

COMPUTER GRAPHICS COURSE

Viewing and Projections

VIEWING TRANSFORMATION

The Virtual Camera

 All graphics pipelines perceive the virtual world through a virtual observer (camera), also positioned in the 3D environment

Eye Coordinate System (1)

• The virtual camera or "eye" also has its own coordinate system, the eye coordinate system

Eye Coordinate System (2)

- Expressing the scene's geometry in the ECS is a natural "egocentric" representation of the world:
 - It is how we perceive the user's relationship with the environment
 - It is usually a more convenient space to perform certain rendering tasks, since it is related to the ordering of the geometry in the final image

Eye Coordinate System (3)

Coordinates as "seen" from the camera reference

frame

Eye Coordinate System (4)

- What "egocentric" means in the context of transformations?
 - Whatever transformation produced the camera system >
 its inverse transformation expresses the world w.r.t. the
 camera
- Example: If I move the camera "left", objects appear to move "right" in the camera frame:

Eye-space object motion

Moving to Eye Coordinates

- Moving to ECS is a change of coordinates transformation
- The WCS→ECS transformation expresses the 3D environment in the camera coordinate system
- We can define the ECS transformation in two ways:
 - A) Invert the transformations we applied to place the camera in a particular pose
 - B) Explicitly define the coordinate system by placing the camera at a specific location and setting up the camera vectors

WCS \rightarrow ECS: Version A (1)

- Let us assume that we have an initial camera at the origin of the WCS
- Then, we can move and rotate the "eye" to any pose (rigid transformations only: No sense in scaling a camera):

$$\{\mathbf{o}_c, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}\} = \mathbf{R}_1 \mathbf{R}_2 \mathbf{T}_1 \mathbf{R}_2 \dots \mathbf{T}_n \mathbf{R}_m \{\mathbf{o}, \hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3\}$$

 The eye space coordinates of shapes, given their WCS coordinates can be simply obtained by:

$$\mathbf{v}_{ECS} = \mathbf{M}_c^{-1} \mathbf{v}_{WCS}$$

WCS \rightarrow ECS: Version A (2)

- This version of the WCS→ECS transformation computation is useful in cases where:
 - The camera system is dependent on (attached to) some moving geometry (e.g. a driver inside a car)
 - The camera motion is well-defined by a simple trajectory (e.g. an orbit around an object being inspected)

WCS→ECS: Version B ("Look At") (1)

 Let us directly define a camera system by specifying where the camera is, where does it point to and what is its roll (or usually, its "up" or "right" vector)

WCS→ECS: Version B ("Look At") (2)

- The camera coordinate system offset is the eye (camera) position \mathbf{o}_c
- Given the look-at position (the camera target) \mathbf{p}_{tgt} and \mathbf{o}_c , we can determine the "front" direction:

$$\vec{\mathbf{d}}_{front} = \mathbf{p}_{tgt} - \mathbf{o}_c$$
 (normalized)

WCS→ECS: Version B ("Look At") (3)

- The "up" or "right" vector need not be given precisely, as we can infer the coordinate system indirectly
- Let us provide an "upright" up vector: $\vec{\mathbf{d}}_{up} = (0,1,0)$
- Provided that $\vec{\mathbf{d}}_{up}$ is not parallel to $\vec{\mathbf{d}}_{front}$:

$$\widehat{\mathbf{w}} = -\vec{\mathbf{d}}_{front} / \|\vec{\mathbf{d}}_{front}\|$$

$$\vec{\mathbf{u}} = \vec{\mathbf{d}}_{front} \times \vec{\mathbf{d}}_{up}, \quad \widehat{\mathbf{u}} = \vec{\mathbf{u}} / \|\vec{\mathbf{u}}\|$$

$$\widehat{\mathbf{v}} = \widehat{\mathbf{w}} \times \widehat{\mathbf{u}}$$

WCS \rightarrow ECS: Version B ("Look At") (4)

 We can use the derived local camera coordinate system to define the change of coordinates transformation (see 3D Transformations):

$$\mathbf{p}_{ECS} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \mathbf{T}_{-\mathbf{0}_{c}} \cdot \mathbf{p}_{WCS}$$

WCS→ECS: Version B ("Look At") (5)

- This version of the WCS→ECS transformation computation is useful in cases where:
 - There is a free roaming camera
 - The camera follows (observes) a certain target in space
 - The position (and target) are explicitly defined

PROJECTIONS

Projection

- Is the process of transforming 3D coordinates of shapes to points on the viewing plane
- Viewing plane is the 2D flat surface that represents an embedding of an image into the 3D space
 - We can define viewing systems where the "projection" surface is not planar (e.g. fish-eye lenses etc.)
- (Planar) projections are define by a projection (viewing) plane and a center of projection (eye)

Taxonomy

- Two main categories:
 - Parallel projections:
 infinite distance between
 CoP and viewing plane

Perspective projections:
 Finite distance between
 CoP and viewing plane

Where do We Perform the Projections?

