
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Viewing and Projections

VIEWING TRANSFORMATION

The Virtual Camera

Y

• All graphics pipelines perceive the virtual world
through a virtual observer (camera), also positioned
in the 3D environment

“eye” (virtual camera)

Eye Coordinate System (1)

• The virtual camera or “eye” also has its own
coordinate system, the eye coordinate system

Eye coordinate system (ECS)

(WCS)

eye

Global (world) coordinate system

X

Y

Z

X

Y

Y

Z

Eye Coordinate System (2)

• Expressing the scene’s geometry in the ECS is a
natural “egocentric” representation of the world:

– It is how we perceive the user’s relationship with the
environment

– It is usually a more convenient space to perform certain
rendering tasks, since it is related to the ordering of the
geometry in the final image

Eye Coordinate System (3)

• Coordinates as “seen” from the camera reference
frame

Y

X

ECS

Eye Coordinate System (4)

• What “egocentric” means in the context of
transformations?

– Whatever transformation produced the camera system 
its inverse transformation expresses the world w.r.t. the
camera

• Example: If I move the camera “left”, objects appear
to move “right” in the camera frame:

WCS camera motion Eye-space object motion

Moving to Eye Coordinates

• Moving to ECS is a change of coordinates
transformation

• The WCSECS transformation expresses the 3D
environment in the camera coordinate system

• We can define the ECS transformation in two ways:

– A) Invert the transformations we applied to place the
camera in a particular pose

– B) Explicitly define the coordinate system by placing the
camera at a specific location and setting up the camera
vectors

WCSECS: Version A (1)

• Let us assume that we have an initial camera at the
origin of the WCS

• Then, we can move and rotate the “eye” to any pose
(rigid transformations only: No sense in scaling a
camera):

𝐨𝑐 , 𝐮, 𝐯, 𝐰 = 𝐑1𝐑2𝐓1𝐑𝟐… .𝐓𝑛𝐑𝑚 𝐨, ො𝐞1, ො𝐞2, ො𝐞3
• The eye space coordinates of shapes, given their

WCS coordinates can be simply obtained by:

𝐯𝐸𝐶𝑆 = 𝐌𝑐
−1𝐯𝑊𝐶𝑆

𝐌𝑐

WCSECS: Version A (2)

• This version of the WCSECS transformation
computation is useful in cases where:

– The camera system is dependent on (attached to) some
moving geometry (e.g. a driver inside a car)

– The camera motion is well-defined by a simple trajectory
(e.g. an orbit around an object being inspected)

WCSECS: Version B (“Look At”) (1)

• Let us directly define a camera system by specifying
where the camera is, where does it point to and
what is its roll (or usually, its “up” or “right” vector)

right

up

roll

front
look-at

camera position

WCSECS: Version B (“Look At”) (2)

• The camera coordinate system offset is the eye
(camera) position 𝐨𝑐

• Given the look-at position (the camera target) 𝐩𝑡𝑔𝑡
and 𝐨𝑐 , we can determine the “front” direction:

Ԧ𝐝𝑓𝑟𝑜𝑛𝑡 = 𝐩𝑡𝑔𝑡 − 𝐨𝑐 (normalized)

𝐩𝑡𝑔𝑡

𝐨𝑐

WCSECS: Version B (“Look At”) (3)

• The “up” or “right” vector need not be given
precisely, as we can infer the coordinate system
indirectly

• Let us provide an “upright” up vector: Ԧ𝐝𝑢𝑝 =(0,1,0)

• Provided that Ԧ𝐝𝑢𝑝 is not parallel to Ԧ𝐝𝑓𝑟𝑜𝑛𝑡:

𝐮 = Ԧ𝐝𝑓𝑟𝑜𝑛𝑡 × Ԧ𝐝𝑢𝑝, ෝ𝐮 = 𝐮/ 𝐮

ෝ𝐰 = − Ԧ𝐝𝑓𝑟𝑜𝑛𝑡/ Ԧ𝐝𝑓𝑟𝑜𝑛𝑡

ො𝐯 = ෝ𝐰 × ෝ𝐮

Ԧ𝐝𝑢𝑝
ො𝐯

ෝ𝐮

ෝ𝐰 Ԧ𝐝𝑓𝑟𝑜𝑛𝑡

WCSECS: Version B (“Look At”) (4)

