COMPUTER GRAPHICS COURSE

Rasterization Architectures

A High Level Rasterization Pipeline

Geometry Setup

- Geometry must be transformed in order to:
- Be expressed in the proper coordinate system for each operation to take place
- Get modified according to the desired arrangement of primitives / objects to form a virtual world or scene

Various geometric transformations applied to original shape to build the desired outcome

Geometry Setup (2)

- The vertices of the resulting primitives are then assembled into a form that can be efficiently sampled by the rasterizer (e.g. triangles):

Geometry Setup (3)

- Redundant geometry (invisible, unimportant etc.) is culled (removed) to reduce overhead
- To further reduce/split load and avoid degenerate / problematic geometry, primitives are clipped to the boundaries of NDC regions

Clipping

Clipped primitives may
 require re-triangulation

3D Geometry Transformations

- All coordinates have to be:
- Transformed from their native, object space ones to a global, common reference system
- Then expressed relative to the camera and
- Projected on the image plane
- All of these transformations are concatenated into a single matrix, which is applied to the vertices of each triangle
- Different objects may have different transformations

Geometric Transformation Sequence

3D Geometry Setup (1)

- Initial primitives (as defined/loaded by the application)

Local object-space coordinates

3D Geometry Setup (2)

- Transform geometry (vertices) in world coordinates to compose a 3D scene

3D Geometry Setup (3)

- Transform geometry (vertices) relative to the "eye" (camera) system (ECS) ECS $\underbrace{\text { Y }}_{\substack{Y \\ \text { Camera } \\ \text { (center of } \\ \text { projection) }}}$

3D Geometry Setup (4)

- Coordinates as "seen" from the camera reference frame

3D Geometry Setup (5)

- Coordinates after
perspective projection

3D Geometry Setup (6)

- Coordinates after perspective projection in normalized device coordinates

3D Geometry Setup (7)

- Primitives after clipping
(still in normalized device coordinates)

Clipped primitives

3D Geometry Setup (8)

- Coordinates of assembled primitives after window transformation (image space - pixel units)

Clipping - General

- With clipping we limit the extents of primitives to the viewing region
- Avoid erroneous projection of geometry (see frustum clipping)
- Discard invisible geometry
- In general, we clip lines and polygons in both 2D and 3D

Half-spaces

- A hyperplane in 2D (a line) or in 3D (a plane) divides space in two halves
- The corresponding equation is positive on one side, negative on the other and zero exactly on the hyperplane:

3D

Point Containment

- If a set of oriented hyperplanes f_{i} forms a convex region, then determining if a point \mathbf{p} lies inside this region resolves to testing if:

$$
\operatorname{sign}\left(f_{i}(\mathbf{p})\right)=\operatorname{sign}\left(f_{j}(\mathbf{p})\right), \forall i, j
$$

Point in Triangle Test

$$
\begin{aligned}
& \operatorname{sign}(y-s \cdot x-b) \\
& s=\frac{y_{n}-y_{1}}{x_{n}-x_{1}}=\frac{\Delta y}{\Delta x} \\
& b=\frac{y_{1} x_{n}-y_{n} x_{1}}{x_{n}-x_{1}}
\end{aligned}
$$

- Alternatively, we can check the barycentric coordinates of the the point w.r.t. the 3 vertices \rightarrow
- Inside: $u, v, w \geq 0$

Line Clipping on Rectangular Bounds

- 3 cases:
- Line segment entirely outside region
- Line segment entirely inside region
- Line segment intersects 1 or 2 boundary segments

A Simple Line Clipping Algorithm

- Cohen-Sutherland algorithm
- Fast segment in/out detection via binary tests
- Recursive splitting of intersecting segments

CS Line Clipping Algorithm

```
void CS( vec3 * P1, vec3 * P2,
    float x_min, float x_max, float y_min, float y_max )
{
    unsigned char c1, c2;
    vec3 I;
    c1=Code(*P1);
    c2=Code(*P2);
    if ( ( c1|c2 == 0 ) || // both inside or
        ( c1&c2 !=0 ) ) // outside but on the same side of a
                        // clipping line (see figure)
                        // do nothing
    else
        Intersect (P1,P2,&I,xmin,xmax,ymin,ymax);
        if ( IsOuside(*P1) )
        *P1 = I;
            else
            *P2 = I;
            CS(P1,P2,xmin,xmax,ymin,ymax);
        }
}
```


