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A High Level Rasterization Pipeline

Geometry 
Setup

Fragment 
Generation

Fragment 
Shading

Fragment 
Merging

Primitives Updated

pixels

Transformed/clipped 

primitives

Fragments Shaded pixel

samples

• Transformation

• Culling

• Primitive 

assembly

• Clipping

• Primitive 

sampling

• Attribute 

interpolation

• Pixel coverage 

estimation

• Pixel color 

determination

• Transparency

• …

• Visibility 

determination

• Blending

• Reconstruction 

filtering



• Geometry must be transformed in order to:

– Be expressed in the proper coordinate system for each 
operation to take place

– Get modified according to the desired arrangement of 
primitives / objects to form a virtual world or scene

Geometry Setup 

Various geometric transformations 

applied to original shape to build the 

desired outcome

LCS WCS

A “scene”
NDCWCSECSNDC

transformation

To change 

coordinate system 

to “observer” space

window



Geometry Setup (2)

• The vertices of the resulting primitives are then 
assembled into a form that can be efficiently 
sampled by the rasterizer (e.g. triangles): 



• Redundant geometry (invisible, unimportant etc.) is 
culled (removed) to reduce overhead

• To further reduce/split load and avoid degenerate / 
problematic geometry, primitives are clipped to the 
boundaries of NDC regions

Geometry Setup (3)

NDC

window

Culled

NDC

window

NDC

Clipping
Clipped primitives may 

require re-triangulation



3D Geometry Transformations

• All coordinates have to be: 

– Transformed from their native, object space ones to a 
global, common reference system

– Then expressed relative to the camera and

– Projected on the image plane

• All of these transformations are concatenated into a 
single matrix, which is applied to the vertices of each 
triangle

• Different objects may have different transformations



Geometric Transformation Sequence
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3D Geometry Setup (1)

• Initial primitives (as defined/loaded by the application)
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3D Geometry Setup (2)

• Transform geometry (vertices) in world 
coordinates to compose a 3D scene 

Y

X

Z

WCS



3D Geometry Setup (3)

• Transform geometry (vertices) relative 
to the “eye” (camera) system (ECS)

Y

X

Z

ECS

Camera

(center of 

projection)



3D Geometry Setup (4)

• Coordinates as “seen” from the camera reference 
frame

Y

X

ECS



3D Geometry Setup (5)

• Coordinates 
after 
perspective 
projection

Y

X



3D Geometry Setup (6)

• Coordinates after 
perspective projection 
in normalized device 
coordinates

Y

X

-1 1

-1

1
Clipping planes



3D Geometry Setup (7)

• Primitives after clipping 
(still in normalized 
device coordinates)

Y

X

Clipped primitives



3D Geometry Setup (8)

• Coordinates of assembled primitives after window 
transformation (image space – pixel units) 



Clipping - General

• With clipping we limit the extents of primitives to the 
viewing region

– Avoid erroneous projection of geometry (see frustum 
clipping)

– Discard invisible geometry

• In general, we clip lines and polygons in both 2D and 
3D



Half-spaces 

• A hyperplane in 2D (a line) or in 3D (a plane) divides 
space in two halves

• The corresponding equation is positive on one side, 
negative on the other and zero exactly on the 
hyperplane: 

+

-

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

2D 3D

+

-



Point Containment

• If a set of oriented hyperplanes 𝑓𝑖 forms a convex 
region, then determining if a point 𝐩 lies inside this 
region resolves to testing if: 

𝑠𝑖𝑔𝑛 𝑓𝑖(𝐩) = 𝑠𝑖𝑔𝑛 𝑓𝑗(𝐩) , ∀𝑖, 𝑗
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Point in Triangle Test

• Alternatively, we can check 
the barycentric coordinates of 
the the point w.r.t. the 3 
vertices 

– Inside: 𝑢, 𝑣, 𝑤 ≥ 0
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Line Clipping on Rectangular Bounds

• 3 cases:

– Line segment entirely 
outside region

– Line segment entirely 
inside region

– Line segment intersects 1 
or 2 boundary segments



A Simple Line Clipping Algorithm

• Cohen-Sutherland algorithm

– Fast segment in/out detection via binary tests

– Recursive splitting of intersecting segments

Clipping window

1001 1000 1010

0001 0000 0010

0101 0100 0110

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

Encode the 9 tiles according to 

the sign of the 4 line equations



CS Line Clipping Algorithm

void CS( vec3 * P1, vec3 * P2, 

float x_min, float x_max, float y_min, float y_max )

