
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Rasterization Architectures

A High Level Rasterization Pipeline

Geometry
Setup

Fragment
Generation

Fragment
Shading

Fragment
Merging

Primitives Updated

pixels

Transformed/clipped

primitives

Fragments Shaded pixel

samples

• Transformation

• Culling

• Primitive

assembly

• Clipping

• Primitive

sampling

• Attribute

interpolation

• Pixel coverage

estimation

• Pixel color

determination

• Transparency

• …

• Visibility

determination

• Blending

• Reconstruction

filtering

• Geometry must be transformed in order to:

– Be expressed in the proper coordinate system for each
operation to take place

– Get modified according to the desired arrangement of
primitives / objects to form a virtual world or scene

Geometry Setup

Various geometric transformations

applied to original shape to build the

desired outcome

LCS WCS

A “scene”
NDCWCSECSNDC

transformation

To change

coordinate system

to “observer” space

window

Geometry Setup (2)

• The vertices of the resulting primitives are then
assembled into a form that can be efficiently
sampled by the rasterizer (e.g. triangles):

• Redundant geometry (invisible, unimportant etc.) is
culled (removed) to reduce overhead

• To further reduce/split load and avoid degenerate /
problematic geometry, primitives are clipped to the
boundaries of NDC regions

Geometry Setup (3)

NDC

window

Culled

NDC

window

NDC

Clipping
Clipped primitives may

require re-triangulation

3D Geometry Transformations

• All coordinates have to be:

– Transformed from their native, object space ones to a
global, common reference system

– Then expressed relative to the camera and

– Projected on the image plane

• All of these transformations are concatenated into a
single matrix, which is applied to the vertices of each
triangle

• Different objects may have different transformations

Geometric Transformation Sequence

ECS
NDC

ICS

WCS

LCS

eye

Object

Global reference system

Y

Z

X
Y

Z

X

Y

Y

Y

Z

X

X

X

Z

3D Geometry Setup (1)

• Initial primitives (as defined/loaded by the application)

Y Y Y

Y

X X

X

X

Z
Z

Z

Z

Local object-space coordinates

3D Geometry Setup (2)

• Transform geometry (vertices) in world
coordinates to compose a 3D scene

Y

X

Z

WCS

3D Geometry Setup (3)

• Transform geometry (vertices) relative
to the “eye” (camera) system (ECS)

Y

X

Z

ECS

Camera

(center of

projection)

3D Geometry Setup (4)

• Coordinates as “seen” from the camera reference
frame

Y

X

ECS

3D Geometry Setup (5)

• Coordinates
after
perspective
projection

Y

X

3D Geometry Setup (6)

• Coordinates after
perspective projection
in normalized device
coordinates

Y

X

-1 1

-1

1
Clipping planes

3D Geometry Setup (7)

• Primitives after clipping
(still in normalized
device coordinates)

Y

X

Clipped primitives

3D Geometry Setup (8)

• Coordinates of assembled primitives after window
transformation (image space – pixel units)

Clipping - General

• With clipping we limit the extents of primitives to the
viewing region

– Avoid erroneous projection of geometry (see frustum
clipping)

– Discard invisible geometry

• In general, we clip lines and polygons in both 2D and
3D

Half-spaces

• A hyperplane in 2D (a line) or in 3D (a plane) divides
space in two halves

• The corresponding equation is positive on one side,
negative on the other and zero exactly on the
hyperplane:

+

-

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

2D 3D

+

-

Point Containment

• If a set of oriented hyperplanes 𝑓𝑖 forms a convex
region, then determining if a point 𝐩 lies inside this
region resolves to testing if:

𝑠𝑖𝑔𝑛 𝑓𝑖(𝐩) = 𝑠𝑖𝑔𝑛 𝑓𝑗(𝐩) , ∀𝑖, 𝑗

-

- -

-
+ +

+
+

-

-
-

-
+ +

++

Point in Triangle Test

• Alternatively, we can check
the barycentric coordinates of
the the point w.r.t. the 3
vertices 