Polygon Clipping

Incorrect new polygon

- Polygon clipping cannot be regarded as multiple line clipping!
- Requires mutual edge + point containment and intersection testing

Sutherland-Hodgman Clipping Algorithm (1)

- Clips an arbitrary polygon against a convex clipping polygonal region
- Iteratively clips the input polygon against each one of the segments of the clipping region

Sutherland-Hodgman Clipping Algorithm (2)

- For each clipping line:
- For each vertex transition of the input polygon:
- Determine what points to generate according to the following configurations
- Join all sequentially generated vertices to form a polygon
- Use this polygon as input to the next iteration

Case 1: 1 output

Case 2: 1 output

Case 3: 0 outputs

Case 4: 2 outputs

Convex Shape Re-triangulation

- Clipped triangles against the viewing window may require re-triangulation

- Triangulation of convex shapes is trivial:

Frustum Clipping (1)

- Before rasterizing the polygons, they must be clipped against the view frustum (see projections)
- Why?
- Coordinates behind near plane get inverted and wrap beyond the far plane \rightarrow degenerate, impossible "triangles"
- Coordinates on $\mathrm{z}=0 \rightarrow$ singularity in perspective division

Frustum Clipping (2)

- Frustum clipping can be done with a Sutherland-Hodgman-style method for triangles/planes
- For a 6-plane frustum (i.e. the camera frustum), this is a 6 -stage triangle/plane clipping pipeline
- Clipping is performed in the post-projective space, before the perspective division. Why?
- In all projections (perspective, too), the frustum planes are axis aligned \rightarrow simplified comparisons and equations (see Chapter 5.3 in [G\&V]

Frustum Clipping (3)

- Triangle/plane clipping:
- Perform 2 line-plane clipping steps
- Join the open edges (if any)
- Re-triangulate if necessary

Pixel-level Clipping

- It is possible to perform clipping at a pixel level (or pixel block level, for hierarchical implementations)
- Pixel-level clipping boils down to discarding values outside the usable range (i.e. within the 2D/3D clipping region)
- Saves on H/W and power consumption (less circuitry)
- Naïve implementation: Not very fast - many samples to discard
- Hierarchical / block-based implementation: efficient

Optimizations - Back-face Culling (1)

- Back-face culling can dramatically reduce the rasterization load by effectively discarding all polygons facing off the eye direction
- Transparent shapes should not be BF culled

Optimizations - Back-face Culling (2)

- Back-face culling rejects polygons whose normal deviates more than 90 degrees from the viewing direction

Optimizations - Frustum Culling

- Conservatively discards entire objects early on, before clipping by:
- Checking the extents (bounding box) of an object against the bounds of the frustum
- This test is very simple in post-projective space:
- if all projected bounding box corners are outside the frustum \rightarrow cull the object
- Can be extended to non-camera frusta to cull hidden objects

Rasterization

- Rasterization is the process that generates the pixelbased samples on the stream of primitives
- Before rasterization occurs, it is convenient to transform the primitives in screen coordinates (i.e. pixel units) - see rasterization slides
- Each primitive is processed independently!

Fragments from different primitives may overlap \rightarrow Ordering must be resolved (see next slides)

Line Rasterization

- Must:
- Approximate the mathematical line as close as possible (min. error)
- Not leave any gaps
- Maintain a constant width
- Be efficient

Approximating the Line Equation (1)

- Given a line segment in the first octant $\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)$, the line passing through the endpoints is defined as:

$$
\begin{gathered}
y=s \cdot x+b \\
s=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x} \\
b=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

Approximating the Line Equation (2)

void Line1(float x1, float y^{1}, float x , float y^{2}) \{
float s, b, \mathbf{y};
float x;
$s=\left(y^{2}-y^{1}\right) /(x 2-x 1)$;
$b=\left(y 1 * x 2-y^{2 * x} 1\right) /(x 2-x 1) ;$
for ($\mathrm{x}=\mathrm{x} 1$; $\mathrm{x}<=\mathrm{x} 2$; $\mathrm{x}+=1.0 \mathrm{f}$)
\{

$$
y=s^{*} x+b
$$

SetPixel(floor (x+0.5f), floor (y+0.5f));
\}
\}

Result of the Line1 Algorithm

- Y values are eventually rounded to the nearest integer cell

Incremental Line Algorithm (1)

