COMPUTER GRAPHICS COURSE

Rasterization Architectures

Georgios Papaioannou - 2014

AUEB

@ A High Level Rasterization Pipeline

Primitives Transformed/clipped Fragments Shaded pixel Updated
primitives samples pixels
Geometry Fragment Fragment Fragment
Setup Generation Shading Merging
« Transformation < Primitive « Pixel color Visibility
» Culling sampling determination determination
* Primitive Attribute - Transparency < Blending
assembly interpolation . « Reconstruction
« Clipping » Pixel coverage filtering

estimation

AUEB

(5, Geometry Setup

 Geometry must be transformed in order to:

— Be expressed in the proper coordinate system for each
operation to take place

— Get modified according to the desired arrangement of
primitives / objects to form a virtual world or scene

____%_ window
A “scene” —: :
N A A WCS%ECS%NDC NDC |
> i transformation |~ —
> | > L __ 4111
To change L i
LCS > > WCS | coordinate system

_ _ _ to “observer” space
Various geometric transformations

applied to original shape to build the
desired outcome

Geometry Setup (2)

* The vertices of the resulting primitives are then
assembled into a form that can be efficiently
sampled by the rasterizer (e.g. triangles):

Geometry Setup (3)

 Redundant geometry (invisible, unimportant etc.) is
culled (removed) to reduce overhead

* To further reduce/split load and avoid degenerate /
problematic geometry, primitives are clipped to the
boundaries of NDC regions

I,___ff_lNi_n.?OW _____ window e,
' NDC : ~__ i . i
- >] , — |
E il - - 3 - |
X Clipped primitives ma
Culled X Clipping reqpuﬁre rz-triangulatioz

3D Geometry Transformations

e All coordinates have to be:

— Transformed from their native, object space ones to a
global, common reference system

— Then expressed relative to the camera and
— Projected on the image plane

e All of these transformations are concatenated into a

single matrix, which is applied to the vertices of each
triangle

* Different objects may have different transformations

Geometric Transformation Sequence

Global reference system

WCS
Z

3D Geometry Setup (1)

* |nitial primitives (as defined/loaded by the application)

Local object-space coordinates

AUEB

@ 3D Geometry Setup (2)

* Transform geometry (vertices) in world
coordinates to compose a 3D scene

AUEB

@ 3D Geometry Setup (3)

* Transform geometry (vertices) relative
to the “eye” (camera) system (ECS) |

ECS

/r\N

X

3D Geometry Setup (4)

e Coordinates as “seen” from the camera reference

frame y

ECS

AUEB
COMPUTER
GRAPHICS

>y 3D Geometry Setup (5)

 Coordinates

after K
perspective i
projection ;. ki
I -
: I o l.l'll'
: i : ‘_qqlﬂunui!-

AUEB

(5) 3D Geometry Setup (6)

 Coordinates after
perspective projection i 'mn‘ L Clioping planes
in normalized device ' WHNII |
coordinates 1

AUEB
COMPUTER
GRAPHICS

=y 3D Geometry Setup (7)

* Primitives after clipping
(still in normalized
device coordinates)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| =

Clipped primitives

3D Geometry Setup (8)

* Coordinates of assembled primitives after window
transformation (image space — pixel units)

& JFi A] \
: 1 /| j "‘:VF‘.F - #1’
NRBR G : . \ S | ‘Jﬁ T{F
I RN B (W1 ¥ I (Y]
4—\‘, .,' “,‘ hi) ﬁ (‘\ \ | ‘ Y
‘} / ﬁ Al \
- ’~I~‘) “\‘ | ‘\.\ f ‘,l
ST ‘ =TT < KN
; s 1A | WAV

RIEIHILY Loe

\| ‘ ,4'
\y‘ Il
|
i il
‘ | S |pf\||”'
|
B e
Gt
e S :‘Rﬁ“ .
1(/ 7! \4“'7‘ %&i '&‘
AT/ "‘,'&l“‘ T\

Clipping - General

* With clipping we limit the extents of primitives to the
viewing region
— Avoid erroneous projection of geometry (see frustum
clipping)
— Discard invisible geometry

* |In general, we clip lines and polygons in both 2D and
3D

Half-spaces

* A hyperplanein 2D (aline) or in 3D (a plane) divides
space in two halves

* The corresponding equation is positive on one side,
negative on the other and zero exactly on the
hyperplane:

2D

Point Containment

* If a set of oriented hyperplanes f; forms a convex
region, then determining if a point p lies inside this
region resolves to testing if:

sign(f;(p)) = sign(f;(p)), Vi,j

Point in Triangle Test

* Alternatively, we can check

sign(y —s-x—b)
Vo=, Ay the barycentric coordinates of
— 7N 1 _]
- X —% Ax the ’Fhe point w.r.t. the 3
N2 vertices =2

—_ i . >
X — X, Inside: u,v,w = 0

Line Clipping on Rectangular Bounds

e 3 cases:

— Line segment entirely
outside region

— Line segment entirely
inside region

— Line segment intersects 1
or 2 boundary segments

@ A Simple Line Clipping Algorithm

 Cohen-Sutherland algorithm
— Fast segment in/out detection via binary tests
— Recursive splitting of intersecting segments

Xmin Xmax
1001 1000 1010 «———— Encode the 9 tiles according to
Ymax -----oofpo— . the sign of the 4 line equations
0001 0000 0010 o First bit. Set to 1 for Y > Ymax, €lse set to 0;
Voo e Second bit. Set to 1 for y < yin, €lse set to 0;
0101 0100 0110 o Third bit. Setto 1 for x > x\max. €lse set to 0:

Fourth bit. Set to 1 for x < xyin, else set to 0.
Clipping window

@ CS Line Clipping Algorithm

void CS(vec3 * P1l, vec3 * P2,
float x min, float x max, float y min, float y max)

unsigned char c¢l, c2;

vec3 I;

cl=Code (*P1) ;
c2=Code (*P2) ;

if ((cl|c2 == 0) || // both inside or
(cl&c2 '=0)) // outside but on the same side of a
// clipping line (see figure)
// do nothing
else

Intersect (Pl1,P2,&I,xmin,xmax,ymin,ymax);
if (IsOuside (*Pl))

*Pl = I;
else

*P2 = I;
CS(P1,P2,xmin,xmax,ymin,ymax) ;

Polygon Clipping

e Polygon clipping cannot be
regarded as multiple line

clipping!
* Requires mutual edge +

point containment and
Clipping window \Missed space intersection tESting

Incorrect new polygon

Sutherland-Hodgman Clipping Algorithm (1)

* Clips an arbitrary polygon against a convex clipping
polygonal region

 lteratively clips the input polygon against each one of
the segments of the clipping region

X

o 60‘6\630(‘
potggon s &] P
O</ <(— Stage 0 [— / <\/\—' Stage 1 — / <
2 \ l
e
Stage 2
/ <] «— | Stage 3 — / < <——|
\ \

AUEB

@ Sutherland-Hodgman Clipping Algorithm (2)

* For each clipping line:
— For each vertex transition of the input polygon:

* Determine what points to generate according to the following
configurations

— Join all sequentially generated vertices to form a polygon
— Use this polygon as input to the next iteration

inside| outside

Clipping
Line

Case 1: 1 output Case 2: 1 output Case 3: 0 outputs Case 4: 2 outputs

e output vertex

Convex Shape Re-triangulation

* Clipped triangles against the viewing window may
require re-triangulation

<

* Triangulation of convex shapes is trivial:

D

Frustum Clipping (1)

* Before rasterizing the polygons, they must be clipped
against the view frustum (see projections)

e Why?

— Coordinates behind near plane get inverted and wrap
beyond the far plane = degenerate, impossible “triangles”

— Coordinates on z=0 > singularity in perspective division

Frustum Clipping (2)

* Frustum clipping can be done with a Sutherland-
Hodgman-style method for triangles/planes

* For a 6-plane frustum (i.e. the camera frustum), this
is a 6-stage triangle/plane clipping pipeline

* Clipping is performed in the post-projective space,
before the perspective division. Why?

