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Ray Tracing 



RAY TRACING PRINCIPLES 



What is ray tracing? 

• A general mechanism for sampling paths of light in a 3D scene 
• We will use this mechanism in path tracing 

 
• Ray Casting mechanism: 

– Rays are cast from a point in space towards a specified direction 
– Rays are intersected with geometry primitives 
– The closest intersection is regarded as a ray “hit” 
– Lighting or other attributes are evaluated at the hit location 



Simple Ray Casting - Appel’s Method 

• For each image pixel, a ray (line segment) is cast from the 
viewpoint, crosses the pixel and is directed toward the scene 
 • For hit points: 
– Send (at least) one ray to each 

light source and check visibility 
(shadow) 

– Shade the point using a local 
illumination model 



Whitted-style Ray Tracing (1) 

• For each image pixel, a ray (line segment) is cast from the 
viewpoint, crosses the pixel and is directed toward the scene 

• The ray hits the objects, is absorbed or deflected in order to 
gather what the observer would “see” through each pixel 

• This is a recursive algorithm that spawns new rays at each hit 
point 

 



Whitted-style Ray Tracing (2) 



Why not Trace Rays from the Lights? (1) 

• Infinite rays leave a light source but only a small number lands 
on the viewport 
– Even fewer when a pinhole camera is considered  
– Extremely low probability to hit  Computationally intractable 

 



Why not Trace Rays from the Lights? (2) 

• In practice, many path tracing variants, which use the ray 
tracing mechanism to form the light paths, do trace rays from 
both the camera and the light source domain 

Source: http://indigorenderer.com 



More than Direct Illumination 

• Ray tracing is an elegant recursive algorithm 
• The first (primary) rays spawned hit the nearest surface: same 

result as in direct rendering 
• Secondary rays can be spawned from the intersection point to 

track indirect illumination 
• Secondary rays capture: 

– Shadows (inherent part of ray-tracing, no special algorithm 
required) 

– Reflections (light bouncing off surfaces) 
– Refracted (transmitted) light through the objects 



Tracing Rays: Level 0 (Primary Rays) 

• Determine ray from viewpoint and 
pixel center 

• Intersect ray with scene 
• Calculate local illumination model 



Tracing Rays: Level 1 

• Determine shadow ray from light 
and intersection 

• Test light source visibility 
• Calculate and cast reflection ray 
• Calculate and cast refraction ray 



Tracing Rays: Level 2 

• Determine shadow ray from light 
and intersection 

• Test light source visibility 
• Calculate and cast refraction ray 

(exiting) 
• Estimate local illumination 



Tracing Rays: Level 3 

• Determine shadow ray from light 
and intersection 

• Test light source visibility 
• Calculate and cast reflection ray  
• Estimate local illumination 



Tracing Rays: Level 4 

• Determine shadow ray from light 
and intersection 

• Test light source visibility (in 
shadow here) – ray intersects 
opaque geometry 
 



Who Determines What Rays to Spawn? 

• Material properties: 
– Reflectance 
– Incandescence 
– Gloss 
– Permeability a 
– Index of refraction n 
– … 

• Number, size and type of lights 
 



Resulting Color 

 
 
 
 
 
 
 
 
 
 

            Spawn                               Gather 



The Basic Ray Tracing Algorithm 

Color raytrace( Ray r, int depth, Scene world, vector <Light*> lights )  
{ Ray   *refl, *tran; 
  Color color_r, color_t, color_l; 
     
  // Terminate if maximum recursion depth has been reached. 
  if ( depth > MAX_DEPTH ) return backgroundColor; 
  // Intersect ray with scene and keep nearest intersection point  
  int hits = findClosestIntersection(r, world); 
  if ( hits == 0 ) return backgroundColor; 
  // Apply local illumination model, including shadows 
  color_l = calculateLocalColor(r, lights, world); 
  // Trace reflected and refracted rays according to material properties 
  if (r->isect->surface->material->k_refl > 0)      
  { refl = calculateReflection(r); 
    color_r = raytrace(refl, depth+1, world, lights); 
  } 
  if (r->isect->surface->material->k_refr > 0)      
  { tran = calculateRefraction(r); 
    color_t = raytrace(tran, depth+1, world, lights); 
  } 
  return color_l + color_r + color_t; 
} 



Ray Tracing Results (1) 

Source: http://hof.povray.org/images/ChristmasBaubles.jpg 



Ray Tracing Results (2) 