– Inside: 𝑢, 𝑣, 𝑤 ≥ 0

1

1

1 1

1

()

 n

n

n n

n

sign y s x b

y y Δy
s

x x Δx

y x y x
b

x x

  


 








Line Clipping on Rectangular Bounds

• 3 cases:

– Line segment entirely
outside region

– Line segment entirely
inside region

– Line segment intersects 1
or 2 boundary segments

A Simple Line Clipping Algorithm

• Cohen-Sutherland algorithm

– Fast segment in/out detection via binary tests

– Recursive splitting of intersecting segments

Clipping window

1001 1000 1010

0001 0000 0010

0101 0100 0110

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

Encode the 9 tiles according to

the sign of the 4 line equations

CS Line Clipping Algorithm

void CS(vec3 * P1, vec3 * P2,

float x_min, float x_max, float y_min, float y_max)

{

unsigned char c1, c2;

vec3 I;

c1=Code(*P1); //Εύρεση κώδικα P1
c2=Code(*P2); //Εύρεση κώδικα P2

if ((c1|c2 == 0) || // both inside or

P1P2 ε (c1&c2 !=0)) // outside but on the same side of a

// clipping line (see figure)

// do nothing

else

{

Intersect (P1,P2,&I,xmin,xmax,ymin,ymax);

if (IsOuside(*P1))
*P1 = I;

else
*P2 = I;

CS(P1,P2,xmin,xmax,ymin,ymax);

}

}

Polygon Clipping

• Polygon clipping cannot be
regarded as multiple line
clipping!

• Requires mutual edge +
point containment and
intersection testing

Incorrect new polygon

Missed space

Sutherland-Hodgman Clipping Algorithm (1)

• Clips an arbitrary polygon against a convex clipping
polygonal region

• Iteratively clips the input polygon against each one of
the segments of the clipping region

Sutherland-Hodgman Clipping Algorithm (2)

• For each clipping line:
– For each vertex transition of the input polygon:

• Determine what points to generate according to the following
configurations

– Join all sequentially generated vertices to form a polygon

– Use this polygon as input to the next iteration

• Clipped triangles against the viewing window may
require re-triangulation

• Triangulation of convex shapes is trivial:

Convex Shape Re-triangulation

Frustum Clipping (1)

• Before rasterizing the polygons, they must be clipped
against the view frustum (see projections)

• Why?

– Coordinates behind near plane get inverted and wrap
beyond the far plane  degenerate, impossible “triangles”

– Coordinates on z=0  singularity in perspective division

Frustum Clipping (2)

• Frustum clipping can be done with a Sutherland-
Hodgman-style method for triangles/planes

• For a 6-plane frustum (i.e. the camera frustum), this
is a 6-stage triangle/plane clipping pipeline

• Clipping is performed in the post-projective space,
before the perspective division. Why?

– In all projections (perspective, too), the frustum planes are
axis aligned  simplified comparisons and equations (see
Chapter 5.3 in [G&V]

Frustum Clipping (3)

• Triangle/plane clipping:

– Perform 2 line-plane clipping steps

– Join the open edges (if any)

– Re-triangulate if necessary

Pixel-level Clipping

• It is possible to perform clipping at a pixel level (or
pixel block level, for hierarchical implementations)

• Pixel-level clipping boils down to discarding values
outside the usable range (i.e. within the 2D/3D
clipping region)

– Saves on H/W and power consumption (less circuitry)

– Naïve implementation: Not very fast – many samples to
discard

– Hierarchical / block-based implementation: efficient

NVIDIA patent EP1756769 B1

Optimizations – Back-face Culling (1)

• Back-face culling can dramatically reduce the
rasterization load by effectively discarding all polygons
facing off the eye direction

• Transparent shapes should not be BF culled

Without back-face culling With back-face culling

(~50% fewer triangles)

