 
coming from distant geometry so 
that:

• 𝐿𝑖(𝐩, 𝜔) ≃ 𝐿𝑖(𝜔), ∀𝐩 on the object

• i.e. the scale of the object is small 
enough (relative to the environment) 
so that all positions map to the same 
env. map texel for a given direction 𝜔



Reflection Mapping with Cube Maps (1)

• Same principle, different mapping function

• Environment is recorded in 6 separate projections



Reflection Mapping with Cube Maps (2)



Transforming Texture Coordinates (1)

• Texture coordinates describe a domain, in which all known 
(linear) transformations apply, as usual. So we can:

– Translate (offset) 

– Rotate

– Scale 

texture coordinates to modify the appearance of models



Transforming Texture Coordinates (2)

• In the following example scaling is applied in texture space 
coordinates to magnify the texture appearance:

• The texture coordinates are successively scaled by 1/3 to 
achieve a magnification of 3



PROCEDURAL TEXTURING



Procedural Textures (1)

• A surface or volume attribute can be:

– Calculated from a mathematical model

– Derived in a procedural algorithmic manner

• Procedural Texturing:

– Does not use intermediate parametric space

– Often referred to as “procedural shaders”

• Can be used to calculate:

– A color triplet

– A normalized set of coordinates

– A vector direction

– A scalar value



• Some forms of a procedural 
texture:

• These output parameters can be 
used as:

– Input to another procedural 
texture

– A mapping function to index 
a  texture image

proc

proc

proc

( , ),

( , ),

( , )t f







v f p a

n f p a

p a

Procedural Textures (2)



Properties of Procedural Textures

• Continuous input parameters and continuous output 

• No magnification artifacts

• No distortion due to parametric mapping issues

• Map the entire input domain to the output domain

• Due to lack of local control (something that texture images 
provide), we often combine procedural and image texturing



Procedural Textures: Example



Noise

• In nature there are materials and surfaces with irregular 
patterns, such as a rough wall, a patch of sand, various 
minerals, stones etc.

• A procedurally generated noise texture should:

– Act as a pseudo-number generator 

– Have some controllable properties

– Ensure a consistent output



Procedural Noise Properties (1)

• Stateless 

– The procedural noise model must be memory-less

– The new output should not depend on previous stages or 
past input values

– Necessary if we want an uncorrelated train of outputs

• Time-invariant

– The output has to be deterministic

– Avoid dependence of the noise function on clock-based 
random generators



Procedural Noise Properties (2)

• Smooth 

– The output signal should be continuous and smooth

– First-order derivatives should be computable

• Band-limited

– A white-noise generator is not useful

– Should control the max (and min) variation rate of the 
pattern 



Perlin Noise (1)

• Is the most widely used noise function

• Encompasses all the above properties

• Relies on numerical hashing scheme on pre-calculated 
random values 



• Let Ω𝑖,𝑗,𝑘 be a lattice node at integer location (i, j, k) : i,j,k ∈ ℕ

• We associate a pre-computed random value 𝛾𝑖,𝑗,𝑘 with each

node, deterministically defined w.r.t. (i, j, k)

• The procedural noise output is the weighted sum of the values
on the 8 nodes nearest to the input point 𝐩

Perlin Noise (2)



• The final noise pattern for a point p= (x, y, z)

– is given by trilinear interpolation of the values γi,j,k of the 8
lattice points Ωi,j,k closest to p

– use as the interpolation coefficient, where:

• This function has a support of 2, centered at 0

• ω(t-i) is max at i and drops off to 0 beyond i ± 1

noise ( )f p

( )t t    

Perlin Noise (3)

3 2  

 

1,2 3 1
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tt t
t

t


  
 





• An extension of the noise procedural texture

• Band-limited noise function

• Has a spectrum profile whose magnitude is inversely
proportional to the corresponding frequency (hence the 1/f
name)

• Overlays suitably scaled harmonics of a basic band-limited noise
function:

where f: the base frequency of the noise

octaves: the max number of overlaid noise signals

octaves

turb 1/ noise

1

1
( ) ( ) (2 · )

2

i

f i
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  p p p

Turbulence (1/f noise function) (1)



Turbulence (1/f noise function) (2)



• Many interesting patterns can be generated by:

– Adding a bias to the input points of another procedural or
parametric texture

– Using it as part of a composite texture function

• Natural formations can often be achieve with combinations of:

– A base mathematical expression

– Turbulence

– noise

 proc math turb

proc math turb

( ) ( ) ,

( ) ( · ( ))

f f f

f f a f



 

p p

p p p

Turbulence (1/f noise function) (3)



• Interleaved solid blocks of 2 different values

– Using a texture image at an arbitrary resolution would blur or
pixelize the transitions

 checker ( ) mod2f x y z            p

Common Procedurals: Checker



• Produces a high-fidelity smooth transition from one value to
another

– There is no danger of generating perceivable bands

• Can use many alternative input parameters, i.e. Cartesian
coordinates, spherical parameters etc.