Source: NVIDIA OptiX SDK 
Simple ray-traced scene rendered at 60 frames per second on a modern GPU at 1080p 



Comments 

• Conventional primary and secondary ray – scene intersections 
must return the closest hit to the ray origin 

• If reflection / refraction coefficients are (near) zero, no 
secondary rays are spawned 

• If no surface is hit, the background color is returned 
• Shadow determination is embedded in the local illumination 

calculation stage 
• A maximum recursion depth is forced upon the algorithm; 

Necessary for complex scenes 
 



Termination Criteria 

• Maximum recursion depth is reached 
• Zero reflectivity / transmission coefficients 
• Ray contribution too small to be of significance: 

Attenuation due to participating medium density 



Effect of Ray Tracing Depth on Images 



Ray Data Structures – Requirements 

• Degradation effects (absorption, scattering, splitting): 
–  “strength” indicator (opposite of attenuation) 
– Optionally, recursion depth 

• Distance sorting of hit points: 
– Avoid keeping all intersections and post-sort results 
– Keep nearest intersection point or  
– Cache distance to nearest hit point 

• Local properties of hit point: 
– Need to keep track of hit material, primitive and local 

attributes (e.g. normal) 



A Ray as a Data Structure - Minimum 

class ray 
{ 
public: 
   ray(const vec3 & start, const vec3 & direction); 
   void transform(const mat4 &m); 
 
   vec3 origin; 
   vec3 dir; 
   vec3 n_isect; 
   real t;            // real: defined as float or double 
   void * payload; 
}; 

Here, position is indirectly 
calculated from t 

Pointer to an existing 
structure (e.g. a primitive) 
that holds the local 
attributes associated to 
the hit point 



A Ray as a Data Structure - Extended 

class ray 
{ 
public: 
   ray(void); 
   ray(const vec3 & start, const vec3 & direction); 
   void transform(const mat4 &m); 
 
   vec3 origin; 
   vec3 dir; 
   int depth; 
   vec3 p_isect; 
   vec3 n_isect; 
   vec3 barycentric; 
   real t; 
   real strength; 
   bool hit; 
   bool inside; 
   class primitive *hit_primitive; 
   void *payload; 
}; 



Ray – Scene Intersection: Primitives 

Sources: http://paulbourke.net/geometry/blob/    http://www.subblue.com/blog/2009/12/13/mandelbulb 

• A primitive in ray tracing is any mathematical entity that can 
define a line-primitive equation (intersection points) 
– Polygons 
– Thresholded density (volume) data 
– Parametric surfaces 
– Analytical surfaces (e.g. spheres) 
–  General equations (e.g. fractals) 
– Set operations (Constructive Solid  
    Geometry) 



Ray Tracing Results (3) 

Ray tracing using only geometric solids (with CSG in POVRAY ) 



Ray – Scene Intersection 

• A naïve test exhaustively tests a ray against every 
primitive in the scene 

• Ray – primitive intersections are the most frequent 
operations in ray tracing 

• We try to minimize their complexity and number: 
– Hierarchical data structure acceleration 
– Early visibility culling 
– Frequent tests are performed with low-complexity 

primitives  search refinement 
– Parallel execution: Ray tracing is inherently highly parallel 

at many levels 



Nearest Hit Determination 

int findClosestIntersection(Ray r, Scene world) 
{ 
    int hits=0; 
    Ray r_temp = r; 
    r.t = FLT_MAX;      
    for ( j=0; j<world.numObjects(); j++ ) 
        for ( k=0; k<world.getObject(j)->numPrims(); k++ ) 
        { 
           Primitive *prim = world.getObject(j)->getPrim(k); 
           prim->intersect(r_temp); 
      hits++; 
            
           if ( r_temp.t < r.t ) 
               r = r_temp; 
        }     
   return hits;  
} 

All intersectable entities 
here are derived from the 
Primitive class and 
override the intersect() 
method 



Shadows 

• An intersection point is in shadow when the direct path to a 
light source is obstructed by a surface 
 

                      
                                       in shadow 
 
  

                                             
                                             lit 



Shadow Rays 

• Cast “shadow rays” toward each light source during the local 
color estimation 

• Shadow rays are cheaper: 
– Once light is blocked by a primitive, the search stops 
– No sorting is required 

• Occluding geometry does not necessarily completely block or 
allow light through   
– Modulate the ray strength according to occluder 

transparency 
– Stop if strength becomes too low (in shadow) 