- Since in projections we "collapse" a 3D shape onto a 2D surface, we essentially want to loose one coordinate (say the depth z)
- Therefore, it is convenient to perform the projection when shapes are expressed in the ECS

Orthographic Projection (1)

- The simplest projection:
- Collapse the coordinates on plane parallel to xy at z=d (usually 0)

$$y' = y$$
$$x' = x$$
$$z' = d$$

Orthographic Projection (2)

- Very simple matrix representation
- Note that the rank of the matrix is less than its dimension: This not a reversible transformation!
 - This is also intuitively justified since we "loose" all information about depth

$$\mathbf{P}_{ORTHO} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The Pinhole Camera Model

- It is an ideal camera (i.e. cannot exist in practice)
- It is the simplest modeling of a camera:

For simplicity, graphics use a "front" symmetrical projection plane

The Perspective Projection

• From similar triangles, we have:

$$y' = \frac{d \cdot y}{z}$$
$$x' = \frac{d \cdot x}{z}$$
$$z' = d$$

Matrix Form of Perspective Projection

- The perspective projection is not a linear operation (division by z) \rightarrow
- It cannot be completely represented by a linear operator such as a matrix multiplication

$$\mathbf{P}_{PER} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} \text{Requires a division by the w coordinate} \\ \text{to rectify the homogeneous coordinates} \\ \end{bmatrix}$$

$$\mathbf{P}_{PER} \cdot \mathbf{p}_{WCS} = \begin{bmatrix} x \cdot d \\ y \cdot d \\ z \cdot d \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} x \cdot d \\ y \cdot d \\ z \cdot d \\ z \end{bmatrix} / z = \begin{bmatrix} x \cdot d/z \\ y \cdot d/z \\ d \\ 1 \end{bmatrix}$$

Properties of the Perspective Projection

- Lines are projected to lines
- Distances are not preserved
- Angles between lines are not preserved unless lines are parallel to the view plane
- Perspective foreshortening: The size of the projected shape is inversely proportional to the distance to the plane

The Impact of Focal Distance d

What Happens After Projection? (1)

 Coordinates are transformed to a "post-projective" space

What Happens After Projection? (2)

- Remember also that "depth" is for now collapsed to the focal distance
- How then are we going to use the projected coordinates to perform "depth" sorting in order to remove hidden surfaces?
- Also, how do we define the extents of what we can see?

Preserving the Depth

- Regardless of what the projection is, we also retain the transformed z values
- For numerical stability, representation accuracy and plausibility of displayed image, we limit the z-range
- $n \le z \le f$,
 - -n=near clipping value,
 - f=far clipping value,

The View Frustum

 The boundaries (line segments) of the image, form planes in space:

 The intersection of the visible subspaces, defines what we can see inside a view frustum

The Clipping Volume (1)

- The viewing frustum, forms a clipping volume
- It defines which parts of the 3D world are discarded, i.e. do not contribute to the final rendering of the image
- For many rendering architectures, this is a closed volume (capped by the far plane)

The Clipping Volume (2)

- After projection, the contents of the clipping volume are warped to match a rectangular paralepiped
- This post-projective volume is usually considered normalized and its local coordinate system is called Canonical Screen Space (CSS)
- The respective device coordinates are also called Normalized Device Coordinates (NDC)

Orthographic Projection Revisited (1)

 Let us now create an orthographic projection that transforms a specific clipping box volume (left, right, bottom, top, near, far) to CSS:

- $x_e = l$, the *left* clip plane;
- $x_e = r$, the *right* clip plane, (r > l);
- $y_e = b$, the *bottom* clip plane;
- $y_e = t$, the *top* clip plane, (t > b);
- $z_e = n$, the *near* clip plane;
- $z_e = f$, the far clip plane, (f < n, since the z_e axis points toward the observer.)