• Its simplest form: a (tiled) ramp along a primary axis:

gradient ( )f y y    p

Common Procedurals: Gradient
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• Represented as an infinite succession of concentric cylindrical
layers

– Modeled by a ramp function over the cylindrical coordinate r

– Add an amount of perturbation a to the input points

– Use an absolute sine or cosine function to accent the sharp
transition between layers without discontinuity:

  wood

2 2
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p

p

Common Procedurals: Wood



• Use a smoothly varying function to generate the compressed
earth layers

• Perturb the input parameters to get a very realistic
approximation

  

 
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Common Procedurals: Marble



SURFACE RELIEF REPRESENTATION



Using Textures to Mimic Surface Detail (1)

• Usually, it is very inefficient to represent 
every surface detail using geometry

• We typically resolve to using textures to 
mimic the appearance of complex relief 
patterns

• The impression of surface detail is created 
via the interaction of surface gradient with 
light

• We either “bake” lit geometry appearance 
on textures or use properly lit photos



Using Textures to Mimic Surface Detail (2)

• In an environment with changing lighting 
conditions this can be very problematic

• Baked surface appearance cannot match 
the lighting conditions

– Change of emission direction

– Shadows

– Light color

– …

• So the effect breaks



Representing Relief with Texturing

We can use texturing to: 

• Locally offset the vertices of an object according to a relief 
(bump) map  Displacement Mapping

– The geometry can be subdivided further prior to offsetting 
the vertices

• Locally modify attributes of the surface in order to give the 
illusion of complex geometric structure, without actually 
generating the surface detail:

– Bump Mapping

– Normal Mapping

– Parallax Occlusion Mapping



Displacement Mapping (1)

• Move vertices along the normal according to elevation values:

( , )MAXoffset b u v    s s n



Displacement Mapping (2)

• Requires adequately tessellated surface geometry, 
comparable to the scale of texture relief variation

Original      Uniform subdivision    Adaptive subdivision     Shaded result



Displacement Mapping in Real Time

• Displacement mapping is typically used in offline rendering

• In real-time applications, it is expensive to use, even with GPU 
tessellation, but is useful when:

– We zoom on detailed surfaces

– View relief patterns at oblique angles or elevation 
differences are large: We expect to see self occlusion 
caused by the relief pattern



Normal Vector Relief Techniques

• For small-scale surface details, we predominantly perceive the 
relief pattern due to lighting variations

– Self-occlusion and/or self-shadowing is more evident only 
at very oblique angles

• We can effectively and very efficiently “fake” the presence of 
structural detail by locally modifying the key element in a local 
shading calculation: the normal vector 



The Local Surface Tangent Space (1)

• At every point on a surface we can define a local coordinate 
system that is tangential to the surface gradient

– One axis coincides with the local normal vector

– The other two axes can coincide with the tangent (and 
bitangent) surface vectors:



The Local Surface Tangent Space (2)

• We can choose any perpendicular directions on the tangent 
plane to form a “tangent-space” coordinate system

• It is more convenient if the vectors coincide with the gradient 
of the surface w.r.t. the texture coordinates

– We will require in the following to map tangent vectors to 
texture map gradients



Bump Mapping (1)

• In the bump mapping technique, we are given a relief pattern 
as a height field (i.e. texture intensity represents elevation) 
similar to displacement mapping

• We don’t modify the surface elevation but instead calculate 
the distorted local normal vectors as if the surface was 
actually elevated



Bump Mapping (2)



• If 𝑏 is the given elevation at texture location (𝑢, 𝑣), then the 
elevated surface should be:

• By definition, the normal of the new, elevated position is 
perpendicular to the tangent vectors at 𝑠′ 𝑢, 𝑣 :

Bump Mapping: Normal Estimation (1)



• To find the new tangent vectors, we calculate the partial 
derivatives of the elevated point w.r.t. the texture parameters:

Bump Mapping: Normal Estimation (2)

~0

~0



• And replacing the new tangent vectors in the definition of the 
new normal we get:

Bump Mapping: Normal Estimation (3)