- Y values are computed for fixed and positive X increments
- The described algorithm (Line1) is valid only for octant 1 :

Incremental Line Algorithm (2)

- The multiplication inside the loop can be simplified, since:

$$
\begin{gathered}
x_{i+1}=x_{i}+1 \\
y_{i+1}=s x_{i+1}+b=s x_{i}+b+s=y_{i}+s
\end{gathered}
$$

Incremental Line Algorithm (3)

void Line2 (float x1, float $\mathrm{y}^{1,}$ float x 2, float y^{2}) \{
float s, \mathbf{y};
float x;
$s=\left(y^{2}-y^{1}\right) /(x 2-x 1) ;$
$\mathrm{y}=\mathrm{y} 1$;
for ($\mathrm{x}=\mathrm{x} 1$; $\mathrm{x}<=\mathrm{x} 2$; $\mathrm{x}+=1.0 \mathrm{f}$)
\{
SetPixel(floor (x+0.5f), floor (y+0.5f));
$\longrightarrow \mathrm{y}=\mathrm{y}+\mathrm{s}$;
\}
\}

Integer Variants of Line Drawing

- If all coordinates are integer values, there are several improvements to be made to save calculations:
- Drop the rounding, by stepping to the next Y value if the increment becomes larger than 1/2 pixel
- Scaling all comparisons by Δx to dispense with the division

Rasterization - Triangle Traversal (1)

- Sampling the triangles involves traversing their interior and edges and generating a set of fragments per pixel (typically one)

Triangle stream

Custom attributes

Triangle Rasterization Issues (1)

- Similar to lines, triangle rasterization must not leave gaps, for thin triangles:

Triangle Rasterization Issues (2)

- Appearance must be as consistent as possible under slight sampling offsets (motion) - see antialiasing

Triangle Rasterization Issues (3)

- What is the priority of shared edges?

Triangle Traversal Algorithms

- Two dominant methods:
- Edge Walking: Vertically follows edges and draws the corresponding scan line spans
- Edge Equation: Tests the pixels for containment inside the triangle boundaries. Can be efficiently implemented in a divide and conquer manner

Edge Walking - Basic Idea

(AKA: Triangle Digital Differential Analyzer)

- Follow edges vertically
- Interpolate attributes down edges
- Fill in horizontal spans for each scanline
- For each pixel of a scanline, interpolate edge attributes across span

Edge Walking - Procedure

Sort Vertices by Y value
Scan Convert 2 sub-triangles:

- For $\mathrm{y}_{1} \leq y<y_{2}$:
- Interpolate $x\left(x_{a}, x_{b}\right)$ and other values along edges
- For $x_{a} \leq x<x_{b}$: interpolate values along spans
- For $\mathrm{y}_{2} \leq y<y_{3}$:
- Interpolate $x\left(x_{a}, x_{b}\right)$ and other values along edges
- For $x_{a} \leq x<x_{b}$: interpolate values along spans

Edge Walking - Attribute Interpolation

Ok, We Have a Traversal, Why Go for Another One?

- Scanline-style edge walking is reasonably good provided that you don't care about:
- Aligned (coherent) memory access
- Parallelism: multiple rows at a time
- Variable sample positions
- Ability to harness wide SIMD or build efficient hardware for it
- The above become really problematic especially in the case of thin, elongated triangles

Edge Equation Traversal - Basic Idea

- Triangle setup:
- Find the bounding box of the triangle
- Find the edge (line) equations of the oriented edges
- Find triangle differentials
- For all pixels in the grid:
- Find edge equation values $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$
- If $\left(\varepsilon_{1}>0\right) \wedge\left(\varepsilon_{2}>0\right) \wedge\left(\varepsilon_{3}>0\right)$
- Interpolate attributes
- Issue Fragment

Edge Equation Values

$$
\begin{gathered}
y=s \cdot x+b \Longrightarrow e=s x-y+b \\
s=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x} \\
b=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

Value Interpolation

- Use barycentric coordinates!
- Can I incrementally construct the barycentric coordinates per pixel?
- YES!
- We can also incrementally update the edge equations per pixel