— In all projections (perspective, too), the frustum planes are
axis aligned = simplified comparisons and equations (see
Chapter 5.3 in [G&V]

Frustum Clipping (3)

* Triangle/plane clipping:
— Perform 2 line-plane clipping steps
— Join the open edges (if any)
— Re-triangulate if necessary

Pixel-level Clipping

* Itis possible to perform clipping at a pixel level (or
pixel block level, for hierarchical implementations)

* Pixel-level clipping boils down to discarding values
outside the usable range (i.e. within the 2D/3D
clipping region)

— Saves on H/W and power consumption (less circuitry)

— Naive implementation: Not very fast — many samples to
discard

— Hierarchical / block-based implementation: efficient

“NVIDIA patent EP1756769 B1

@ Optimizations — Back-face Culling (1)

Without back-face culling With back-face culling
(~50% fewer triangles)

* Back-face culling can dramatically reduce the
rasterization load by effectively discarding all polygons

facing off the eye direction
* Transparent shapes should not be BF culled

Optimizations — Back-face Culling (2)

T =00°
e
{9[}” n
N A

HA/ B

e Back-face culling rejects polygons whose normal
deviates more than 90 degrees from the viewing
direction

Optimizations - Frustum Culling

* Conservatively discards entire objects early on,
before clipping by:
— Checking the extents (bounding box) of an object against
the bounds of the frustum
* This test is very simple in post-projective space:
— if all projected bounding box corners are outside the
frustum > cull the object
— Can be extended to non-camera frusta to cull hidden

objects
\:::\/ /"“\
“)7 =)
Y% X

‘ http://akhanubis-eng.tumblr.com/post/24375086110/slimdx-directx-11-frustum-culling

AUEB

(5, Rasterization

e Rasterization is the process that generates the pixel-
based samples on the stream of primitives

* Before rasterization occurs, it is convenient to
transform the primitives in screen coordinates (i.e.
pixel units) — see rasterization slides

e Each primitive is processed independently!

m Em/E

%EEEE%.. Fragments from
DDD[HII different primitives may

DDDD] overlap - Ordering
5== must be resolved (see
O next slides)

Line Rasterization

* Must:

— Approximate the mathematical
line as close as possible (min.
error)

— Not leave any gaps
— Maintain a constant width

— Be efficient

-
-
-
-
-
-
-
-
-
-
-
4
-
-
| -
-
-
/
-
-

Approximating the Line Equation (1)

* Given a line segment in the first octant
(x1,v1) = (x3,¥,), the line passing through the

endpoints is defined as:
(xz:.}’z)

y=s-x+b

Y2—y1 _ Ay
X, — X1 Ax

S =

_ V1X2 — YaX1
X2 — X1

b

Approximating the Line Equation (2)

void Linel(float x1, float yl,

{

float s, b, y;
float x;
s = (y2-yl) / (x2-x1);

float x2, float y2)

b = (yl*x2 - y2*x1) / (x2-x1);
for ((x = x1;, x <= x2; x+=1.0f)

{
y = s*x + b;
SetPixel (floor (x+0.5f),

floor (y+0.5f));

Result of the Linel Algorithm

* Y values are eventually rounded to the nearest
integer cell

rem

Incremental Line Algorithm (1)

* Y values are computed for fixed and positive X increments
 The described algorithm (Linel) is valid only for octant 1:

p

Incremental Line Algorithm (2)

 The multiplication inside the loop can be simplified, since:

Vig1 = SXjp1+b=sx;+b+s=vy; +5s

AUEB

@ Incremental Line Algorithm (3)

void Line2(float x1, float yl, float x2, float y2)
{

float s, y;

float x;

s = (y2-yl) / (x2-x1);
y = yl;

for ((x = x1;, x <= x2; x+=1.0f)
{
SetPixel (floor (x+0.5f), floor(y+0.5f));

—> Y = yts;

}

Integer Variants of Line Drawing

* If all coordinates are integer values, there are several
improvements to be made to save calculations:

— Drop the rounding, by stepping to the next Y value if the
increment becomes larger than 1/2 pixel

— Scaling all comparisons by Ax to dispense with the division

\

|
| /i//ﬁr;
/ R lcrror
Vi [t

Xi Xi+1

Rasterization — Triangle Traversal (1)

 Sampling the triangles involves traversing their
interior and edges and generating a set of fragments
per pixel (typically one)

IS 4
rrangile stream ‘

Vertex Data

Position

| color .
Rasterizer

Normal vector
Custom attributes [1exture coordinates

Tangent vector Fragment generation —

- ... interpolated attributes
O
| B F :EEh ‘

Triangle Rasterization Issues (1)

* Similar to lines, triangle rasterization must not leave
gaps, for thin triangles:

‘ Adapted from CG lecture notes from the Virginia University

Triangle Rasterization Issues (2)

 Appearance must be as consistent as possible under
slight sampling offsets (motion) — see antialiasing

‘ Adapted from CG lecture notes from the Virginia University

Triangle Rasterization Issues (3)

 What is the priority of shared edges?