0

n̂ ˆb ˆt



Practical Bump Mapping

• According to the bump mapping 
calculations, we need:

– The un-modified normal at the 
shaded location

– Two tangent vectors along the 
u and v parameters

– The bump map derivatives (can 
be precalculated and stored in 
the texture as color channels)

( , )b u v ( , )b u v

u





( , )b u v

v







Bump Mapping - Results

Albedo map

Bump map



Normal Mapping

• In bump mapping we implicitly find the diverted normal due 
to the underlying elevation

• Normal mapping dispenses with the calculations by directly 
replacing the local normal with a new normal vector stored in 
a texture



Tangent Space Normal Mapping (1)

• We directly apply the new tangent-space normal fetched from 
the texture map

• The texture encodes the tangent space coordinates of the 
modified vector

Ԧ𝐭 Ԧ𝐭Ԧ𝐛 Ԧ𝐛

𝐧

𝐧′

𝐝 𝑢, 𝑣



Tangent Space Normal Mapping (2)

• If 𝐝 𝑢, 𝑣 is the local, bent normal direction, and 𝐧, Ԧ𝐭, Ԧ𝐛 are 
the normal and tangent vectors expressed in any reference 
frame (e.g. WCS or ECS), then:

Ԧ𝐭 Ԧ𝐭Ԧ𝐛 Ԧ𝐛

𝐧

𝐧′

𝐧′ = 𝑑𝒙Ԧ𝐭 + 𝑑𝒚Ԧ𝐛 + 𝑑𝒛𝐧

𝐝 𝑢, 𝑣



Practical Shading using Normal Maps

• Calculate and store one tangent vector as additional vertex 
attribute

• In the vertex shader, calculate and emit the normal and 
tangent in the same space as the light sources (WCS, ECS), but 
not in post-projective space

• In the fragment shader:

– Calculate bitangent via cross product of normal and 
tangent

– Fetch new normal from normal map 𝐝 𝑢, 𝑣

– Replace old normal with 𝐧′ = 𝑑𝒙Ԧ𝐭 + 𝑑𝒚Ԧ𝐛 + 𝑑𝒛𝐧



Normal Vector Techniques - Deficiencies

Displacement mapping Bump mapping

Silhouettes don’t match 

with the relief pattern
No proper self-occlusion 

or self-shadow



Parallax Occlusion Mapping (POM) (1)

• The key idea behind POM is to consider the surface as a 
“shell” of a more complex geometry and trace a line from the 
visible shell point inwards until we hit the relief height field

– The new location will be used for any shading calculations

Normal mapping POM

Images from [GD13]



Parallax Occlusion Mapping (POM) (2)

Images from [GD13]



POM Steps

• Convert eye and light positions to tangent space

• Calculate incident light direction and viewing direction to 
tangent space

• Trace a ray inwards (assuming a start position at max 
elevation) – see next slide – until closest elevation point to 
entry is reached

• Use the current (u,v) position of the hit point to shade the 
surface (including tangent space normal mapping)



POM - Tracing in Tangent Space

• We sample the elevation map at 
regular intervals along the tangent-
space view direction

– Until ray sample “depth” below 
map elevation

– Shade according to the attributes 
at the hit point u,v coordinates

• Must ensure dense (texel-sized)  
sampling

– Fixed number of samples cannot 
guarantee this for  oblique view 
directions

u,v trace 

direction

Height = max

Height = 0

Ԧ𝐭

Ԧ𝐛

𝐧



POM Results



PUTTING IT ALL TOGETHER



Using Multiple Textures

• To achieve the desired effect and re-
use textures, we often combine 
multiple layers of texture during 
shading

• We additionally use textures as:

– Masks: provide a blend factor
between layers

– Decals: local overlays to represent 
stickers, dirt, marks etc. 

– Indices: specify which texture to
use at each location



Texture Graphs: An Example

We can combine image and 

procedural textures to achieve 

the desired effect



Detail Textures (1)

• For large surfaces, in order to create enough visual variation, 
we often use large, non-repeated textures

• However, they cannot withstand close inspection due to the 
limited texture density



Detail Textures (2)

• To diversify the result, we superimpose (usually 
multiplicatively) a small repeatable texture many times over 
the main texture to add detail 

• We typically multiply the texture coordinates used for the 
“detail texture” by a large factor to repeat it that many times 



Detail Textures (3)

• Now the textured surface looks detailed even at high 
magnification

Before After



Texture and Material Layering Example

Image: Allegorithmic Substance Painter 2



Texture and Material Layering Example

Image: Allegorithmic Substance Painter 2
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