
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2015

Ray Tracing

RAY TRACING PRINCIPLES

What is ray tracing?

• A general mechanism for sampling paths of light in a 3D scene
• We will use this mechanism in path tracing

• Ray Casting mechanism:

– Rays are cast from a point in space towards a specified direction
– Rays are intersected with geometry primitives
– The closest intersection is regarded as a ray “hit”
– Lighting or other attributes are evaluated at the hit location

Simple Ray Casting - Appel’s Method

• For each image pixel, a ray (line segment) is cast from the
viewpoint, crosses the pixel and is directed toward the scene
 • For hit points:
– Send (at least) one ray to each

light source and check visibility
(shadow)

– Shade the point using a local
illumination model

Whitted-style Ray Tracing (1)

• For each image pixel, a ray (line segment) is cast from the
viewpoint, crosses the pixel and is directed toward the scene

• The ray hits the objects, is absorbed or deflected in order to
gather what the observer would “see” through each pixel

• This is a recursive algorithm that spawns new rays at each hit
point

Whitted-style Ray Tracing (2)

Why not Trace Rays from the Lights? (1)

• Infinite rays leave a light source but only a small number lands
on the viewport
– Even fewer when a pinhole camera is considered
– Extremely low probability to hit  Computationally intractable

Why not Trace Rays from the Lights? (2)

• In practice, many path tracing variants, which use the ray
tracing mechanism to form the light paths, do trace rays from
both the camera and the light source domain

Source: http://indigorenderer.com

More than Direct Illumination

• Ray tracing is an elegant recursive algorithm
• The first (primary) rays spawned hit the nearest surface: same

result as in direct rendering
• Secondary rays can be spawned from the intersection point to

track indirect illumination
• Secondary rays capture:

– Shadows (inherent part of ray-tracing, no special algorithm
required)

– Reflections (light bouncing off surfaces)
– Refracted (transmitted) light through the objects

Tracing Rays: Level 0 (Primary Rays)

• Determine ray from viewpoint and
pixel center

• Intersect ray with scene
• Calculate local illumination model

Tracing Rays: Level 1

• Determine shadow ray from light
and intersection

• Test light source visibility
• Calculate and cast reflection ray
• Calculate and cast refraction ray

Tracing Rays: Level 2

• Determine shadow ray from light
and intersection

• Test light source visibility
• Calculate and cast refraction ray

(exiting)
• Estimate local illumination

Tracing Rays: Level 3

• Determine shadow ray from light
and intersection

• Test light source visibility
• Calculate and cast reflection ray
• Estimate local illumination

Tracing Rays: Level 4

• Determine shadow ray from light
and intersection

• Test light source visibility (in
shadow here) – ray intersects
opaque geometry

Who Determines What Rays to Spawn?

• Material properties:
– Reflectance
– Incandescence
– Gloss
– Permeability a
– Index of refraction n
– …

• Number, size and type of lights

Resulting Color

 Spawn Gather

The Basic Ray Tracing Algorithm

Color raytrace(Ray r, int depth, Scene world, vector <Light*> lights)
{ Ray *refl, *tran;
 Color color_r, color_t, color_l;

 // Terminate if maximum recursion depth has been reached.
 if (depth > MAX_DEPTH) return backgroundColor;
 // Intersect ray with scene and keep nearest intersection point
 int hits = findClosestIntersection(r, world);
 if (hits == 0) return backgroundColor;
 // Apply local illumination model, including shadows
 color_l = calculateLocalColor(r, lights, world);
 // Trace reflected and refracted rays according to material properties
 if (r->isect->surface->material->k_refl > 0)
 { refl = calculateReflection(r);
 color_r = raytrace(refl, depth+1, world, lights);
 }
 if (r->isect->surface->material->k_refr > 0)
 { tran = calculateRefraction(r);
 color_t = raytrace(tran, depth+1, world, lights);
 }
 return color_l + color_r + color_t;
}

Ray Tracing Results (1)

Source: http://hof.povray.org/images/ChristmasBaubles.jpg

Ray Tracing Results (2)

Source: NVIDIA OptiX SDK
Simple ray-traced scene rendered at 60 frames per second on a modern GPU at 1080p