‘ Adapted from CG lecture notes from the Virginia University

Triangle Traversal Algorithms

e Two dominant methods:

— Edge Walking: Vertically follows edges and draws the
corresponding scan line spans

— Edge Equation: Tests the pixels for containment inside the
triangle boundaries. Can be efficiently implemented in a
divide and conquer manner

Edge Walking — Basic Idea

(AKA: Triangle Digital Differential Analyzer)

* Follow edges vertically
* Interpolate attributes down edges

* Fill in horizontal spans for each
scanline

— For each pixel of a scanline,
interpolate edge attributes across
span

AUEB

(5, Edge Walking — Procedure

Sort Vertices by Y value
Scan Convert 2 sub-triangles:
* Fory; <y <y,:

— Interpolate x (x4, xp) and other values along edges

Increasing Y

— For x, < x < xp, : interpolate values along spans

* Fory, <y<y3:
— Interpolate x (x4, xp) and other values along edges
— For x, < x < xp, : interpolate values along spans

AUEB

@ Edge Walking — Attribute Interpolation

Inner loop (X)

X — X,

S:
Xp — Xq

zZ=2,+5(z, —2z,)

$1 = ¢1a +5C1p — $1a)
$2 = &0 1+ 5(&0p — &24)

$n = Sna t+ S(gnb - fna)

Any attribute & is
similarly interpolated

. J

Ok, We Have a Traversal, Why Go for Another One?

* Scanline-style edge walking is reasonably good
provided that you don’t care about:
— Aligned (coherent) memory access
— Parallelism: multiple rows at a time
— Variable sample positions
— Ability to harness wide SIMD or build efficient hardware

for it

 The above become really problematic especially in

the case of thin, elongated triangles

Edge Equation Traversal — Basic Idea

* Triangle setup:

— Find the bounding box of the
triangle

— Find the edge (line) equations of the Embarrassingly parallel!
oriented edges

— Find triangle differentials

* For all pixels in the grid: (Xmaodmax)

— Find edge equation values €1, &;, &3
— f (1> 0) A (2> 0) A(e3>0)

* Interpolate attributes

Xoriny Voiiv) &
. Issue Fragment (min ymln) S

Edge Equation Values

y=s-x+b=e=sx—y+b

Y2 —y1 Ay
S — — VL7
X, —x1 Ax
b — Y1X2 — YaX1

X2 —Xq

Value Interpolation

e Use barycentric coordinates!

 Canlincrementally construct the barycentric
coordinates per pixel?
— YES!

— We can also incrementally update the edge equations per
pixel

Edge Equation Traversal — Revisited (1)

* Given two vectors v; and v,, the following

determinant calculates the signed area of the
formed parallelogram: X1 Xy
A, (v, V,) = | ‘

* Orthe signed area of the triangle formed by v, / .'l
and v,: 1 x5 N

e Remember, these quantities are signed
* The sign is determined by the order of the two

vectors

‘ Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

AUEB

@ Edge Equation Traversal — Revisited (2)

* Now consider an edge pyp4 of a triangle and an
arbitrary point q

* Using as vectors vy = pop¢ and v, = pyq the
determinant defines an edge function of q w.r.t.

edge pop1:
q on the positive,,"l:': g on the negative X1 —Xg X g X0
side of pop; £ | sideofpep; o F —
i 01(q) Y1—=Yo Yq— Yo

q ‘.'/ Fo,(q)

:Po

‘ Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

Edge Equation Traversal — Revisited (3)

e Expanding and rearranging Fy;(q) we get:
X1 —Xog Xg— Xg

For(@) =y, —yi y,—yo| ©

For (@) = (vo —y1)xg + (X1 — x0)yq + (Xo¥1 — YoX1)
* Equivalently, for the other triangle edges:

Fi.(q) = (y; — yZ)xq + (x — x1)3’q + (X1y2 — y1X32)
Foo(q) = (2 —yo)xg + (X0 — x2)y5 + (X2Y0 — ¥2%0)

‘ Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

Edge Equation Traversal — Revisited (4)

* Remember that Fy;(q) is related to the area of

the triangle pop19
* Butsois the barycentric coordinate of q from p,!