Optimizations – Back-face Culling (2)

• Back-face culling rejects polygons whose normal
deviates more than 90 degrees from the viewing
direction

Optimizations - Frustum Culling

• Conservatively discards entire objects early on,
before clipping by:

– Checking the extents (bounding box) of an object against
the bounds of the frustum

• This test is very simple in post-projective space:

– if all projected bounding box corners are outside the
frustum  cull the object

– Can be extended to non-camera frusta to cull hidden
objects

http://akhanubis-eng.tumblr.com/post/24375086110/slimdx-directx-11-frustum-culling

Rasterization

• Rasterization is the process that generates the pixel-
based samples on the stream of primitives

• Before rasterization occurs, it is convenient to
transform the primitives in screen coordinates (i.e.
pixel units) – see rasterization slides

• Each primitive is processed independently!

NDC
Fragments from

different primitives may

overlap  Ordering

must be resolved (see

next slides)

Line Rasterization

• Must:

– Approximate the mathematical
line as close as possible (min.
error)

– Not leave any gaps

– Maintain a constant width

– Be efficient

Approximating the Line Equation (1)

• Given a line segment in the first octant

𝑥1, 𝑦1 → 𝑥2, 𝑦2 , the line passing through the

endpoints is defined as:

Y

Xb

𝑦 = 𝑠 ∙ 𝑥 + 𝑏

𝑠 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
Δ𝑦

Δ𝑥

𝑏 =
𝑦1𝑥2 − 𝑦2𝑥1
𝑥2 − 𝑥1

𝑥1, 𝑦1

𝑥2, 𝑦2

Δ𝑦

Δ𝑥

Approximating the Line Equation (2)

void Line1(float x1, float y1, float x2, float y2)

{

float s, b, y;

float x;

s = (y2-y1) / (x2-x1);

b = (y1*x2 – y2*x1) / (x2-x1);

for (x = x1; x <= x2; x+=1.0f)

{

y = s*x + b;

SetPixel(floor(x+0.5f), floor(y+0.5f));

}

}

Result of the Line1 Algorithm

• Y values are eventually rounded to the nearest

integer cell

Incremental Line Algorithm (1)

• Y values are computed for fixed and positive X increments

• The described algorithm (Line1) is valid only for octant 1:

Incremental Line Algorithm (2)

• The multiplication inside the loop can be simplified, since:

𝑥𝑖+1 = 𝑥𝑖 + 1

𝑦𝑖+1 = 𝑠𝑥𝑖+1 + 𝑏 = 𝑠𝑥𝑖 + 𝑏 + 𝑠 = 𝑦𝑖 + 𝑠

Incremental Line Algorithm (3)

void Line2(float x1, float y1, float x2, float y2)

{

float s, y;

float x;

s = (y2-y1) / (x2-x1);

y = y1;

for (x = x1; x <= x2; x+=1.0f)

{

SetPixel(floor(x+0.5f), floor(y+0.5f));

y = y+s;

}

}

Integer Variants of Line Drawing

• If all coordinates are integer values, there are several
improvements to be made to save calculations:

– Drop the rounding, by stepping to the next Y value if the
increment becomes larger than 1/2 pixel

– Scaling all comparisons by Δx to dispense with the division

𝑦𝑖

𝑥𝑖 𝑥𝑖+1

Rasterization – Triangle Traversal (1)

• Sampling the triangles involves traversing their
interior and edges and generating a set of fragments
per pixel (typically one)

Rasterizer

…

Triangle stream

Vertex Data

Position

Color

Normal vector

Texture coordinates

Tangent vector

…

Fragment generation –
interpolated attributes

Custom attributes

Triangle Rasterization Issues (1)

• Similar to lines, triangle rasterization must not leave
gaps, for thin triangles:

Adapted from CG lecture notes from the Virginia University

Triangle Rasterization Issues (2)

• Appearance must be as consistent as possible under
slight sampling offsets (motion) – see antialiasing

Adapted from CG lecture notes from the Virginia University

Triangle Rasterization Issues (3)

• What is the priority of shared edges?