Edge Equation Traversal - Revisited (1)

- Given two vectors \mathbf{v}_{1} and \mathbf{v}_{2}, the following determinant calculates the signed area of the formed parallelogram:

$$
\mathrm{A}_{p}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|
$$

- Or the signed area of the triangle formed by \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
\mathrm{A}_{t}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\frac{1}{2}\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|
$$

- Remember, these quantities are signed
- The sign is determined by the order of the two vectors

Edge Equation Traversal - Revisited (2)

- Now consider an edge $\mathbf{p}_{0} \mathbf{p}_{1}$ of a triangle and an arbitrary point \mathbf{q}
- Using as vectors $\mathbf{v}_{1}=\mathbf{p}_{0} \mathbf{p}_{1}$ and $\mathbf{v}_{2}=\mathbf{p}_{0} \mathbf{q}$ the determinant defines an edge function of \mathbf{q} w.r.t. edge $\mathbf{p}_{0} \mathbf{p}_{1}$:

Edge Equation Traversal - Revisited (3)

- Expanding and rearranging $F_{01}(\mathbf{q})$ we get:

$$
\begin{gathered}
F_{01}(\mathbf{q})=\left|\begin{array}{ll}
x_{1}-x_{0} & x_{q}-x_{0} \\
y_{1}-y_{0} & y_{q}-y_{0}
\end{array}\right| \Leftrightarrow \\
F_{01}(\mathbf{q})=\left(y_{0}-y_{1}\right) x_{q}+\left(x_{1}-x_{0}\right) y_{q}+\left(x_{0} y_{1}-y_{0} x_{1}\right)
\end{gathered}
$$

- Equivalently, for the other triangle edges:

$$
\begin{aligned}
& F_{12}(\mathbf{q})=\left(y_{1}-y_{2}\right) x_{q}+\left(x_{2}-x_{1}\right) y_{q}+\left(x_{1} y_{2}-y_{1} x_{2}\right) \\
& F_{20}(\mathbf{q})=\left(y_{2}-y_{0}\right) x_{q}+\left(x_{0}-x_{2}\right) y_{q}+\left(x_{2} y_{0}-y_{2} x_{0}\right)
\end{aligned}
$$

Edge Equation Traversal - Revisited (4)

- Remember that $F_{01}(\mathbf{q})$ is related to the area of the triangle $\mathbf{p}_{0} \mathbf{p}_{1} \mathbf{q}$
- But so is the barycentric coordinate of \mathbf{q} from \mathbf{p}_{2} !
- It is easy to see that if w_{0}, w_{1}, w_{2} are the 3 barycentric coordinates, then:

$$
\begin{gathered}
w_{0}=F_{12}(\mathbf{q}) / w \\
w_{1}=F_{20}(\mathbf{q}) / w \\
w_{2}=F_{01}(\mathbf{q}) / w \\
w=F_{01}(\mathbf{q})+F_{12}(\mathbf{q})+F_{20}(\mathbf{q})
\end{gathered}
$$

Incremental Traversal (1)

- Lets take the edge function and simplify it:

$$
\begin{aligned}
F_{01}(\mathbf{q})= & \left(y_{0}-y_{1}\right) x_{q}+\left(x_{1}-x_{0}\right) y_{q}+\left(x_{0} y_{1}-y_{0} x_{1}\right)= \\
& A_{01} x_{q}+B_{01} y_{q}+C_{01}
\end{aligned}
$$

- The terms A_{01}, B_{01}, C_{01} as well as the respective terms of the other edge functions are constant per triangle
- Can be computed once in the triangle setup phase

Incremental Traversal (2)

- Let's look now what happens for adjacent pixel coordinates:

$$
\begin{aligned}
& F_{01}\left(x_{q}+1, y_{q}\right)=A_{01}\left(x_{q}+1\right)+B_{01} y_{q}+C_{01}=F_{01}\left(x_{q}, y_{q}\right)+A_{01} \\
& F_{01}\left(x_{q}, y_{q}+1\right)=A_{01} x_{q}+B_{01}\left(y_{q}+1\right)+C_{01}=F_{01}\left(x_{q}, y_{q}\right)+B_{01}
\end{aligned}
$$

- So, shifting the calculation to 1 pixel ahead in either direction only involves the addition of a constant term!