Shadow Determination (1) 

Color calculateLocalColor( Ray r, vector<Light*> lights,  
      Scene world ) // point lights are assumed here 
{ 
  int i, j, k; 
  Color col = Color(0); // black 
   
  // For all available lights, trace array towards them  
  for ( i=0; i<lights.size(); i++ ) 
  { 
    vec3 dir = normalize(lights[i]->pos-r.p_isect); 
    Ray shadowRay = Ray(r.p_isect, dir); 
 
    float strength = 1.0f; 
    // Filter the light as it passes through the scene 
    <SEE NEXT SLIDE> 
 
    if (strength>0)   
      col += strength * localShadingModel(r,prim,lights[i]->pos); 
  }  
  return col; 
} 



Shadow Determination (2) 

   ... 
   // Filter the light as it passes through the scene 
   for ( j=0; j<world.numObjects(); j++ ) 
      for ( k=0; k<world.getObject(j)->numPrims(); k++ ) 
      { 
         Primitive *prim = world.getObject(j)->getPrim(k); 
         if (prim->intersect(r)); 
            strength *= prim->material->getTransparency(r); 
 
         // Termination criterion: light almost cut off 
         if ( strength < 0.002 ) 
         { 
            strength=0; 
            break; 
         }  
      } 
   ... 
 



RAY GENERATION 



Shooting Rays – Primary Rays (1) 
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Shooting Rays – Primary Rays (2) 

• The center of each (i, j) pixel in WCS is: 

 
 

• And the corresponding ray (direction) that passes through it is 
given by: 
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Primary Rays - Ray Segment Definition 

• Starting point: 
– Either                                                                         (planar near surface) 

 
– Or                                     (Spherical near surface – Can be zero!)  

 
• Arbitrary ray point: 

 
• t is the (signed) distance from the origin as ray vector is normalized      
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Primary Rays - Clipping Distances 

• Depth buffer and perspective projection require a near and a 
far clipping distance (plane) 

• In ray tracing, depth sorting is handled by ray hit sorting so no 
special ranges are required 

• Distance from viewpoint can take arbitrary values (even 
negative – back of viewer) 

• Far clipping distance determined by numerical limits 
• Near clipping distance can be zero 
• Depth resolution same as floating point precision   



Shooting Rays - Secondary Rays 

• Origin = Last intersection point 
• Direction = 

– Reflected vector 
– Refracted vector 
– Vector to i-th light source:   i

i
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Secondary Rays – Coincidence Pitfall 

• Sec. rays can and will intersect with originating surface point 
(self intersection) 

• Fix: 
– Offset the origin along its direction before casting 
 



Reflection Direction 
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Refraction – Index of Refraction 

• When light enters a dielectric medium, 
its phase velocity changes (const. 
frequency) 

• The ratio of its phase velocity in the 
medium and c (vacuum) is the IOR n: 
 

• n≈1 for thin air 
• n>1 for transparent materials 

n cυ =



Refraction – Snell’s Law 

• At the interface between 2 media 
with IOR n1 and n2, the ray is bent 
according to the law: 
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Refraction Direction (1) 
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• From Pythagorean theorem: 

 
 
 
 
 
 

• Using dot product instead of cosine: 

Refraction Direction (2) 
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Ray Transformations 

• When rays are intersected with moving geometry, BVH trees, 
or other elements with parameters defined in a local 
coordinate system: 
– It is more efficient to transform the ray instead of the 

object! (why?) 
– Example: OBB/BV hierarchies (common structure for scene 

graphs) 
• q =                       Object.RayIntersection     

– Ray expressed in the local reference frame 
– The result is expressed back in WCS 

  

′⋅ = ⋅M q M 1 1( , )− −⋅ ⋅M p M r



Ray Transformations - Example 

WCS x 

y 

ray 

q 

Transformed sphere 
according to matrix 𝐌𝐌. 
Sphere is distorted 

𝐌𝐌−1 ∙ray 
Local CS 

q' 

q = 𝐌𝐌 ∙ q’ 

Perform easy-to-compute  
ray-sphere intersection 



RAY TRACING ACCELERATION TECHNIQUES 



Basic Acceleration Concepts 

Source: https://graphics.stanford.edu/courses/cs348b-05/lectures/lecture3/raytrace_ii.pdf 