Adapted from CG lecture notes from the Virginia University

Triangle Traversal Algorithms

• Two dominant methods:

– Edge Walking: Vertically follows edges and draws the
corresponding scan line spans

– Edge Equation: Tests the pixels for containment inside the
triangle boundaries. Can be efficiently implemented in a
divide and conquer manner

Edge Walking – Basic Idea

• Follow edges vertically

• Interpolate attributes down edges

• Fill in horizontal spans for each
scanline

– For each pixel of a scanline,
interpolate edge attributes across
span 𝑦1

𝑦2

𝑦3

(AKA: Triangle Digital Differential Analyzer)

Edge Walking – Procedure

Sort Vertices by Y value

Scan Convert 2 sub-triangles:

• For y1 ≤ 𝑦 < 𝑦2 :
– Interpolate 𝑥 (𝑥𝑎 , 𝑥𝑏) and other values along edges

– For 𝑥𝑎 ≤ 𝑥 < 𝑥𝑏 : interpolate values along spans

• For y2 ≤ 𝑦 < 𝑦3 :
– Interpolate 𝑥 (𝑥𝑎 , 𝑥𝑏) and other values along edges

– For 𝑥𝑎 ≤ 𝑥 < 𝑥𝑏 : interpolate values along spans 𝑦1

𝑦2

𝑦3

In
c
re

a
s
in

g
 Y

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

𝑦3

𝑥𝑎 𝑥𝑏

𝑥𝑎 𝑥𝑏

Edge Walking – Attribute Interpolation

𝑦1

𝑦2

𝑦3

𝑦1

𝑦2

𝑦3

𝑥𝑎

𝑥𝑏

𝑥𝑎 = 𝑥1 + 𝑎 𝑥2 − 𝑥1

𝑎 =
𝑦 − 𝑦1
𝑦2 − 𝑦1

𝑏 =
𝑦 − 𝑦1
𝑦3 − 𝑦1

𝑦 𝑎 𝑏

𝑥𝑏 = 𝑥1 + 𝑏 𝑥3 − 𝑥1

𝑠 =
𝑥 − 𝑥𝑎
𝑥𝑏 − 𝑥𝑎

𝑧 = 𝑧𝑎 + 𝑠(𝑧𝑏 − 𝑧𝑎)

𝑎 𝑏
𝑦

𝑥𝑎 = 𝑥2 + 𝑎 𝑥3 − 𝑥2

𝑎 =
𝑦 − 𝑦2
𝑦3 − 𝑦2

𝑏 =
𝑦 − 𝑦1
𝑦3 − 𝑦1

𝑥𝑏 = 𝑥1 + 𝑏 𝑥3 − 𝑥1

𝜉1 = 𝜉1𝑎 + 𝑠(𝜉1𝑏 − 𝜉1𝑎)

Any attribute 𝜉𝑘 is

similarly interpolated

𝜉2 = 𝜉2𝑎 + 𝑠 𝜉2𝑏 − 𝜉2𝑎

⋮

𝜉𝑛 = 𝜉𝑛𝑎 + 𝑠 𝜉𝑛𝑏 − 𝜉𝑛𝑎

Inner loop (x)

Ok, We Have a Traversal, Why Go for Another One?

• Scanline-style edge walking is reasonably good
provided that you don’t care about:

– Aligned (coherent) memory access

– Parallelism: multiple rows at a time

– Variable sample positions

– Ability to harness wide SIMD or build efficient hardware
for it

• The above become really problematic especially in
the case of thin, elongated triangles

• Triangle setup:

– Find the bounding box of the
triangle

– Find the edge (line) equations of the
oriented edges

– Find triangle differentials

• For all pixels in the grid:

– Find edge equation values 𝜀1, 𝜀2, 𝜀3
– If (𝜀1> 0) ∧ (𝜀2> 0) ∧ (𝜀3> 0)

• Interpolate attributes

• Issue Fragment

Edge Equation Traversal – Basic Idea

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥)

Embarrassingly parallel!