* |tis easy to see that if wy, wy, w, are the 3
barycentric coordinates, then:

wo = Fi,(q)/w
wy = Fpo(q)/w P
wy, = Foi(q)/w

w = Fy1(q) + F12(q) + F20(q)

‘ Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

Incremental Traversal (1)

* Lets take the edge function and simplify it:

Fo1(@) = (o — y1)xq + (X1 — x0)¥q + (Xoy1 — Yox1) =
Ap1xq + Bo1ygy + Cox
* The terms Ay, By1, Co1 as well as the respective
terms of the other edge functions are constant per
triangle
— Can be computed once in the triangle setup phase

Incremental Traversal (2)

* Let’s look now what happens for adjacent pixel
coordinates:

FOl(xq + 1»3’q) = Ap1(xq+1) + Bo1yy + Co1 = F01(xquq) + Ao1
F01(xq»Yq + 1) = Ap1xg + Bo1(yg + 1) + Cpy = FOl(xq;yq) + Bo1

e So, shifting the calculation to 1 pixel ahead in either
direction only involves the addition of a constant
terml!

‘ Source: http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

Parallel Traversal

 More importantly, for parallel (vectorized)
computations:

Fij(xyp + n,yy + m) = Fij(xyp, yy) + nd;; + mB;;

* where (xy., Yy) is the upper-left corner of the
bounding box

* The barycentric coordinates (interpolation variables)
are computed from F;; = These are independently

and cheaply computed, too!

AUEB

@ Edge Equation Traversal — Optimization (1)

* We can effectively reduce further the computations
if we process the bounding box in blocks and discard
entire blocks
— Block discard: all block corners outside the triangle
— Can be done hierarchically

0/0]0.9]0/0]0 9]0/0]0 ...L":

DOOOPOOO 52O

> <)

] 1 ' | o ele O
o 9 'V =

200

| rLel0]e olele]e’ _(0]e]e elele]e] o]eole]e) ¢
! OO0 OO0 ."........':
o olele sle ele ole/ele ole/ele &
GOOOODOOOOOOOOOOOg
5ooooooosqdjoooonooooooooooos

0000000k ooohbocdboooboodh

00000000

AUEB

(5, Perspective and

Interpolation (1)

* |s there a problem with interpolating in perspective?

— Screen-space interpolation does not correctly interpolate
perspectively projected values:

a, intensity = 0.0
g)

-—
————
e
I
-——

—
—
e ——
.
-
"--.-.

b, intensity = 1 0

Bl ¢, intensity = 0.5

A, intensity = 0.0

C, intensity # 0.5

/line AB

——
—
i
i
—
——
——
——
-
——
—
——
——
™

-

-
-
-
-
—_—
-
—
——
-
I

B, intensity = 1.0

image plane
(screen)

“Source: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

AUEB

(&) Perspective and Interpolation (2)

* Linear in screen space = Non-linear in eye space!

Lineary

Non-linearly
interpolated points!

~

Linearly interpolatec] Z

Perspective and Interpolation (3)

* Fortunately, we can derive functions that correctly
perform this interpolation

* For the perspectively correct z:

1
Zs=
1 1 1
Z“(z‘z)

* j.e., interpolate 1/z values and invert the result

* For the derivation procedure see: Kok-Lim Low,
Perspective-Correct Interpolation, Tech. Rep. 2002

Perspective and Interpolation (3)

* For perspectively-correct fragment attributes:

a; a, a4
aAs = Zs|—+ S —
Zq Zy 2

* j.e., divide vertex attributes by the corresponding z
and multiply interpolated result by interpolated z

* For the derivation procedure see: Kok-Lim Low,
Perspective-Correct Interpolation, Tech. Rep. 2002

Geometry Antialiasing

* Aliasing in geometry boundaries due to fixed-rate
sampling is a common artifact manifested as
“pixelization”