Bounding Volumes 

a. Axes-aligned bounding 
box (AABB) 

b. Oriented bounding box 
(OBB) 

c. BV hierarchy (BVH) 
d. Bounding slabs 



Bounding Volumes – Pros & Cons 

• AABB: 
– Easy to implement and initialize 
– Fast test, no ray transformations required 
– Can leave too much void space  degraded pruning performance 

• OBB: 
– Can be costly to initialize (e.g. PCA algorithm) 
– Fast test, ray transformation required 
– Ideal for animated hierarchies (no recalculation of extents required) 
– Tighter fitting than AABB 

• Bounding Slabs: 
– Very efficient, even less void space 
– More computationally expensive than AABB/OBB 



Ray - Scene Graph/BVH Intersection 



Spatial Subdivision Acceleration (1) 

• Primitives can be organized into “bins”, according to rough 
position in space 

• When a ray is cast, it registers the bins it passes through and 
only tests primitives inside those bins 
 

• Spatial subdivision structures can be local to aggregate scene 
nodes (groups) 

• And nested 
– Use ray transformations to go from one local coordinate system to the 

next 



Spatial Subdivision Acceleration (2) 

Uniform grid Visit cells using a 3D DDA method  



Hierarchical Spatial Subdivision 

Source: https://graphics.stanford.edu/courses/cs348b-05/lectures/lecture3/raytrace_ii.pdf 

The spatial subdivision bins (cells) can be hierarchically 
organized too.  



Hierarchical Spatial Subdivision 

Source: https://graphics.stanford.edu/courses/cs348b-05/lectures/lecture3/raytrace_ii.pdf 

Recursive in-order traversal: rays are tested with 
subspaces of a splitting plane (binary subdivision) 



Octree 

• Common structure is the octree: 
• Subdivide space in 8 cells: 

– Up to max depth 
– Until cell contains no  
   primitives 

 



K-d Trees 

• Typically K=3 in graphics (3D) 
• With the K-d tree, 2 things must be determined at 

each level: 
– Which axis to split  usually the longest 
– Where to set the split 

• Median cut 
• Midpoint 
• SAH (surface area heuristic) 

 



K-d Tree Construction Example 

         1                                2                              3                                4 

A 

B 

C 

D 
E 

A 

B 

C 

D 
E 

A 

B 

C 

D 
E 

A 

B 

C 

D 
E 

A, B, 
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A, B, 
D 

B, 
C 

E 
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C 

A, B, C, 
D, E 

A, 
B 

A, 
D 



Complexity Analysis of a Split (1) 

• To decide to split a cell, the cost of not splitting it 𝐶𝐶𝑁𝑁𝑁𝑁 
should be greater than the cost of using a split 𝐶𝐶𝑆𝑆 

• For 𝑁𝑁𝑂𝑂 primitives in the cell, each with intersection 
cost 𝐶𝐶𝑂𝑂 , the cost of using the cell undivided is: 
𝐶𝐶𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑂𝑂 ∙ 𝐶𝐶𝑂𝑂  
 

• The probability that a ray hits a convex shape A 
completely within another convex shape B is: 

    𝑃𝑃𝐴𝐴 = 𝑆𝑆𝑆𝑆(𝐴𝐴)
𝑆𝑆𝑆𝑆(𝐵𝐵)

, where  𝑆𝑆(𝑋𝑋) the surface area 

 



Complexity Analysis of a Split (2) 

• Consider only one splitting axis and a parameter 𝑏𝑏 ∈ 0,1 , 
determining where the split occurs  
– For 𝑏𝑏=1/2: the spatial median, i.e. in the middle 

• The maximum traversal cost (no intersections found, no early 
termination) of the split cell is the weighted sum of the cost 
for the two new cells: 

• 𝐶𝐶𝑆𝑆 𝑏𝑏 = 𝑃𝑃𝐿𝐿 𝑏𝑏 𝑁𝑁𝐿𝐿 𝑏𝑏 𝐶𝐶𝑂𝑂 + 𝑃𝑃𝑅𝑅 𝑏𝑏 𝑁𝑁𝑅𝑅 𝑏𝑏 𝐶𝐶𝑂𝑂 = 

 
𝑆𝑆𝑆𝑆(𝐿𝐿)