Parallel Traversal

- More importantly, for parallel (vectorized) computations:

$$
F_{i j}\left(x_{U L}+n, y_{U L}+m\right)=F_{i j}\left(x_{U L}, y_{U L}\right)+n A_{i j}+m B_{i j}
$$

- where $\left(x_{U L}, y_{U L}\right)$ is the upper-left corner of the bounding box
- The barycentric coordinates (interpolation variables) are computed from $F_{i j} \rightarrow$ These are independently and cheaply computed, too!

Edge Equation Traversal - Optimization (1)

- We can effectively reduce further the computations if we process the bounding box in blocks and discard entire blocks
- Block discard: all block corners outside the triangle
- Can be done hierarchically

Perspective and Interpolation (1)

- Is there a problem with interpolating in perspective?
- Screen-space interpolation does not correctly interpolate perspectively projected values:

Perspective and Interpolation (2)

- Linear in screen space \rightarrow Non-linear in eye space!

Perspective and Interpolation (3)

- Fortunately, we can derive functions that correctly perform this interpolation
- For the perspectively correct z:

$$
z_{s}=\frac{1}{\frac{1}{z_{1}}+s\left(\frac{1}{z_{2}}-\frac{1}{z_{1}}\right)}
$$

- i.e., interpolate $1 / z$ values and invert the result
- For the derivation procedure see: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

Perspective and Interpolation (3)

- For perspectively-correct fragment attributes:

$$
a_{s}=z_{s}\left(\frac{a_{1}}{z_{1}}+s\left(\frac{a_{2}}{z_{2}}-\frac{a_{1}}{z_{1}}\right)\right)
$$

- i.e., divide vertex attributes by the corresponding z and multiply interpolated result by interpolated z
- For the derivation procedure see: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

Geometry Antialiasing

- Aliasing in geometry boundaries due to fixed-rate sampling is a common artifact manifested as "pixelization"
- Blocky appearance
- Improper representation of thin structures
- Temporal artifacts

1 sample

Super-sampling the Geometry

- The problem is alleviated by mitigating the sampling issues to a higher sampling frequency by supersampling each pixel

Practical Antialiasing - MSAA

- Supersampling the pixel normally implies evaluating the shading at all samples taken \rightarrow
- Cost: \times number of samples!
- Solution: Evaluate the shading at a single location and take multiple coverage samples independently
\rightarrow MSAA (Multi-Sampled Anti-Aliasing)

Fragment shader is invoked once per pixel
Primitive coverage is evaluated independently at multiple locations

MSAA - Example

1X (no MSAA), 2X, 4X and 8X coverage samples on an NVIDIA 780Ti graphics card

Fragment shader evaluation location
Coverage sample

MSAA - Deficiencies

- Shader computations may be performed for locations outside the geometry!
- Can be fixed by moving the shading to the covered sample closest to the center

- Attributes evaluated at the pixel center my not be representative of the covered area

Triangle Rasterization - Overdraw

- Rasterized fragments overlap with previously drawn fragments from other triangles - not yet sorted

Sorting (1)

- The fragments of a primitive typically overlap fragments from other primitives

- There are many strategies to resolve the ordering of the rasterized primitives as they appear on screen
- Simplest:
- Explicit order (FIFO)
- 3D: More elaborate schemes required (see 3D rasterization)

Sorting (2)

- Sorting can occur in various stages of the pipeline, depending on the type of primitives:
- E.g., flat 2D polygons and lines can be trivially pre-sorted according to "z order" and then rasterized back to front
- Conversely, intersecting or self-overlapping shapes may require a (post-) sorting strategy, at a fragment level (see 3D)

Can be resolved by primitive sorting

Cannot be resolved by primitive sorting

- requires sorting at fragment level

Rasterization and HSE in 3D

- After projecting the primitives in NDC, we must retain only surfaces visible to the camera (HSE) \rightarrow
- Surface parts must be sorted according to depth
- And not according to order of appearance (it is arbitrary)

HSE - Per Pixel

- Even if polygons were depth-sorted according to some reference point on them (e.g. centroid), there is no guarantee that they do not overlap \rightarrow
- Sorting must be performed per pixel