— Blocky appearance
— Improper representation of thin structures
— Temporal artifacts

e
1 sample O L_ - Sy
e i,

Super-sampling the Geometry

 The problem is alleviated by mitigating the sampling
issues to a higher sampling frequency by super-
sampling each pixel

o] |®
1 sample ° 4 x 4 checker [g{%el

e _
1 x2 sample " L_ & 8 rooks . L‘- : :
0]|0]|0]|®
2x1sample |e e #. = "__-.. 4 x4 grid [olefele ;‘ .r'_.f ¥
’_. J .‘. o o P
Quincunx @) L_ F 8 x 8 checker ::: > . L &
. Jele . i
voogid e e seseid Pl e T e

Adapted from “Real-Time Rendering, 3@ Ed. ”

Practical Antialiasing - MSAA

e Supersampling the pixel normally implies evaluating
the shading at all samples taken -

— Cost: X number of samples!
e Solution: Evaluate the shading at a single location

and take multiple coverage samples independently
- MSAA (Multi-Sampled Anti-Aliasing)

|__—— Fragment shader is invoked once per pixel

O —__ Primitive coverage is evaluated
° independently at multiple locations

MSAA - Example

‘ Fragment shader evaluation location

. Coverage sample

MSAA - Deficiencies

 Shader computations may be performed
for locations outside the geometry!

— Can be fixed by moving the shading to the
covered sample closest to the center

o * Attributes evaluated at the pixel center
o my not be representative of the covered
o area

Triangle Rasterization - Overdraw

e Rasterized fragments overlap with previously drawn
fragments from other triangles — not yet sorted

8

zZ
c
3
(@)
Q)
-
®)
*
@]
<
D
-
QD
©
=]
-
(@)
:
QD
(@)
3
Q)
-]
~+
)]
0

Sorting (1)

 The fragments of a primitive typically overlap
fragments from other primitives

* There are many strategies to

[2 resolve the ordering of the
Tl [rasterized primitives as they
_./ appear on screen
B B ° Simplest:
.= = — Explicit order (FIFO)

e 3D: More elaborate schemes
required (see 3D rasterization)

Sorting (2)

e Sorting can occur in various stages of the pipeline,
depending on the type of primitives:

— E.g., flat 2D polygons and lines can be trivially pre-sorted
according to “z order” and then rasterized back to front

— Conversely, intersecting or self-overlapping shapes may
require a (post-) sorting strategy, at a fragment level (see
3D)

Cannot be resolved
by primitive sorting
— requires sorting
at fragment level

Can be resolved
by primitive
sorting

Rasterization and HSE in 3D

* After projecting the primitives in NDC, we must retain only
surfaces visible to the camera (HSE) =2

— Surface parts must be sorted according to depth
— And not according to order of appearance (it is arbitrary)

HSE — Per Pixel

* Even if polygons were depth-sorted according to some
reference point on them (e.g. centroid), there is no guarantee

that they do not overlap =
e Sorting must be performed per pixel

AUEB

@ The Depth Buffer

e Separate buffer, same resolution as frame buffer
e Stores the nearest normalized depth values

Example buffer setup Depth buffer (black: z=n)
(single-buffering):
2560X1440 pixels

14.06MB
24bit
depth
buffer

+ Color channels
8bit
stencil
buffer

Clipping volume
Final, merged image

he

Depth buffer

N3

14.06MB

24bit
color

buffer Alpha channel
+

8bit

alpha

] 3D coordinates

—_— .-~ Rasterization +
YIEW plans depth ordeing

Frame buffer

>

The Z-Buffer Algorithm

The Z-Buffer algorithm uses the depth buffer to
compare each generated fragment at location (i,j)
with the previous “visible” (nearest) fragment

If the new fragment is closest to the view plane:
— Replace the z in the depth buffer
— Forward the fragment to the merging stage

Else (if fragment fails the depth test)
— Discard the fragment
Remarks:

— The depth test may be <, < or other comparison operand
— Depth buffer is usually initialized to the “far” value

The Z-Buffer: A Simple Example

Initialize the buffers

Rasterize the 1
triangle: All z values are
in front of the “far”
depth

Rasterize the 2"
triangle: not all z values
pass the depth test

“far”

N
.