{

unsigned char c1, c2; 

vec3 I;

c1=Code(*P1); //Εύρεση κώδικα P1
c2=Code(*P2); //Εύρεση κώδικα P2

if ( ( c1|c2 == 0 ) || // both inside or

P1P2 ε ( c1&c2 !=0 ) )   // outside but on the same side of a 

// clipping line (see figure)

// do nothing

else

{

Intersect (P1,P2,&I,xmin,xmax,ymin,ymax);

if ( IsOuside(*P1) ) 
*P1 = I; 

else
*P2 = I;

CS(P1,P2,xmin,xmax,ymin,ymax);

}

}



Polygon Clipping

• Polygon clipping cannot be 
regarded as multiple line 
clipping!

• Requires mutual edge + 
point containment and 
intersection testing

Incorrect new polygon

Missed space



Sutherland-Hodgman Clipping Algorithm (1)

• Clips an arbitrary polygon against a convex clipping 
polygonal region

• Iteratively clips the input polygon against each one of 
the segments of the clipping region



Sutherland-Hodgman Clipping Algorithm (2)

• For each clipping line:
– For each vertex transition of the input polygon:

• Determine what points to generate according to the following 
configurations

– Join all sequentially generated vertices to form a polygon

– Use this polygon as input to the next iteration



• Clipped triangles against the viewing window may 
require re-triangulation

• Triangulation of convex shapes is trivial:

Convex Shape Re-triangulation



Frustum Clipping (1)

• Before rasterizing the polygons, they must be clipped 
against the view frustum (see projections) 

• Why?

– Coordinates behind near plane get inverted and wrap 
beyond the far plane  degenerate, impossible “triangles”

– Coordinates on z=0  singularity in perspective division



Frustum Clipping (2)

• Frustum clipping can be done with a Sutherland-
Hodgman-style method for triangles/planes

• For a 6-plane frustum (i.e. the camera frustum), this 
is a 6-stage triangle/plane clipping pipeline

• Clipping is performed in the post-projective space, 
before the perspective division. Why?

– In all projections (perspective, too), the frustum planes are 
axis aligned  simplified comparisons and equations (see 
Chapter 5.3 in [G&V]



Frustum Clipping (3)

• Triangle/plane clipping:

– Perform 2 line-plane clipping steps

– Join the open edges (if any)

– Re-triangulate if necessary   



Pixel-level Clipping

• It is possible to perform clipping at a pixel level (or 
pixel block level, for hierarchical implementations)

• Pixel-level clipping boils down to discarding values 
outside the usable range (i.e. within the 2D/3D 
clipping region)

– Saves on H/W and power consumption (less circuitry)

– Naïve implementation: Not very fast – many samples to 
discard

– Hierarchical / block-based implementation: efficient

NVIDIA patent EP1756769 B1



Optimizations – Back-face Culling (1)

• Back-face culling can dramatically reduce the 
rasterization load by effectively discarding all polygons 
facing off the eye direction

• Transparent shapes should not be BF culled

Without back-face culling With back-face culling

(~50% fewer triangles)



Optimizations – Back-face Culling (2)

• Back-face culling rejects polygons whose normal 
deviates more than 90 degrees from the viewing 
direction



Optimizations - Frustum Culling

• Conservatively discards entire objects early on, 
before clipping by:

– Checking the extents (bounding box) of an object against 
the bounds of the frustum

• This test is very simple in post-projective space: 

– if all projected bounding box corners are outside the 
frustum  cull the object

– Can be extended to non-camera frusta to cull hidden 
objects

http://akhanubis-eng.tumblr.com/post/24375086110/slimdx-directx-11-frustum-culling



Rasterization

• Rasterization is the process that generates the pixel-
based samples on the stream of primitives 

• Before rasterization occurs, it is convenient to 
transform the primitives in screen coordinates (i.e. 
pixel units) – see rasterization slides

• Each primitive is processed independently!