Comments

• Conventional primary and secondary ray – scene intersections
must return the closest hit to the ray origin

• If reflection / refraction coefficients are (near) zero, no
secondary rays are spawned

• If no surface is hit, the background color is returned
• Shadow determination is embedded in the local illumination

calculation stage
• A maximum recursion depth is forced upon the algorithm;

Necessary for complex scenes

Termination Criteria

• Maximum recursion depth is reached
• Zero reflectivity / transmission coefficients
• Ray contribution too small to be of significance:

Attenuation due to participating medium density

Effect of Ray Tracing Depth on Images

Ray Data Structures – Requirements

• Degradation effects (absorption, scattering, splitting):
– “strength” indicator (opposite of attenuation)
– Optionally, recursion depth

• Distance sorting of hit points:
– Avoid keeping all intersections and post-sort results
– Keep nearest intersection point or
– Cache distance to nearest hit point

• Local properties of hit point:
– Need to keep track of hit material, primitive and local

attributes (e.g. normal)

A Ray as a Data Structure - Minimum

class ray
{
public:
 ray(const vec3 & start, const vec3 & direction);
 void transform(const mat4 &m);

 vec3 origin;
 vec3 dir;
 vec3 n_isect;
 real t; // real: defined as float or double
 void * payload;
};

Here, position is indirectly
calculated from t

Pointer to an existing
structure (e.g. a primitive)
that holds the local
attributes associated to
the hit point

A Ray as a Data Structure - Extended

class ray
{
public:
 ray(void);
 ray(const vec3 & start, const vec3 & direction);
 void transform(const mat4 &m);

 vec3 origin;
 vec3 dir;
 int depth;
 vec3 p_isect;
 vec3 n_isect;
 vec3 barycentric;
 real t;
 real strength;
 bool hit;
 bool inside;
 class primitive *hit_primitive;
 void *payload;
};

Ray – Scene Intersection: Primitives

Sources: http://paulbourke.net/geometry/blob/ http://www.subblue.com/blog/2009/12/13/mandelbulb

• A primitive in ray tracing is any mathematical entity that can
define a line-primitive equation (intersection points)
– Polygons
– Thresholded density (volume) data
– Parametric surfaces
– Analytical surfaces (e.g. spheres)
– General equations (e.g. fractals)
– Set operations (Constructive Solid
 Geometry)

Ray Tracing Results (3)

Ray tracing using only geometric solids (with CSG in POVRAY)

Ray – Scene Intersection

• A naïve test exhaustively tests a ray against every
primitive in the scene

• Ray – primitive intersections are the most frequent
operations in ray tracing

• We try to minimize their complexity and number:
– Hierarchical data structure acceleration
– Early visibility culling
– Frequent tests are performed with low-complexity

primitives  search refinement
– Parallel execution: Ray tracing is inherently highly parallel

at many levels

Nearest Hit Determination

int findClosestIntersection(Ray r, Scene world)
{
 int hits=0;
 Ray r_temp = r;
 r.t = FLT_MAX;
 for (j=0; j<world.numObjects(); j++)
 for (k=0; k<world.getObject(j)->numPrims(); k++)
 {
 Primitive *prim = world.getObject(j)->getPrim(k);
 prim->intersect(r_temp);
 hits++;

 if (r_temp.t < r.t)
 r = r_temp;
 }
 return hits;
}

All intersectable entities
here are derived from the
Primitive class and
override the intersect()
method

Shadows

• An intersection point is in shadow when the direct path to a
light source is obstructed by a surface

 in shadow

 lit

Shadow Rays

• Cast “shadow rays” toward each light source during the local
color estimation

• Shadow rays are cheaper:
– Once light is blocked by a primitive, the search stops
– No sorting is required

• Occluding geometry does not necessarily completely block or
allow light through
– Modulate the ray strength according to occluder

transparency
– Stop if strength becomes too low (in shadow)

Shadow Determination (1)

Color calculateLocalColor(Ray r, vector<Light*> lights,
 Scene world) // point lights are assumed here
{
 int i, j, k;
 Color col = Color(0); // black