Depth
buffer

/

Color
buffer

Back
color

Normalized depth

0 1
""""" 1

(0)] |
% I
5| trl ﬁz |
= [
@ I
S I
I

aoeds di|D

AUEB

@ Z-Buffer — Optimization: Z Cull

* Split buffer into blocks (can use rasterization tiling)
* Foreach block maintain: z,i, Zmax

e Compare the min/max z of an incoming triangle to the block’s
range:

Tile fragments

immediately pass
Tile fragments the z test
are immediately

discarded Tile min/max z is

updated

Tile fragments are
individually z-tested

Shading

* In general, the fragment (pixel) shading process
defines a color and transparency value for each
generated geometry fragment

— In the simplest case of a flat-colored primitive, e.g. a 2D
polygon fill, a predetermined color is assigned to the
fragments

— More elaborate shading algorithms are required for lit and
textured 3D surfaces (see texturing and shading chapters)

AUEB
COMPUTER
GRAPHICS

=y Triangle Rasterization — HSE

* Triangle Fragments with correct order after z-buffer
testing

T
\

Shaded Fragments

* Triangle fragments after shading and merging

Merging Stage

* Shaded fragments that successfully passed the depth
test must contribute to the image in the frame buffer

* |n general:

— Each fragment contributes to the image pixel according to
coverage

— The color is blended with any existing one in the same
pixel coordinates. This is especially true for transparent
pixels

e All typical rasterization pipelines allow for a number
of blending functions to be applied to the incoming
fragments

AUEB

@ Fragment Merging and Transparency (1)

 When transparency
values are generated,
these can control the
mixing of fragments

* The value controlling this
blending is the alpha
value, i.e. the “opacity”
(or 1-transparency)

‘ Image source: http://developer.amd.com

AUEB

@ Fragment Merging and Transparency (2)

e Extreme values (1,0), can make fragments “pass
through” or opaque, to display elaborate “perforated
patterns” (see texturing)

/

Completely transparent

AUEB
COMPUTER

Dst (already in FB)

Src (Incoming frags.)
1-Src+0-Dst a-Src+(1—a)-Dst a-Dst-Src+(1—a)-Dst

(replace) (linear mix) (multiply)

Dst +a- Src Dst + Src max{0, Dst — Src}
additive blend color add color subtract

/-Buffer and Transparency (1)

* Transparency is not handled well by the Z-Buffer
algorithm:

— Result depends on the order of occurrence of the
fragments: Depth test discards fragments behind
transparent surfaces if the latter are already rendered

@ Z-Buffer and Transparency (2)

e Solution 1:
— Render all opaque geometry first

— Render transparent geometry next
e Still:

— Blending of transparent surfaces is still order (and view)
dependent

Image source: AMD Mecha Demo

The A-Buffer (1)

Is a generic antialiased fragment resolve technique,
with full support for order-independent transparency

Instead of a single (nearest) depth value, it maintains
a sorted list of all fragments intersecting the pixel

Stores per fragment transparency and coverage

Merging:
— Fragments are resolved front to back according to

coverage (via a binary coverage mask) and their
transparency

AUEB

@ The A-Buffer (2)

@ center of projection
O fragment sample (single-layer)

image plane @ fragment sample (multi-layer)

/

— viewing frustum

view direction

‘ Image source: [KV]

AUEB

(5, The A-Buffer (3)

Head Buffer

Scene

Global
Counter

|

Node Buffer

next pointers

* Fragment token lists are updated using an atomic global counter
« The A-buffer retains a list head for each pixel

‘ Image source: [KV]

The A-Buffer (4)

* Expensive technique:
— Must maintain a dynamic list per pixel (fragment bin)
— Must contain additional data per fragment
— Must sort contents in each fragment bin
— Uses indirection (pointers) to access next datum

 H/W implementations?
— Various optimized variants (or cut-down versions)
implemented as shaders

— Most popular variation: the k-Buffer
* Fixed-size fragment buckets (arrays)
e Sorting is still required

Contributors

* Georgios Papaioannou

e Sources:

— [RTR] T. Akenine-Mdller, E. Haines, N. Hoffman, Read-time
Rendering (3™ Ed.), AK Peters, 2008

— [G&V] T. Theoharis, G. Papaioannou, N. Platis, N. M.
Patrikalakis, Graphics & Visualization: Principles and
Algorithms, CRC Press

— [KV] Efficient lllumination Algorithms for Global lllumination
in Interactive and Real-Time Rendering, PhD Thesis, K. Vardis,
2016

— [OBR] http://fgiesen.wordpress.com/2013/02/10/optimizing-
the-basic-rasterizer/

http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