NDC
Fragments from 

different primitives may 

overlap  Ordering 

must be resolved (see 

next slides)



Line Rasterization

• Must:

– Approximate the mathematical 
line as close as possible (min. 
error)

– Not leave any gaps

– Maintain a constant width

– Be efficient



Approximating the Line Equation (1)

• Given a line segment in the first octant 

𝑥1, 𝑦1 → 𝑥2, 𝑦2 , the line passing through the

endpoints is defined as:

Y

Xb

𝑦 = 𝑠 ∙ 𝑥 + 𝑏

𝑠 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
Δ𝑦

Δ𝑥

𝑏 =
𝑦1𝑥2 − 𝑦2𝑥1
𝑥2 − 𝑥1

𝑥1, 𝑦1

𝑥2, 𝑦2

Δ𝑦

Δ𝑥



Approximating the Line Equation (2)

void Line1( float x1, float y1, float x2, float y2 )

{

float s, b, y; 

float x;

s = (y2-y1) / (x2-x1);

b = (y1*x2 – y2*x1) / (x2-x1);

for ( x = x1; x <= x2; x+=1.0f )

{

y = s*x + b;

SetPixel( floor(x+0.5f), floor(y+0.5f) );

}

}



Result of the Line1 Algorithm

• Y values are eventually rounded to the nearest 

integer cell 



Incremental Line Algorithm (1)

• Y values are computed for fixed and positive X increments 

• The described algorithm (Line1) is valid only for octant 1:



Incremental Line Algorithm (2)

• The multiplication inside the loop can be simplified, since:

𝑥𝑖+1 = 𝑥𝑖 + 1

𝑦𝑖+1 = 𝑠𝑥𝑖+1 + 𝑏 = 𝑠𝑥𝑖 + 𝑏 + 𝑠 = 𝑦𝑖 + 𝑠



Incremental Line Algorithm (3)

void Line2( float x1, float y1, float x2, float y2 )

{

float s, y; 

float x;

s = (y2-y1) / (x2-x1);

y = y1;

for ( x = x1; x <= x2; x+=1.0f )

{

SetPixel( floor(x+0.5f), floor(y+0.5f) );

y = y+s;

}

}



Integer Variants of Line Drawing

• If all coordinates are integer values, there are several 
improvements to be made to save calculations:

– Drop the rounding, by stepping to the next Y value if the 
increment becomes larger than 1/2 pixel

– Scaling all comparisons by Δx to dispense with the division  

𝑦𝑖

𝑥𝑖 𝑥𝑖+1



Rasterization – Triangle Traversal (1)

• Sampling the triangles involves traversing their 
interior and edges and generating a set of fragments 
per pixel (typically one)

Rasterizer

…

Triangle stream

Vertex Data

Position

Color

Normal vector

Texture coordinates

Tangent vector

…

Fragment generation –
interpolated attributes

Custom attributes



Triangle Rasterization Issues (1)

• Similar to lines, triangle rasterization must not leave 
gaps, for thin triangles: 

Adapted from CG lecture notes from the Virginia University 



Triangle Rasterization Issues (2)

• Appearance must be as consistent as possible under 
slight sampling offsets (motion) – see antialiasing  

Adapted from CG lecture notes from the Virginia University 



Triangle Rasterization Issues (3)

• What is the priority of shared edges?

Adapted from CG lecture notes from the Virginia University 



Triangle Traversal Algorithms

• Two dominant methods:

– Edge Walking: Vertically follows edges and draws the 
corresponding scan line spans

– Edge Equation: Tests the pixels for containment inside the 
triangle boundaries. Can be efficiently implemented in a 
divide and conquer manner



Edge Walking – Basic Idea

• Follow edges vertically

• Interpolate attributes down edges

• Fill in horizontal spans for each 
scanline

– For each pixel of a scanline, 
interpolate edge attributes across 
span 𝑦1

𝑦2

𝑦3

(AKA: Triangle Digital Differential Analyzer)



Edge Walking – Procedure

Sort Vertices by Y value

Scan Convert 2 sub-triangles:

• For y1 ≤ 𝑦 < 𝑦2 : 
– Interpolate 𝑥 (𝑥𝑎 , 𝑥𝑏) and other values along edges 

– For 𝑥𝑎 ≤ 𝑥 < 𝑥𝑏 : interpolate values along spans

• For y2 ≤ 𝑦 < 𝑦3 : 
– Interpolate 𝑥 (𝑥𝑎 , 𝑥𝑏) and other values along edges 

– For 𝑥𝑎 ≤ 𝑥 < 𝑥𝑏 : interpolate values along spans 𝑦1

𝑦2

𝑦3

In
c
re

a
s
in

g
 Y

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

𝑦3

𝑥𝑎 𝑥𝑏

𝑥𝑎 𝑥𝑏



Edge Walking – Attribute Interpolation

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

𝑦3

𝑥𝑎

𝑥𝑏

𝑥𝑎 = 𝑥1 + 𝑎 𝑥2 − 𝑥1

𝑎 =
𝑦 − 𝑦1
𝑦2 − 𝑦1

𝑏 =
𝑦 − 𝑦1
𝑦3 − 𝑦1

𝑦 𝑎 𝑏

𝑥𝑏 = 𝑥1 + 𝑏 𝑥3 − 𝑥1

𝑠 =
𝑥 − 𝑥𝑎
𝑥𝑏 − 𝑥𝑎

𝑧 = 𝑧𝑎 + 𝑠(𝑧𝑏 − 𝑧𝑎)

𝑎 𝑏
𝑦

𝑥𝑎 = 𝑥2 + 𝑎 𝑥3 − 𝑥2

𝑎 =
𝑦 − 𝑦2
𝑦3 − 𝑦2

𝑏 =
𝑦 − 𝑦1
𝑦3 − 𝑦1

𝑥𝑏 = 𝑥1 + 𝑏 𝑥3 − 𝑥1

𝜉1 = 𝜉1𝑎 + 𝑠(𝜉1𝑏 − 𝜉1𝑎)

Any attribute  𝜉𝑘 is 

similarly interpolated

𝜉2 = 𝜉2𝑎 + 𝑠 𝜉2𝑏 − 𝜉2𝑎

⋮

𝜉𝑛 = 𝜉𝑛𝑎 + 𝑠 𝜉𝑛𝑏 − 𝜉𝑛𝑎

Inner loop (x)



Ok, We Have a Traversal, Why Go for Another One?

• Scanline-style edge walking is reasonably good 
provided that you don’t care about:

– Aligned (coherent) memory access

– Parallelism: multiple rows at a time 

– Variable sample positions 

– Ability to harness wide SIMD or build efficient hardware 
for it

• The above become really problematic especially in 
the case of thin, elongated triangles



• Triangle setup:

– Find the bounding box of the 
triangle

– Find the edge (line) equations of the 
oriented edges

– Find triangle differentials 

• For all pixels in the grid:

– Find edge equation values 𝜀1, 𝜀2, 𝜀3
– If (𝜀1> 0) ∧ (𝜀2> 0) ∧ (𝜀3> 0)

• Interpolate attributes

• Issue Fragment

Edge Equation Traversal – Basic Idea

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥)

Embarrassingly parallel!



Edge Equation Values

𝑦 = 𝑠 ∙ 𝑥 + 𝑏 ⟹ 𝑒 = 𝑠𝑥 − 𝑦 + 𝑏

𝑠 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
Δ𝑦

Δ𝑥

𝑏 =
𝑦1𝑥2 − 𝑦2𝑥1
𝑥2 − 𝑥1

-

-

-
+

+
+



Value Interpolation

• Use barycentric coordinates!

• Can I incrementally construct the barycentric
coordinates per pixel?

– YES!

– We can also incrementally update the edge equations per 
pixel



Edge Equation Traversal – Revisited (1) 

• Given two vectors 𝐯1 and 𝐯2, the following 
determinant calculates the signed area of the 
formed parallelogram:

• Or the signed area of the triangle formed by 𝐯1
and 𝐯2:

• Remember, these quantities are signed

• The sign is determined by the order of the two 
vectors

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

A𝑝 𝐯1, 𝐯2 =
𝑥1 𝑥2
𝑦1 𝑦2

A𝑡 𝐯1, 𝐯2 =
1

2

𝑥1 𝑥2
𝑦1 𝑦2



• Now consider an edge 𝐩0𝐩1 of a triangle and an 
arbitrary point 𝐪

• Using as vectors 𝐯1 = 𝐩0𝐩1 and 𝐯2 = 𝐩0𝐪 the 
determinant defines an edge function of 𝐪 w.r.t.
edge 𝐩0𝐩1:

Edge Equation Traversal – Revisited (2) 

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝐹01 𝐪 =
𝑥1 − 𝑥0 𝑥𝑞 − 𝑥0
𝑦1 − 𝑦0 𝑦𝑞 − 𝑦0