 // For all available lights, trace array towards them
 for (i=0; i<lights.size(); i++)
 {
 vec3 dir = normalize(lights[i]->pos-r.p_isect);
 Ray shadowRay = Ray(r.p_isect, dir);

 float strength = 1.0f;
 // Filter the light as it passes through the scene
 <SEE NEXT SLIDE>

 if (strength>0)
 col += strength * localShadingModel(r,prim,lights[i]->pos);
 }
 return col;
}

Shadow Determination (2)

 ...
 // Filter the light as it passes through the scene
 for (j=0; j<world.numObjects(); j++)
 for (k=0; k<world.getObject(j)->numPrims(); k++)
 {
 Primitive *prim = world.getObject(j)->getPrim(k);
 if (prim->intersect(r));
 strength *= prim->material->getTransparency(r);

 // Termination criterion: light almost cut off
 if (strength < 0.002)
 {
 strength=0;
 break;
 }
 }
 ...

RAY GENERATION

Shooting Rays – Primary Rays (1)

tan /v v vw d h w aϕ= =

UL v vd w h= + ⋅ − + ⇒p c n u v   tanUL
hd
w

ϕ  = + + ⋅ −    
p c n v u  

2 2v vw h
w h

δ δ= = −u u v v   

Shooting Rays – Primary Rays (2)

• The center of each (i, j) pixel in WCS is:

• And the corresponding ray (direction) that passes through it is
given by:

1 1
2 2UL i jδ δ   = + + + +   

   
p p u v 

-
-

=
p cr
p c



Primary Rays - Ray Segment Definition

• Starting point:
– Either (planar near surface)

– Or (Spherical near surface – Can be zero!)

• Arbitrary ray point:

• t is the (signed) distance from the origin as ray vector is normalized

1 1
2 2UL i jδ δ   = + + + +   

   
p p u v 

start n= + ⋅p c r

() startt t= = + ⋅q q p r

Primary Rays - Clipping Distances

• Depth buffer and perspective projection require a near and a
far clipping distance (plane)

• In ray tracing, depth sorting is handled by ray hit sorting so no
special ranges are required

• Distance from viewpoint can take arbitrary values (even
negative – back of viewer)

• Far clipping distance determined by numerical limits
• Near clipping distance can be zero
• Depth resolution same as floating point precision

Shooting Rays - Secondary Rays

• Origin = Last intersection point
• Direction =

– Reflected vector
– Refracted vector
– Vector to i-th light source: i

i

−
=

−
l q

r
l q



Secondary Rays – Coincidence Pitfall

• Sec. rays can and will intersect with originating surface point
(self intersection)

• Fix:
– Offset the origin along its direction before casting

Reflection Direction

2

cos
()

2 ()

r i

i i

i i

i i

r i i

proj
θ

= −

= + =
+ =
− ⋅ ⇒
= − ⋅

n

r t r
t r r
r n
r n n r
r r n n r



 

  

 

   

    

t


t


Refraction – Index of Refraction

• When light enters a dielectric medium,
its phase velocity changes (const.
frequency)

• The ratio of its phase velocity in the
medium and c (vacuum) is the IOR n:

• n≈1 for thin air
• n>1 for transparent materials

n cυ =

Refraction – Snell’s Law

• At the interface between 2 media
with IOR n1 and n2, the ray is bent
according to the law:

1

2

sin
sin

t

i

n
n

θ
θ

=

Refraction Direction (1)

cos sint t tθ θ= − −r n g  

cos

()
()

p i i

i i

i i

θ= − − =

− − ⋅ − ⋅ =

− + ⋅

r r n
r n r n
r n r n

  

   

   

sin
p

iθ
=

r
g




()
sin sin

p i i

i iθ θ
− + ⋅

= =
r r n n r

g
    



() sin
cos ()

sin
t

t t i i
i

θ
θ

θ
= − − ⋅ −r n n n r r     

• From Pythagorean theorem:

• Using dot product instead of cosine:

Refraction Direction (2)

() sin
cos ()

sin
t

t t i i
i

θ
θ

θ
= − − ⋅ −r n n n r r     

()