Edge Equation Values

𝑦 = 𝑠 ∙ 𝑥 + 𝑏 ⟹ 𝑒 = 𝑠𝑥 − 𝑦 + 𝑏

𝑠 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
Δ𝑦

Δ𝑥

𝑏 =
𝑦1𝑥2 − 𝑦2𝑥1
𝑥2 − 𝑥1

-

-

-
+

+
+

Value Interpolation

• Use barycentric coordinates!

• Can I incrementally construct the barycentric
coordinates per pixel?

– YES!

– We can also incrementally update the edge equations per
pixel

Edge Equation Traversal – Revisited (1)

• Given two vectors 𝐯1 and 𝐯2, the following
determinant calculates the signed area of the
formed parallelogram:

• Or the signed area of the triangle formed by 𝐯1
and 𝐯2:

• Remember, these quantities are signed

• The sign is determined by the order of the two
vectors

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

A𝑝 𝐯1, 𝐯2 =
𝑥1 𝑥2
𝑦1 𝑦2

A𝑡 𝐯1, 𝐯2 =
1

2

𝑥1 𝑥2
𝑦1 𝑦2

• Now consider an edge 𝐩0𝐩1 of a triangle and an
arbitrary point 𝐪

• Using as vectors 𝐯1 = 𝐩0𝐩1 and 𝐯2 = 𝐩0𝐪 the
determinant defines an edge function of 𝐪 w.r.t.
edge 𝐩0𝐩1:

Edge Equation Traversal – Revisited (2)

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝐹01 𝐪 =
𝑥1 − 𝑥0 𝑥𝑞 − 𝑥0
𝑦1 − 𝑦0 𝑦𝑞 − 𝑦0

𝐩0𝐩0

𝐩1 𝐩2
𝐪

𝐪

𝐪 on the positive

side of 𝐩0𝐩1

𝐪 on the negative

side of 𝐩0𝐩1

𝐹01 𝐪

𝐹01 𝐪

• Expanding and rearranging 𝐹01 𝐪 we get:

• Equivalently, for the other triangle edges:

Edge Equation Traversal – Revisited (3)

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝐹01 𝐪 =
𝑥1 − 𝑥0 𝑥𝑞 − 𝑥0
𝑦1 − 𝑦0 𝑦𝑞 − 𝑦0

⟺

𝐹01 𝐪 = 𝑦0 − 𝑦1 𝑥𝑞 + 𝑥1 − 𝑥0 𝑦𝑞 + (𝑥0𝑦1 − 𝑦0𝑥1)

𝐹12 𝐪 = 𝑦1 − 𝑦2 𝑥𝑞 + 𝑥2 − 𝑥1 𝑦𝑞 + (𝑥1𝑦2 − 𝑦1𝑥2)

𝐹20 𝐪 = 𝑦2 − 𝑦0 𝑥𝑞 + 𝑥0 − 𝑥2 𝑦𝑞 + (𝑥2𝑦0 − 𝑦2𝑥0)

• Remember that 𝐹01 𝐪 is related to the area of
the triangle 𝐩0𝐩1𝐪

• But so is the barycentric coordinate of 𝐪 from 𝐩2!