𝑆𝑆𝑆𝑆(𝐿𝐿 ∪ 𝑅𝑅)
𝑁𝑁𝐿𝐿 𝑏𝑏 𝐶𝐶𝑂𝑂 +

𝑆𝑆𝑆𝑆(𝑅𝑅)
𝑆𝑆𝑆𝑆(𝐿𝐿 ∪ 𝑅𝑅)

𝑁𝑁𝑅𝑅 𝑏𝑏 𝐶𝐶𝑂𝑂 



Complexity Analysis of a Split (3) 

• 𝑆𝑆𝑆𝑆(𝐿𝐿 ∪ 𝑅𝑅) is the surface of the un-split cell   

• Where 𝑁𝑁𝐿𝐿 𝑏𝑏 ,𝑁𝑁𝑅𝑅 𝑏𝑏  are the number of primitives in the left 
and right part of the subdivided cell  

• Note that 𝑁𝑁𝐿𝐿 𝑏𝑏 + 𝑁𝑁𝑅𝑅 𝑏𝑏 ≠ 𝑁𝑁𝑂𝑂 in general, as primitives may 
cross the split boundary  

 
 



Surface Area Heuristic (1) 

• Determines a splitting plane (and potentially axis, 
too), by minimizing the above cost function 𝐶𝐶𝑆𝑆 

• Facts: 
– Discontinuous function 
– Optimal cut between spatial median and midpoint 

• Two options: 
– Sort primitive bounds per axis, locate median and test 

bounds between median and midpoint 
– Greedily test all bounds  

•  Number of bounds: 2𝑁𝑁𝑂𝑂 or 6𝑁𝑁𝑂𝑂 for concurrent axis 
selection  



Surface Area Heuristic (2) 

Midpoint Splits 

http://www.keithlantz.net/2013/04/kd-tree-construction-using-the-surface-area-heuristic-stack-based-traversal-and-the-hyperplane-separation-theorem/ 



Surface Area Heuristic (3) 

Median Splits 

http://www.keithlantz.net/2013/04/kd-tree-construction-using-the-surface-area-heuristic-stack-based-traversal-and-the-hyperplane-separation-theorem/ 



Surface Area Heuristic (4) 

SAH Splits 

http://www.keithlantz.net/2013/04/kd-tree-construction-using-the-surface-area-heuristic-stack-based-traversal-and-the-hyperplane-separation-theorem/ 



INTERSECTION TESTS 



Intersection Tests: Ray - Plane 

• If the plane equation is: 

• We substitute point p by the line definition: 
 
 

• So: 
  

 
 
 

• If instead of                   we use a normalized vector, t is the signed 
distance along the ray 

1p

2p
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Intersection Tests: Ray - Triangle (1) 

• Barycentric triangle coordinates: 
– Any point in the triangle can be expressed as a weighted 

sum of the triangle vertices (affine combination): 
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Intersection Tests: Ray - Triangle (2) 

• Requiring intersection point in triangle: 
 
 

• And in the form of a linear system (3 unknowns): 
 
 
 
 

• We solve it for  t, u and v  
• If u, v and 1- u - v ≤ 1, then hit point inside triangle  

 
• See [RTI] for an efficient implementation of the above 
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Intersection Tests: Ray – Sphere (1) 

• A Ray intersects a sphere if: 
– Line – sphere equation has 1 root and 0 ≤ t (otherwise the 

ray points away from the sphere) 
– Line – sphere equation has 2 roots: 

• 2 negative: ray points away (no intersection) 
• 1 positive, 1 negative: positive root defines the intersection point 
• 2 positive roots, smallest one corresponds to entry point 



Intersection Tests: Ray – Sphere (2) 

• Combining the sphere parametric equation  
     with the line parametric equation:                              we get: 
 
 
 
 
 
where                      is a vector from the center of the sphere to 
the ray origin  



Intersection Tests: Ray – Sphere (3) 

• This is a normal quadratic equation for t of the form: 
     
where: 
• The discriminant                 specifies the roots and 

corresponding intersection points: 
– D<0: No intersection 
– D=0: One intersection 
– D>0: 2 intersection points:   

      

2 2 0at bt c+ + =
2, ,a b c r= ⋅ = ⋅ = ⋅ −d d m d m m

    
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a
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Deficiencies of Simple Ray Tracing 

• Marginally interactive method, even with 
optimizations only for simple scenes 

• Extremely (and unnaturally) crisp and polished 
images 
– Ideal specular (mirror) reflection and transmission 
– Natural surfaces and media are not “ideal” 

• No other light transport event is modelled 
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