Orthographic Projection Revisited (2)

Notice the change of handedness here: (-1 corresponds to "near", while "far" is 1)

A simple translation

scaling transformation can warp the clipping volume into NDC

Orthographic Projection Revisited (3)

$$\mathbf{M_{ECS \to CSS}^{ORTHO}} = \mathbf{S}(\frac{2}{r-l}, \frac{2}{t-b}, \frac{2}{f-n}) \cdot \mathbf{T}(-\frac{r+l}{2}, -\frac{t+b}{2}, -\frac{n+f}{2}) \cdot \mathbf{ID}$$

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{n+f}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Perspective Projection Revisited (1)

- We want a similar transformation to warp the contents of the perspective frustum into a normalized cube space (CSS)
- Let us now see what happens to geometry when the Cartesian coordinates are perspectively projected (warped) after the transformation:

Perspective Projection Revisited (2)

 In perspective projection, the clipping space is a capped pyramid (frustum)

- $z_e = n$, the near clipping plane;
- $z_e = f$, the far clipping plane (f < n).

$$t = |n| \cdot \tan(\frac{\theta}{2}),$$

$$b=-t$$

$$r = t \cdot \text{aspect},$$

$$l=-r$$
.

Perspective Projection Revisited (3)

- We still need to perform the perspective division
- We also need to retain the depth information
- Depth must obey the same transformation (division by z) → retain straight lines
- So it must be of the general form: $z_s = A + B/z_e$
- Solving A and B for the boundary conditions: f=A+B/f and n=A+B/n:
- A=n+f
- B=-nf \rightarrow
- $z_s = n + f nf/z_e$

Perspective Projection Revisited (4)

•
$$z_s = n + f - nf/z_e$$

$$\mathbf{P_{VT}} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Perspective Projection Revisited (5)

Post-projective (NDC) space

Perspective Projection Revisited (6)

 Next, we must normalize the result to bring it to the CSS coordinates:

$$\begin{split} \mathbf{M_{ECS \to CSS}^{PPERSP}} &= \mathbf{S}(\frac{2}{r-l}, \frac{2}{t-b}, \frac{2}{f-n}) \cdot \mathbf{T}(0, 0, -\frac{n+f}{2}) \cdot \mathbf{P_{VT}} \\ &= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{2n}{r-l} & 0 & 0 & 0 & 0 \\ 0 & \frac{2n}{t-b} & 0 & 0 & 0 \\ 0 & 0 & \frac{n+f}{f-n} & -\frac{2nf}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}. \end{split}$$

. .

Perspective Projection Revisited (7)

 Of course, we still need to divide with the w coordinate after the matrix multiplication

Extended Perspective Projection (1)

- In general, the frustum axis is not aligned with the viewing direction
- To bring this frustum to the CSS normalized volume, we must first skew it

left

Extended Perspective Projection (2)

Why do we need an off-axis projection?

Stereo

Projection

plane

Planar reflections

Extended Perspective Projection (3)

- The center of the near and far cap must coincide with the z axis
- Therefore, using the z-based shear transformation:

$$\mathbf{SH_{xy}} = \begin{bmatrix} 1 & 0 & A & 0 \\ 0 & 1 & B & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

• We require:

$$\frac{l_0 + ro}{2} + An_o = 0$$

$$\frac{b_0 + to}{2} + Bn_o = 0$$

Perspective: Putting Everything Together (1)

• The final extended perspective transformation matrix:

$$\begin{split} \mathbf{M}_{\mathrm{ECS} \to \mathrm{CSS}}^{\mathrm{PERSP}-\mathrm{NON-SYM}} &= \mathbf{M}_{\mathrm{ECS} \to \mathrm{CSS}}^{\mathrm{PERSP}} \cdot \mathbf{SH_{\mathrm{NON-SYM}}} \\ &= \begin{bmatrix} \frac{2n}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2n}{t-b} & 0 & 0 \\ 0 & 0 & \frac{n+f}{f-n} & -\frac{2nf}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -\frac{l+r}{2n} & 0 \\ 0 & 1 & -\frac{b+t}{2n} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{2n}{r-l} & 0 & -\frac{l+r}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{b+t}{t-b} & 0 \\ 0 & 0 & \frac{n+f}{f-n} & -\frac{2nf}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}. \end{split}$$

Contributors

Georgios Papaioannou

- Sources:
 - T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis,
 Graphics & Visualization: Principles and Algorithms, CRC
 Press