• It is easy to see that if 𝑤0, 𝑤1, 𝑤2 are the 3
barycentric coordinates, then:

Edge Equation Traversal – Revisited (4)

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝑤0 = 𝐹12 𝐪 /𝑤
𝑤1 = 𝐹20 𝐪 /𝑤
𝑤2 = 𝐹01 𝐪 /𝑤

𝑤 = 𝐹01 𝐪 + 𝐹12 𝐪 + 𝐹20(𝐪)

q

𝐩0
𝐩1

𝐩2

𝑤0
𝑤1

𝑤2

Incremental Traversal (1)

• Lets take the edge function and simplify it:

• The terms 𝐴01, 𝐵01, 𝐶01 as well as the respective
terms of the other edge functions are constant per
triangle

– Can be computed once in the triangle setup phase

𝐹01 𝐪 = 𝑦0 − 𝑦1 𝑥𝑞 + 𝑥1 − 𝑥0 𝑦𝑞 + 𝑥0𝑦1 − 𝑦0𝑥1 =

𝐴01𝑥𝑞 + 𝐵01𝑦𝑞 + 𝐶01

Incremental Traversal (2)

• Let’s look now what happens for adjacent pixel
coordinates:

• So, shifting the calculation to 1 pixel ahead in either
direction only involves the addition of a constant
term!

𝐹01 𝑥𝑞 + 1, 𝑦𝑞 = 𝐴01(𝑥𝑞+1) + 𝐵01𝑦𝑞 + 𝐶01 = 𝐹01 𝑥𝑞 , 𝑦𝑞 + 𝐴01
𝐹01 𝑥𝑞 , 𝑦𝑞 + 1 = 𝐴01𝑥𝑞 + 𝐵01(𝑦𝑞 + 1) + 𝐶01 = 𝐹01 𝑥𝑞 , 𝑦𝑞 + 𝐵01

Source: http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

Parallel Traversal

• More importantly, for parallel (vectorized)
computations:

• where (𝑥𝑈𝐿 , 𝑦𝑈𝐿) is the upper-left corner of the
bounding box

• The barycentric coordinates (interpolation variables)
are computed from 𝐹𝑖𝑗  These are independently

and cheaply computed, too!

𝐹𝑖𝑗 𝑥𝑈𝐿 + 𝑛, 𝑦𝑈𝐿 +𝑚 = 𝐹𝑖𝑗 𝑥𝑈𝐿, 𝑦𝑈𝐿 + 𝑛𝐴𝑖𝑗 +𝑚𝐵𝑖𝑗

• We can effectively reduce further the computations
if we process the bounding box in blocks and discard
entire blocks

– Block discard: all block corners outside the triangle

– Can be done hierarchically

Edge Equation Traversal – Optimization (1)

Perspective and Interpolation (1)

• Is there a problem with interpolating in perspective?

– Screen-space interpolation does not correctly interpolate
perspectively projected values:

Source: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

Perspective and Interpolation (2)

• Linear in screen space  Non-linear in eye space!

Linear y

Image

plane

Linearly interpolated z

Non-linearly

interpolated points!

Perspective and Interpolation (3)

• Fortunately, we can derive functions that correctly
perform this interpolation

• For the perspectively correct z:

• i.e., interpolate 1/z values and invert the result

• For the derivation procedure see: Kok-Lim Low,
Perspective-Correct Interpolation, Tech. Rep. 2002

𝑧𝑠 =
1

1
𝑧1
+ 𝑠

1
𝑧2
−
1
𝑧1

Perspective and Interpolation (3)

• For perspectively-correct fragment attributes:

• i.e., divide vertex attributes by the corresponding z
and multiply interpolated result by interpolated z

• For the derivation procedure see: Kok-Lim Low,
Perspective-Correct Interpolation, Tech. Rep. 2002

𝑎𝑠 = 𝑧𝑠
𝑎1
𝑧1
+ 𝑠

𝑎2
𝑧2

−
𝑎1
𝑧1

Geometry Antialiasing

• Aliasing in geometry boundaries due to fixed-rate
sampling is a common artifact manifested as
“pixelization”

– Blocky appearance

– Improper representation of thin structures

– Temporal artifacts

Super-sampling the Geometry

• The problem is alleviated by mitigating the sampling
issues to a higher sampling frequency by super-
sampling each pixel

Adapted from “Real-Time Rendering, 3rd Ed. ”

Practical Antialiasing - MSAA

• Supersampling the pixel normally implies evaluating
the shading at all samples taken 

– Cost: × number of samples!