• We can use the derived local camera coordinate
system to define the change of coordinates
transformation (see 3D Transformations):

𝐩𝐸𝐶𝑆 =

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

∙ 𝐓−𝐎𝑐 ∙ 𝐩𝑊𝐶𝑆

WCSECS: Version B (“Look At”) (5)

• This version of the WCSECS transformation
computation is useful in cases where:

– There is a free roaming camera

– The camera follows (observes) a certain target in space

– The position (and target) are explicitly defined

PROJECTIONS

Projection

• Is the process of transforming 3D coordinates of
shapes to points on the viewing plane

• Viewing plane is the 2D flat surface that represents
an embedding of an image into the 3D space

– We can define viewing systems where the
“projection” surface is not planar (e.g. fish-eye
lenses etc.)

• (Planar) projections are define by a projection
(viewing) plane and a center of projection (eye)

Taxonomy

• Two main categories:

– Parallel projections:
infinite distance between
CoP and viewing plane

– Perspective projections:
Finite distance between
CoP and viewing plane

Where do We Perform the Projections?

• Since in projections we “collapse” a 3D shape onto a
2D surface, we essentially want to loose one
coordinate (say the depth z)

• Therefore, it is convenient to perform the projection
when shapes are expressed in the ECS

Orthographic Projection (1)

• The simplest projection:

• Collapse the coordinates on plane parallel to xy at
z=d (usually 0)

𝑦′ = 𝑦

𝑥′ = 𝑥

ECS
y

x

z

𝐩 = (𝑥, 𝑦, 𝑧)𝐩′ = (𝑥′, 𝑦′, 𝑑)

𝑑𝑧′ = 𝑑

𝑧 = 𝑑 (view plane)

Orthographic Projection (2)

• Very simple matrix representation

• Note that the rank of the matrix is less than its
dimension: This not a reversible transformation!

– This is also intuitively justified since we “loose” all
information about depth

𝐏𝑂𝑅𝑇𝐻𝑂 =

1 0 0 0
0 1 0 0
0 0 0 𝑑
0 0 0 1

The Pinhole Camera Model

• It is an ideal camera (i.e. cannot exist in practice)

• It is the simplest modeling of a camera:

photographic

Image sensor

For simplicity, graphics use a “front”

symmetrical projection plane

The Perspective Projection

• From similar triangles, we have:

𝑦′ =
𝑑 ∙ 𝑦

𝑧

𝑥′ =
𝑑 ∙ 𝑥

𝑧 ECS
y

x

z

𝐩 = (𝑥, 𝑦, 𝑧)

𝐩′ = (𝑥′, 𝑦′, 𝑑)

𝑦′
𝑦

𝑑
𝑧

𝑧′ = 𝑑

𝑧 = 𝑑 (view plane)

Matrix Form of Perspective Projection

• The perspective projection is not a linear operation
(division by z) 

• It cannot be completely represented by a linear
operator such as a matrix multiplication

𝐏𝑃𝐸𝑅 =

𝑑 0 0 0
0 𝑑 0 0
0 0 𝑑 0
0 0 1 0

𝐏𝑃𝐸𝑅 ∙ 𝐩𝑊𝐶𝑆 =

𝑥 ∙ 𝑑
𝑦 ∙ 𝑑
𝑧 ∙ 𝑑
𝑧

𝑥 ∙ 𝑑
𝑦 ∙ 𝑑
𝑧 ∙ 𝑑
𝑧

/𝑧 =

𝑥 ∙ 𝑑/𝑧
𝑦 ∙ 𝑑/𝑧
𝑑
1

Requires a division by the w coordinate

to rectify the homogeneous coordinates

Properties of the Perspective Projection

• Lines are projected to lines

• Distances are not preserved

• Angles between lines are not preserved unless lines
are parallel to the view plane

• Perspective foreshortening: The size of the
projected shape is inversely proportional to the
distance to the plane

The Impact of Focal Distance d

What Happens After Projection? (1)

• Coordinates are transformed to a “post-projective”
space

Y

X

ECS

Y

X

Post-projective

space

What Happens After Projection? (2)

• Remember also that “depth” is for now collapsed to
the focal distance

• How then are we going to use the projected
coordinates to perform “depth” sorting in order to
remove hidden surfaces?