𝐩0𝐩0

𝐩1 𝐩2
𝐪

𝐪

𝐪 on the positive 

side of 𝐩0𝐩1

𝐪 on the negative 

side of 𝐩0𝐩1

𝐹01 𝐪

𝐹01 𝐪



• Expanding and rearranging 𝐹01 𝐪 we get:

• Equivalently, for the other triangle edges: 

Edge Equation Traversal – Revisited (3) 

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝐹01 𝐪 =
𝑥1 − 𝑥0 𝑥𝑞 − 𝑥0
𝑦1 − 𝑦0 𝑦𝑞 − 𝑦0

⟺

𝐹01 𝐪 = 𝑦0 − 𝑦1 𝑥𝑞 + 𝑥1 − 𝑥0 𝑦𝑞 + (𝑥0𝑦1 − 𝑦0𝑥1)

𝐹12 𝐪 = 𝑦1 − 𝑦2 𝑥𝑞 + 𝑥2 − 𝑥1 𝑦𝑞 + (𝑥1𝑦2 − 𝑦1𝑥2)

𝐹20 𝐪 = 𝑦2 − 𝑦0 𝑥𝑞 + 𝑥0 − 𝑥2 𝑦𝑞 + (𝑥2𝑦0 − 𝑦2𝑥0)



• Remember that 𝐹01 𝐪 is related to the area of 
the triangle 𝐩0𝐩1𝐪

• But so is the barycentric coordinate of 𝐪 from 𝐩2!

• It is easy to see that if 𝑤0, 𝑤1, 𝑤2 are the 3 
barycentric coordinates, then:

Edge Equation Traversal – Revisited (4) 

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝑤0 = 𝐹12 𝐪 /𝑤
𝑤1 = 𝐹20 𝐪 /𝑤
𝑤2 = 𝐹01 𝐪 /𝑤

𝑤 = 𝐹01 𝐪 + 𝐹12 𝐪 + 𝐹20(𝐪)

q

𝐩0
𝐩1

𝐩2

𝑤0
𝑤1

𝑤2



Incremental Traversal (1)

• Lets take the edge function and simplify it:

• The terms 𝐴01, 𝐵01, 𝐶01 as well as the respective 
terms of the other edge functions are constant per 
triangle

– Can be computed once in the triangle setup phase 

𝐹01 𝐪 = 𝑦0 − 𝑦1 𝑥𝑞 + 𝑥1 − 𝑥0 𝑦𝑞 + 𝑥0𝑦1 − 𝑦0𝑥1 =

𝐴01𝑥𝑞 + 𝐵01𝑦𝑞 + 𝐶01



Incremental Traversal (2)

• Let’s look now what happens for adjacent pixel 
coordinates:

• So, shifting the calculation to 1 pixel ahead in either 
direction only involves the addition of a constant 
term!

𝐹01 𝑥𝑞 + 1, 𝑦𝑞 = 𝐴01(𝑥𝑞+1) + 𝐵01𝑦𝑞 + 𝐶01 = 𝐹01 𝑥𝑞 , 𝑦𝑞 + 𝐴01
𝐹01 𝑥𝑞 , 𝑦𝑞 + 1 = 𝐴01𝑥𝑞 + 𝐵01(𝑦𝑞 + 1) + 𝐶01 = 𝐹01 𝑥𝑞 , 𝑦𝑞 + 𝐵01

Source: http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/



Parallel Traversal 

• More importantly, for parallel (vectorized) 
computations:

• where (𝑥𝑈𝐿 , 𝑦𝑈𝐿) is the upper-left corner of the 
bounding box

• The barycentric coordinates (interpolation variables) 
are computed from 𝐹𝑖𝑗  These are independently 

and cheaply computed, too! 

𝐹𝑖𝑗 𝑥𝑈𝐿 + 𝑛, 𝑦𝑈𝐿 +𝑚 = 𝐹𝑖𝑗 𝑥𝑈𝐿, 𝑦𝑈𝐿 + 𝑛𝐴𝑖𝑗 +𝑚𝐵𝑖𝑗



• We can effectively reduce further the computations 
if we process the bounding box in blocks and discard 
entire blocks

– Block discard: all block corners outside the triangle

– Can be done hierarchically

Edge Equation Traversal – Optimization (1)



Perspective and Interpolation (1)

• Is there a problem with interpolating in perspective?