• Solution: Evaluate the shading at a single location
and take multiple coverage samples independently
MSAA (Multi-Sampled Anti-Aliasing)

Fragment shader is invoked once per pixel

Primitive coverage is evaluated

independently at multiple locations

MSAA - Example

1X (no MSAA), 2Χ, 4Χ and 8Χ coverage samples on an NVIDIA 780Ti graphics card

Fragment shader evaluation location

Coverage sample

MSAA - Deficiencies

• Shader computations may be performed
for locations outside the geometry!

– Can be fixed by moving the shading to the
covered sample closest to the center

• Attributes evaluated at the pixel center
my not be representative of the covered
area

Triangle Rasterization - Overdraw

• Rasterized fragments overlap with previously drawn
fragments from other triangles – not yet sorted

0

8

N
u
m

b
e
r o

f o
v
e
rla

p
p
in

g
 fra

g
m

e
n
ts

Sorting (1)

• The fragments of a primitive typically overlap
fragments from other primitives

• There are many strategies to
resolve the ordering of the
rasterized primitives as they
appear on screen

• Simplest:

– Explicit order (FIFO)

• 3D: More elaborate schemes
required (see 3D rasterization)

Sorting (2)

• Sorting can occur in various stages of the pipeline,
depending on the type of primitives:

– E.g., flat 2D polygons and lines can be trivially pre-sorted
according to “z order” and then rasterized back to front

– Conversely, intersecting or self-overlapping shapes may
require a (post-) sorting strategy, at a fragment level (see
3D)

Can be resolved

by primitive

sorting

Cannot be resolved

by primitive sorting

– requires sorting

at fragment level

Rasterization and HSE in 3D

• After projecting the primitives in NDC, we must retain only
surfaces visible to the camera (HSE) 
– Surface parts must be sorted according to depth

– And not according to order of appearance (it is arbitrary)

1 23

HSE – Per Pixel

• Even if polygons were depth-sorted according to some
reference point on them (e.g. centroid), there is no guarantee
that they do not overlap 

• Sorting must be performed per pixel

The Depth Buffer

• Separate buffer, same resolution as frame buffer

• Stores the nearest normalized depth values

The Z-Buffer Algorithm

• The Z-Buffer algorithm uses the depth buffer to
compare each generated fragment at location (i,j)
with the previous “visible” (nearest) fragment

• If the new fragment is closest to the view plane:

– Replace the z in the depth buffer

– Forward the fragment to the merging stage

• Else (if fragment fails the depth test)

– Discard the fragment

• Remarks:

– The depth test may be <, ≤ or other comparison operand

– Depth buffer is usually initialized to the “far” value

0 1

The Z-Buffer: A Simple Example

• Initialize the buffers

• Rasterize the 1st

triangle: All z values are
in front of the “far”
depth

• Rasterize the 2nd

triangle: not all z values
pass the depth test

Normalized depthDepth

buffer

Color

buffer

C
lip

 s
p
a
c
e

V
ie

w
 p

la
n
e

tr1 tr2“far”
Back

color

Z-Buffer – Optimization: Z Cull

• Split buffer into blocks (can use rasterization tiling)

• For each block maintain: 𝑧min , 𝑧max

• Compare the min/max z of an incoming triangle to the block’s
range:

z

Tile fragments are

individually z-tested

Tile fragments

are immediately

discarded

Tile fragments

immediately pass

the z test

Tile min/max z is

updated

𝑧min

𝑧max

Shading

• In general, the fragment (pixel) shading process
defines a color and transparency value for each
generated geometry fragment

– In the simplest case of a flat-colored primitive, e.g. a 2D
polygon fill, a predetermined color is assigned to the
fragments

– More elaborate shading algorithms are required for lit and
textured 3D surfaces (see texturing and shading chapters)