• Also, how do we define the extents of what we can
see?

Preserving the Depth

• Regardless of what the projection is, we also retain
the transformed z values

• For numerical stability, representation accuracy and
plausibility of displayed image, we limit the z-range

• 𝑛 ≤ 𝑧 ≤ 𝑓,

– 𝑛=near clipping value,

– 𝑓=far clipping value,

• The boundaries (line segments) of the image, form
planes in space:

• The intersection of the visible subspaces, defines
what we can see inside a view frustum

The View Frustum

Z

X

Y

The Clipping Volume (1)

• The viewing frustum, forms a clipping volume

• It defines which parts of the 3D world are discarded, i.e. do
not contribute to the final rendering of the image

• For many rendering architectures, this is a closed volume
(capped by the far plane)

Right clipping

plane

Near clipping

plane

Orthographic

Clipping volume
Perspective

Clipping volume

The Clipping Volume (2)

• After projection, the contents of the clipping volume
are warped to match a rectangular paralepiped

• This post-projective volume is usually considered
normalized and its local coordinate system is called
Canonical Screen Space (CSS)

• The respective device coordinates are also called
Normalized Device Coordinates (NDC)

Orthographic Projection Revisited (1)

• Let us now create an orthographic projection that
transforms a specific clipping box volume (left, right,
bottom, top, near, far) to CSS:

Z

X

Y

Orthographic Projection Revisited (2)

• A simple translation  scaling transformation can
warp the clipping volume into NDC

Z

X

Y

(-1,-1,-1)

(1, 1, 1)

Notice the change of handedness here:

(-1 corresponds to “near”, while “far” is 1)

Orthographic Projection Revisited (3)

Perspective Projection Revisited (1)

• We want a similar transformation to warp the
contents of the perspective frustum into a
normalized cube space (CSS)

• Let us now see what happens to geometry when the
Cartesian coordinates are perspectively projected
(warped) after the transformation:

Perspective Projection Revisited (2)

• In perspective projection, the clipping space is a
capped pyramid (frustum)

Perspective Projection Revisited (3)

• We still need to perform the perspective division

• We also need to retain the depth information

• Depth must obey the same transformation (division
by z)  retain straight lines

• So it must be of the general form: zs=A+B/ze

• Solving A and B for the boundary conditions:
f=A+B/f and n=A+B/n:

• A=n+f

• B=-nf 

• zs=n+f-nf/ze

Perspective Projection Revisited (4)

• zs=n+f-nf/ze

Perspective Projection Revisited (5)

Viewing frustum Post-projective (NDC) space

Perspective Projection Revisited (6)

• Next, we must normalize the result to bring it to the
CSS coordinates:

Perspective Projection Revisited (7)

• Of course, we still need to divide with the w
coordinate after the matrix multiplication

Extended Perspective Projection (1)

• In general, the frustum
axis is not aligned with
the viewing direction

• To bring this frustum to
the CSS normalized
volume, we must first
skew it

Extended Perspective Projection (2)

• Why do we need an off-axis projection?
Stereo

Multi-view rendering

Planar reflections

Extended Perspective Projection (3)

• The center of the near and
far cap must coincide with
the z axis

• Therefore, using the z-based
shear transformation:

• We require:
𝑏0 + 𝑡𝑜

2
+ 𝐵𝑛𝑜 = 0

𝑙0 + 𝑟𝑜

2
+ 𝐴𝑛𝑜 = 0

Perspective: Putting Everything Together (1)

• The final extended perspective transformation matrix:

Contributors

• Georgios Papaioannou

• Sources:

– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis,
Graphics & Visualization: Principles and Algorithms, CRC
Press