2

2
21

2
2

2
21

2
2

cos 1 sin

1 sin

1 1 cos

t t

i

i

n
n

n
n

θ θ

θ

θ

= − =

− =

− −

() ()()
2

21 1 1
2

2 2 2

1 1t i i i
n n n
n n n

 
 = − ⋅ + − − ⋅
 
 

r r n n r n r      

Ray Transformations

• When rays are intersected with moving geometry, BVH trees,
or other elements with parameters defined in a local
coordinate system:
– It is more efficient to transform the ray instead of the

object! (why?)
– Example: OBB/BV hierarchies (common structure for scene

graphs)
• q = Object.RayIntersection

– Ray expressed in the local reference frame
– The result is expressed back in WCS

′⋅ = ⋅M q M 1 1(,)− −⋅ ⋅M p M r

Ray Transformations - Example

WCS x

y

ray

q

Transformed sphere
according to matrix 𝐌𝐌.
Sphere is distorted

𝐌𝐌−1 ∙ray
Local CS

q'

q = 𝐌𝐌 ∙ q’

Perform easy-to-compute
ray-sphere intersection

RAY TRACING ACCELERATION TECHNIQUES

Basic Acceleration Concepts

Source: https://graphics.stanford.edu/courses/cs348b-05/lectures/lecture3/raytrace_ii.pdf

Bounding Volumes

a. Axes-aligned bounding
box (AABB)

b. Oriented bounding box
(OBB)

c. BV hierarchy (BVH)
d. Bounding slabs

Bounding Volumes – Pros & Cons

• AABB:
– Easy to implement and initialize
– Fast test, no ray transformations required
– Can leave too much void space  degraded pruning performance

• OBB:
– Can be costly to initialize (e.g. PCA algorithm)
– Fast test, ray transformation required
– Ideal for animated hierarchies (no recalculation of extents required)
– Tighter fitting than AABB

• Bounding Slabs:
– Very efficient, even less void space
– More computationally expensive than AABB/OBB

Ray - Scene Graph/BVH Intersection

Spatial Subdivision Acceleration (1)

• Primitives can be organized into “bins”, according to rough
position in space

• When a ray is cast, it registers the bins it passes through and
only tests primitives inside those bins

• Spatial subdivision structures can be local to aggregate scene
nodes (groups)

• And nested
– Use ray transformations to go from one local coordinate system to the

next

Spatial Subdivision Acceleration (2)

Uniform grid Visit cells using a 3D DDA method

Hierarchical Spatial Subdivision

Source: https://graphics.stanford.edu/courses/cs348b-05/lectures/lecture3/raytrace_ii.pdf

The spatial subdivision bins (cells) can be hierarchically
organized too.

Hierarchical Spatial Subdivision

Source: https://graphics.stanford.edu/courses/cs348b-05/lectures/lecture3/raytrace_ii.pdf

Recursive in-order traversal: rays are tested with
subspaces of a splitting plane (binary subdivision)

Octree

• Common structure is the octree:
• Subdivide space in 8 cells:

– Up to max depth
– Until cell contains no
 primitives

K-d Trees

• Typically K=3 in graphics (3D)
• With the K-d tree, 2 things must be determined at

each level:
– Which axis to split  usually the longest
– Where to set the split

• Median cut
• Midpoint
• SAH (surface area heuristic)

K-d Tree Construction Example

 1 2 3 4

A

B

C

D
E

A

B

C

D
E

A

B

C

D
E

A

B

C

D
E

A, B,
C, D E E

A, B,
D

B,
C

E

B,
C

A, B, C,
D, E

A,
B

A,
D

Complexity Analysis of a Split (1)

• To decide to split a cell, the cost of not splitting it 𝐶𝐶𝑁𝑁𝑁𝑁
should be greater than the cost of using a split 𝐶𝐶𝑆𝑆

• For 𝑁𝑁𝑂𝑂 primitives in the cell, each with intersection
cost 𝐶𝐶𝑂𝑂 , the cost of using the cell undivided is:
𝐶𝐶𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑂𝑂 ∙ 𝐶𝐶𝑂𝑂

• The probability that a ray hits a convex shape A
completely within another convex shape B is:

 𝑃𝑃𝐴𝐴 = 𝑆𝑆𝑆𝑆(𝐴𝐴)
𝑆𝑆𝑆𝑆(𝐵𝐵)

, where 𝑆𝑆(𝑋𝑋) the surface area

Complexity Analysis of a Split (2)