– Screen-space interpolation does not correctly interpolate 
perspectively projected values:

Source: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002



Perspective and Interpolation (2)

• Linear in screen space  Non-linear in eye space!

Linear y

Image 

plane

Linearly interpolated z

Non-linearly 

interpolated points!



Perspective and Interpolation (3)

• Fortunately, we can derive functions that correctly 
perform this interpolation

• For the perspectively correct z:

• i.e., interpolate 1/z values and invert the result

• For the derivation procedure see: Kok-Lim Low, 
Perspective-Correct Interpolation, Tech. Rep. 2002

𝑧𝑠 =
1

1
𝑧1
+ 𝑠

1
𝑧2
−
1
𝑧1



Perspective and Interpolation (3)

• For perspectively-correct fragment attributes:

• i.e., divide vertex attributes by the corresponding z 
and multiply interpolated result by interpolated z

• For the derivation procedure see: Kok-Lim Low, 
Perspective-Correct Interpolation, Tech. Rep. 2002

𝑎𝑠 = 𝑧𝑠
𝑎1
𝑧1
+ 𝑠

𝑎2
𝑧2

−
𝑎1
𝑧1



Geometry Antialiasing

• Aliasing in geometry boundaries due to fixed-rate 
sampling is a common artifact manifested as 
“pixelization”

– Blocky appearance

– Improper representation of thin structures

– Temporal artifacts



Super-sampling the Geometry

• The problem is alleviated by mitigating the sampling 
issues to a higher sampling frequency by super-
sampling each pixel 

Adapted from “Real-Time Rendering, 3rd Ed. ”



Practical Antialiasing - MSAA

• Supersampling the pixel normally implies evaluating 
the shading at all samples taken 

– Cost: × number of samples! 

• Solution: Evaluate the shading at a single location 
and take multiple coverage samples independently 
MSAA (Multi-Sampled Anti-Aliasing)

Fragment shader is invoked once per pixel

Primitive coverage is evaluated 

independently at multiple locations



MSAA - Example

1X (no MSAA),  2Χ, 4Χ and 8Χ coverage samples on an NVIDIA 780Ti graphics card

Fragment shader evaluation location

Coverage sample



MSAA - Deficiencies

• Shader computations may be performed 
for locations outside the geometry!

– Can be fixed by moving the shading to the 
covered sample closest to the center  

• Attributes evaluated at the pixel center 
my not be representative of the covered 
area



Triangle Rasterization - Overdraw

• Rasterized fragments overlap with previously drawn 
fragments from other triangles – not yet sorted
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Sorting (1)

• The fragments of a primitive typically overlap 
fragments from other primitives

• There are many strategies to 
resolve the ordering of the 
rasterized primitives as they 
appear on screen

• Simplest:

– Explicit order (FIFO)

• 3D: More elaborate schemes 
required (see 3D rasterization)



Sorting (2)

• Sorting can occur in various stages of the pipeline, 
depending on the type of primitives:

– E.g., flat 2D polygons and lines can be trivially pre-sorted 
according to “z order” and then rasterized back to front

– Conversely, intersecting or self-overlapping shapes may 
require a (post-) sorting strategy, at a fragment level (see 
3D)

Can be resolved 

by primitive 

sorting

Cannot be resolved 

by primitive sorting 

– requires sorting 

at fragment level



Rasterization and HSE in 3D 

• After projecting the primitives in NDC, we must retain only 
surfaces visible to the camera (HSE) 
– Surface parts must be sorted according to depth

– And not according to order of appearance (it is arbitrary) 

1 23



HSE – Per Pixel

• Even if polygons were depth-sorted according to some 
reference point on them (e.g. centroid), there is no guarantee 
that they do not overlap 

• Sorting must be performed per pixel



The Depth Buffer

• Separate buffer, same resolution as frame buffer

• Stores the nearest normalized depth values



The Z-Buffer Algorithm

• The Z-Buffer algorithm uses the depth buffer to 
compare each generated fragment at location (i,j) 
with the previous “visible” (nearest) fragment

• If the new fragment is closest to the view plane:

– Replace the z in the depth buffer

– Forward the fragment to the merging stage

• Else ( if fragment fails the depth test)

– Discard the fragment

• Remarks:

– The depth test may be <, ≤ or other comparison operand

– Depth buffer is usually initialized to the “far” value



0                          1

The Z-Buffer: A Simple Example

• Initialize the buffers

• Rasterize the 1st

triangle: All z values are 
in front of the “far” 
depth 

• Rasterize the 2nd

triangle: not all z values 
pass the depth test 

Normalized depthDepth
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Z-Buffer – Optimization: Z Cull

• Split buffer into blocks (can use rasterization tiling)

• For each block maintain: 𝑧min , 𝑧max

• Compare the min/max z of an incoming triangle to the block’s 
range:

z

Tile fragments are 

individually z-tested

Tile fragments 

are immediately 

discarded

Tile fragments 

immediately pass 

the z test

Tile min/max z is 

updated

𝑧min

𝑧max



Shading

• In general, the fragment (pixel) shading process 
defines a color and transparency value for each 
generated geometry fragment

– In the simplest case of a flat-colored primitive, e.g. a 2D 
polygon fill, a predetermined color is assigned to the 
fragments

– More elaborate shading algorithms are required for lit and 
textured 3D surfaces (see texturing and shading chapters) 



Triangle Rasterization – HSE

• Triangle Fragments with correct order after z-buffer 
testing



Shaded Fragments

• Triangle fragments after shading and merging 



Merging Stage

• Shaded fragments that successfully passed the depth 
test must contribute to the image in the frame buffer

• In general:

– Each fragment contributes to the image pixel according to 
coverage

– The color is blended with any existing one in the same 
pixel coordinates. This is especially true for transparent 
pixels

• All typical rasterization pipelines allow for a number 
of blending functions to be applied to the incoming 
fragments



Fragment Merging and Transparency (1) 

• When transparency 
values are generated, 
these can control the 
mixing of fragments

• The value controlling this 
blending is the alpha 
value, i.e. the “opacity” 
(or 1-transparency)

Image source: http://developer.amd.com



Fragment Merging and Transparency (2)

• Extreme values (1,0), can make fragments “pass 
through” or opaque, to display elaborate “perforated 
patterns” (see texturing) 

Completely transparent



Compositing: Simple Examples

Dst (already in FB)

Src (Incoming frags.)

1 ∙ 𝑆𝑟𝑐 + 0 ∙ 𝐷𝑠𝑡
(replace)

𝑎 ∙ 𝑆𝑟𝑐 + (1 − 𝑎) ∙ 𝐷𝑠𝑡
(linear mix)

𝑎 ∙ 𝐷𝑠𝑡 ∙ 𝑆𝑟𝑐 + 1 − 𝑎 ∙ 𝐷𝑠𝑡
(multiply)

𝐷𝑠𝑡 + 𝑎 ∙ 𝑆𝑟𝑐
additive blend

𝐷𝑠𝑡 + 𝑆𝑟𝑐
color add

max{0, 𝐷𝑠𝑡 − 𝑆𝑟𝑐}
color subtract



Z-Buffer and Transparency (1)

• Transparency is not handled well by the Z-Buffer 
algorithm:

– Result depends on the order of occurrence of the 
fragments: Depth test discards fragments behind 
transparent surfaces if the latter are already rendered 

z z
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2
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Z-Buffer and Transparency (2)

• Solution 1: 

– Render all opaque geometry first

– Render transparent geometry next

• Still:

– Blending of transparent surfaces is still order (and view) 
dependent

Image source: AMD Mecha Demo



The A-Buffer (1)

• Is a generic antialiased fragment resolve technique, 
with full support for order-independent transparency

• Instead of a single (nearest) depth value, it maintains 
a sorted list of all fragments intersecting the pixel

• Stores per fragment transparency and coverage

• Merging:

– Fragments are resolved front to back according to 
coverage (via a binary coverage mask) and their 
transparency



The A-Buffer (2)

Image source: [KV]



The A-Buffer (3)

Image source: [KV]

• Fragment token lists are updated using an atomic global counter

• The A-buffer retains a list head for each pixel



The A-Buffer (4)

• Expensive technique:   

– Must maintain a dynamic list per pixel (fragment bin)

– Must contain additional data per fragment

– Must sort contents in each fragment bin

– Uses indirection (pointers) to access next datum

• H/W implementations?

– Various optimized variants (or cut-down versions) 
implemented as shaders

– Most popular variation: the k-Buffer
• Fixed-size fragment buckets (arrays)

• Sorting is still required  
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