Triangle Rasterization – HSE

• Triangle Fragments with correct order after z-buffer
testing

Shaded Fragments

• Triangle fragments after shading and merging

Merging Stage

• Shaded fragments that successfully passed the depth
test must contribute to the image in the frame buffer

• In general:

– Each fragment contributes to the image pixel according to
coverage

– The color is blended with any existing one in the same
pixel coordinates. This is especially true for transparent
pixels

• All typical rasterization pipelines allow for a number
of blending functions to be applied to the incoming
fragments

Fragment Merging and Transparency (1)

• When transparency
values are generated,
these can control the
mixing of fragments

• The value controlling this
blending is the alpha
value, i.e. the “opacity”
(or 1-transparency)

Image source: http://developer.amd.com

Fragment Merging and Transparency (2)

• Extreme values (1,0), can make fragments “pass
through” or opaque, to display elaborate “perforated
patterns” (see texturing)

Completely transparent

Compositing: Simple Examples

Dst (already in FB)

Src (Incoming frags.)

1 ∙ 𝑆𝑟𝑐 + 0 ∙ 𝐷𝑠𝑡
(replace)

𝑎 ∙ 𝑆𝑟𝑐 + (1 − 𝑎) ∙ 𝐷𝑠𝑡
(linear mix)

𝑎 ∙ 𝐷𝑠𝑡 ∙ 𝑆𝑟𝑐 + 1 − 𝑎 ∙ 𝐷𝑠𝑡
(multiply)

𝐷𝑠𝑡 + 𝑎 ∙ 𝑆𝑟𝑐
additive blend

𝐷𝑠𝑡 + 𝑆𝑟𝑐
color add

max{0, 𝐷𝑠𝑡 − 𝑆𝑟𝑐}
color subtract

Z-Buffer and Transparency (1)

• Transparency is not handled well by the Z-Buffer
algorithm:

– Result depends on the order of occurrence of the
fragments: Depth test discards fragments behind
transparent surfaces if the latter are already rendered

z z

0

1

2

0

1

2

2

21

1

Z-Buffer and Transparency (2)

• Solution 1:

– Render all opaque geometry first

– Render transparent geometry next

• Still:

– Blending of transparent surfaces is still order (and view)
dependent

Image source: AMD Mecha Demo

The A-Buffer (1)

• Is a generic antialiased fragment resolve technique,
with full support for order-independent transparency

• Instead of a single (nearest) depth value, it maintains
a sorted list of all fragments intersecting the pixel

• Stores per fragment transparency and coverage

• Merging:

– Fragments are resolved front to back according to
coverage (via a binary coverage mask) and their
transparency

The A-Buffer (2)

Image source: [KV]

The A-Buffer (3)

Image source: [KV]

• Fragment token lists are updated using an atomic global counter

• The A-buffer retains a list head for each pixel

The A-Buffer (4)

• Expensive technique:

– Must maintain a dynamic list per pixel (fragment bin)

– Must contain additional data per fragment

– Must sort contents in each fragment bin

– Uses indirection (pointers) to access next datum

• H/W implementations?

– Various optimized variants (or cut-down versions)
implemented as shaders

– Most popular variation: the k-Buffer
• Fixed-size fragment buckets (arrays)

• Sorting is still required

Contributors

• Georgios Papaioannou

• Sources:

– [RTR] T. Akenine-Möller, E. Haines, N. Hoffman, Read-time
Rendering (3rd Ed.), AK Peters, 2008

– [G&V] T. Theoharis, G. Papaioannou, N. Platis, N. M.
Patrikalakis, Graphics & Visualization: Principles and
Algorithms, CRC Press

– [KV] Efficient Illumination Algorithms for Global Illumination
in Interactive and Real-Time Rendering, PhD Thesis, K. Vardis,
2016

– [OBR] http://fgiesen.wordpress.com/2013/02/10/optimizing-
the-basic-rasterizer/

http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