• Consider only one splitting axis and a parameter 𝑏𝑏 ∈ 0,1 ,
determining where the split occurs
– For 𝑏𝑏=1/2: the spatial median, i.e. in the middle

• The maximum traversal cost (no intersections found, no early
termination) of the split cell is the weighted sum of the cost
for the two new cells:

• 𝐶𝐶𝑆𝑆 𝑏𝑏 = 𝑃𝑃𝐿𝐿 𝑏𝑏 𝑁𝑁𝐿𝐿 𝑏𝑏 𝐶𝐶𝑂𝑂 + 𝑃𝑃𝑅𝑅 𝑏𝑏 𝑁𝑁𝑅𝑅 𝑏𝑏 𝐶𝐶𝑂𝑂 =

𝑆𝑆𝑆𝑆(𝐿𝐿)

𝑆𝑆𝑆𝑆(𝐿𝐿 ∪ 𝑅𝑅)
𝑁𝑁𝐿𝐿 𝑏𝑏 𝐶𝐶𝑂𝑂 +

𝑆𝑆𝑆𝑆(𝑅𝑅)
𝑆𝑆𝑆𝑆(𝐿𝐿 ∪ 𝑅𝑅)

𝑁𝑁𝑅𝑅 𝑏𝑏 𝐶𝐶𝑂𝑂

Complexity Analysis of a Split (3)

• 𝑆𝑆𝑆𝑆(𝐿𝐿 ∪ 𝑅𝑅) is the surface of the un-split cell

• Where 𝑁𝑁𝐿𝐿 𝑏𝑏 ,𝑁𝑁𝑅𝑅 𝑏𝑏 are the number of primitives in the left
and right part of the subdivided cell

• Note that 𝑁𝑁𝐿𝐿 𝑏𝑏 + 𝑁𝑁𝑅𝑅 𝑏𝑏 ≠ 𝑁𝑁𝑂𝑂 in general, as primitives may
cross the split boundary

Surface Area Heuristic (1)

• Determines a splitting plane (and potentially axis,
too), by minimizing the above cost function 𝐶𝐶𝑆𝑆

• Facts:
– Discontinuous function
– Optimal cut between spatial median and midpoint

• Two options:
– Sort primitive bounds per axis, locate median and test

bounds between median and midpoint
– Greedily test all bounds

• Number of bounds: 2𝑁𝑁𝑂𝑂 or 6𝑁𝑁𝑂𝑂 for concurrent axis
selection

Surface Area Heuristic (2)

Midpoint Splits

http://www.keithlantz.net/2013/04/kd-tree-construction-using-the-surface-area-heuristic-stack-based-traversal-and-the-hyperplane-separation-theorem/

Surface Area Heuristic (3)

Median Splits

http://www.keithlantz.net/2013/04/kd-tree-construction-using-the-surface-area-heuristic-stack-based-traversal-and-the-hyperplane-separation-theorem/

Surface Area Heuristic (4)

SAH Splits

http://www.keithlantz.net/2013/04/kd-tree-construction-using-the-surface-area-heuristic-stack-based-traversal-and-the-hyperplane-separation-theorem/

INTERSECTION TESTS

Intersection Tests: Ray - Plane

• If the plane equation is:

• We substitute point p by the line definition:

• So:

• If instead of we use a normalized vector, t is the signed
distance along the ray

1p

2p

n

Intersection Tests: Ray - Triangle (1)

• Barycentric triangle coordinates:
– Any point in the triangle can be expressed as a weighted

sum of the triangle vertices (affine combination):

0 1 2(, ,) ,
1

u v w w u v
u v w

= + +

+ + =

q v v v

Intersection Tests: Ray - Triangle (2)

• Requiring intersection point in triangle:

• And in the form of a linear system (3 unknowns):

• We solve it for t, u and v
• If u, v and 1- u - v ≤ 1, then hit point inside triangle

• See [RTI] for an efficient implementation of the above

0 1 2(1)t u v u v+ = − − + +p d v v v


[]1 0 2 0 0

t
u
v

 
  − − − = −   
  

d v v v v p v


Intersection Tests: Ray – Sphere (1)