The Depth Buffer

- Separate buffer, same resolution as frame buffer
- Stores the nearest normalized depth values

The Z-Buffer Algorithm

- The Z-Buffer algorithm uses the depth buffer to compare each generated fragment at location (i,j) with the previous "visible" (nearest) fragment
- If the new fragment is closest to the view plane:
- Replace the z in the depth buffer
- Forward the fragment to the merging stage
- Else (if fragment fails the depth test)
- Discard the fragment
- Remarks:
- The depth test may be $<, \leq$ or other comparison operand
- Depth buffer is usually initialized to the "far" value

The Z-Buffer: A Simple Example

- Initialize the buffers

- Rasterize the $1^{\text {st }}$ triangle: All z values are in front of the "far" depth

- Rasterize the $2^{\text {nd }}$ triangle: not all z values pass the depth test

Z-Buffer - Optimization: Z Cull

- Split buffer into blocks (can use rasterization tiling)
- For each block maintain: $Z_{\text {min }}, Z_{\text {max }}$
- Compare the min/max z of an incoming triangle to the block's range:

Tile fragments are immediately discarded

Tile fragments are individually z-tested

Tile fragments immediately pass the z test

Tile $\min / \max z$ is updated

Shading

- In general, the fragment (pixel) shading process defines a color and transparency value for each generated geometry fragment
- In the simplest case of a flat-colored primitive, e.g. a 2D polygon fill, a predetermined color is assigned to the fragments
- More elaborate shading algorithms are required for lit and textured 3D surfaces (see texturing and shading chapters)

Triangle Rasterization - HSE

- Triangle Fragments with correct order after z-buffer testing

Shaded Fragments

- Triangle fragments after shading and merging

Merging Stage

- Shaded fragments that successfully passed the depth test must contribute to the image in the frame buffer
- In general:
- Each fragment contributes to the image pixel according to coverage
- The color is blended with any existing one in the same pixel coordinates. This is especially true for transparent pixels
- All typical rasterization pipelines allow for a number of blending functions to be applied to the incoming fragments

Fragment Merging and Transparency (1)

- When transparency values are generated, these can control the mixing of fragments
- The value controlling this blending is the alpha value, i.e. the "opacity" (or 1-transparency)

Fragment Merging and Transparency (2)

- Extreme values $(1,0)$, can make fragments "pass through" or opaque, to display elaborate "perforated patterns" (see texturing)

Completely transparent

Compositing: Simple Examples

Z-Buffer and Transparency (1)

- Transparency is not handled well by the Z-Buffer algorithm:
- Result depends on the order of occurrence of the fragments: Depth test discards fragments behind transparent surfaces if the latter are already rendered

Z-Buffer and Transparency (2)

- Solution 1:
- Render all opaque geometry first
- Render transparent geometry next
- Still:
- Blending of transparent surfaces is still order (and view) dependent

The A-Buffer (1)

- Is a generic antialiased fragment resolve technique, with full support for order-independent transparency
- Instead of a single (nearest) depth value, it maintains a sorted list of all fragments intersecting the pixel
- Stores per fragment transparency and coverage
- Merging:
- Fragments are resolved front to back according to coverage (via a binary coverage mask) and their transparency

The A-Buffer (2)

The A-Buffer (3)

- Fragment token lists are updated using an atomic global counter
- The A-buffer retains a list head for each pixel

The A-Buffer (4)

- Expensive technique:
- Must maintain a dynamic list per pixel (fragment bin)
- Must contain additional data per fragment
- Must sort contents in each fragment bin
- Uses indirection (pointers) to access next datum
- H/W implementations?
- Various optimized variants (or cut-down versions) implemented as shaders
- Most popular variation: the k-Buffer
- Fixed-size fragment buckets (arrays)
- Sorting is still required

Contributors

- Georgios Papaioannou
- Sources:
- [RTR] T. Akenine-Möller, E. Haines, N. Hoffman, Read-time Rendering (3 ${ }^{\text {rd }}$ Ed.), AK Peters, 2008
- [G\&V] T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, Graphics \& Visualization: Principles and Algorithms, CRC Press
- [KV] Efficient Illumination Algorithms for Global Illumination in Interactive and Real-Time Rendering, PhD Thesis, K. Vardis, 2016
- [OBR] http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