• A Ray intersects a sphere if:
– Line – sphere equation has 1 root and 0 ≤ t (otherwise the

ray points away from the sphere)
– Line – sphere equation has 2 roots:

• 2 negative: ray points away (no intersection)
• 1 positive, 1 negative: positive root defines the intersection point
• 2 positive roots, smallest one corresponds to entry point

Intersection Tests: Ray – Sphere (2)

• Combining the sphere parametric equation
 with the line parametric equation: we get:

where is a vector from the center of the sphere to
the ray origin

Intersection Tests: Ray – Sphere (3)

• This is a normal quadratic equation for t of the form:

where:
• The discriminant specifies the roots and

corresponding intersection points:
– D<0: No intersection
– D=0: One intersection
– D>0: 2 intersection points:

2 2 0at bt c+ + =
2, ,a b c r= ⋅ = ⋅ = ⋅ −d d m d m m

    

2b ac−

b Dt
a

− ±
=

Deficiencies of Simple Ray Tracing

• Marginally interactive method, even with
optimizations only for simple scenes

• Extremely (and unnaturally) crisp and polished
images
– Ideal specular (mirror) reflection and transmission
– Natural surfaces and media are not “ideal”

• No other light transport event is modelled

Contributors

• Georgios Papaioannou

References
[RTI]: Fast, Minimum Storage Ray/Triangle Intersection , Möller &

Trumbore. Journal of Graphics Tools, 1997

	Slide Number 1
	Ray Tracing Principles
	What is ray tracing?
	Simple Ray Casting - Appel’s Method
	Whitted-style Ray Tracing (1)
	Whitted-style Ray Tracing (2)
	Why not Trace Rays from the Lights? (1)
	Why not Trace Rays from the Lights? (2)
	More than Direct Illumination
	Tracing Rays: Level 0 (Primary Rays)
	Tracing Rays: Level 1
	Tracing Rays: Level 2
	Tracing Rays: Level 3
	Tracing Rays: Level 4
	Who Determines What Rays to Spawn?
	Resulting Color
	The Basic Ray Tracing Algorithm
	Ray Tracing Results (1)
	Ray Tracing Results (2)
	Comments
	Termination Criteria
	Effect of Ray Tracing Depth on Images
	Ray Data Structures – Requirements
	A Ray as a Data Structure - Minimum
	A Ray as a Data Structure - Extended
	Ray – Scene Intersection: Primitives
	Ray Tracing Results (3)
	Ray – Scene Intersection
	Nearest Hit Determination
	Shadows
	Shadow Rays
	Shadow Determination (1)
	Shadow Determination (2)
	Ray Generation
	Shooting Rays – Primary Rays (1)
	Shooting Rays – Primary Rays (2)
	Primary Rays - Ray Segment Definition
	Primary Rays - Clipping Distances
	Shooting Rays - Secondary Rays
	Secondary Rays – Coincidence Pitfall
	Reflection Direction
	Refraction – Index of Refraction
	Refraction – Snell’s Law
	Refraction Direction (1)
	Refraction Direction (2)
	Ray Transformations
	Ray Transformations - Example
	Ray Tracing Acceleration Techniques
	Basic Acceleration Concepts
	Bounding Volumes
	Bounding Volumes – Pros & Cons
	Ray - Scene Graph/BVH Intersection
	Spatial Subdivision Acceleration (1)
	Spatial Subdivision Acceleration (2)
	Hierarchical Spatial Subdivision
	Hierarchical Spatial Subdivision
	Octree
	K-d Trees
	K-d Tree Construction Example
	Complexity Analysis of a Split (1)
	Complexity Analysis of a Split (2)
	Complexity Analysis of a Split (3)
	Surface Area Heuristic (1)
	Surface Area Heuristic (2)
	Surface Area Heuristic (3)
	Surface Area Heuristic (4)
	Intersection Tests
	Intersection Tests: Ray - Plane
	Intersection Tests: Ray - Triangle (1)
	Intersection Tests: Ray - Triangle (2)
	Intersection Tests: Ray – Sphere (1)
	Intersection Tests: Ray – Sphere (2)
	Intersection Tests: Ray – Sphere (3)
	Deficiencies of Simple Ray Tracing
	Contributors

