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VIEWING TRANSFORMATION



The Virtual Camera

Y

• All graphics pipelines perceive the virtual world 
through a virtual observer (camera), also positioned 
in the 3D environment

“eye” (virtual camera) 



Eye Coordinate System (1)

• The virtual camera or “eye” also has its own 
coordinate system, the eye coordinate system

Eye coordinate system (ECS)

(WCS)
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Global (world) coordinate system
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Eye Coordinate System (2)

• Expressing the scene’s geometry in the ECS is a 
natural “egocentric” representation of the world:

– It is how we perceive the user’s relationship with the 
environment

– It is usually a more convenient space to perform certain 
rendering tasks, since it is related to the ordering of the 
geometry in the final image 



Eye Coordinate System (3)

• Coordinates as “seen” from the camera reference 
frame

Y

X

ECS



Eye Coordinate System (4)

• What “egocentric” means in the context of 
transformations?

– Whatever transformation produced the camera system 
its inverse transformation expresses the world w.r.t. the 
camera

• Example: If I move the camera “left”, objects appear 
to move “right” in the camera frame:

WCS camera motion Eye-space object motion



Moving to Eye Coordinates

• Moving to ECS is a change of coordinates 
transformation

• The WCSECS transformation expresses the 3D 
environment in the camera coordinate system 

• We can define the ECS transformation in two ways:

– A) Invert the transformations we applied to place the 
camera in a particular pose

– B) Explicitly define the coordinate system by placing the 
camera at a specific location and setting up the camera 
vectors



WCSECS: Version A (1)

• Let us assume that we have an initial camera at the 
origin of the WCS

• Then, we can move and rotate the “eye” to any pose 
(rigid transformations only: No sense in scaling a 
camera):

𝐨𝑐 , 𝐮, 𝐯, 𝐰 = 𝐑1𝐑2𝐓1𝐑𝟐… .𝐓𝑛𝐑𝑚 𝐨, ො𝐞1, ො𝐞2, ො𝐞3
• The eye space coordinates of shapes, given their 

WCS coordinates can be simply obtained by:

𝐯𝐸𝐶𝑆 = 𝐌𝑐
−1𝐯𝑊𝐶𝑆

𝐌𝑐



WCSECS: Version A (2)

• This version of the WCSECS transformation 
computation is useful in cases where:

– The camera system is dependent on (attached to) some 
moving geometry (e.g. a driver inside a car)

– The camera motion is well-defined by a simple trajectory 
(e.g. an orbit around an object being inspected)



WCSECS: Version B (“Look At”)  (1)

• Let us directly define a camera system by specifying 
where the camera is, where does it point to and 
what is its roll (or usually, its “up” or “right” vector) 

right

up

roll 

front
look-at

camera position



WCSECS: Version B (“Look At”)  (2)

• The camera coordinate system offset is the eye 
(camera) position 𝐨𝑐

• Given the look-at position (the camera target) 𝐩𝑡𝑔𝑡
and 𝐨𝑐 , we can determine the “front” direction:

Ԧ𝐝𝑓𝑟𝑜𝑛𝑡 = 𝐩𝑡𝑔𝑡 − 𝐨𝑐 (normalized)

𝐩𝑡𝑔𝑡

𝐨𝑐



WCSECS: Version B (“Look At”)  (3)

• The “up” or “right” vector need not be given 
precisely, as we can infer the coordinate system 
indirectly

• Let us provide an “upright” up vector: Ԧ𝐝𝑢𝑝 =(0,1,0)

• Provided that Ԧ𝐝𝑢𝑝 is not parallel to Ԧ𝐝𝑓𝑟𝑜𝑛𝑡:

𝐮 = Ԧ𝐝𝑓𝑟𝑜𝑛𝑡 × Ԧ𝐝𝑢𝑝,      ෝ𝐮 = 𝐮/ 𝐮

ෝ𝐰 = − Ԧ𝐝𝑓𝑟𝑜𝑛𝑡/ Ԧ𝐝𝑓𝑟𝑜𝑛𝑡

ො𝐯 = ෝ𝐰 × ෝ𝐮

Ԧ𝐝𝑢𝑝
ො𝐯

ෝ𝐮

ෝ𝐰 Ԧ𝐝𝑓𝑟𝑜𝑛𝑡



WCSECS: Version B (“Look At”)  (4)

• We can use the derived local camera coordinate 
system to define the change of coordinates 
transformation (see 3D Transformations):

𝐩𝐸𝐶𝑆 =

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

∙ 𝐓−𝐎𝑐 ∙ 𝐩𝑊𝐶𝑆



WCSECS: Version B (“Look At”)  (5)

• This version of the WCSECS transformation 
computation is useful in cases where:

– There is a free roaming camera

– The camera follows (observes) a certain target in space

– The position (and target) are explicitly defined



PROJECTIONS



Projection

• Is the process of transforming 3D coordinates of 
shapes to points on the viewing plane

• Viewing plane is the 2D flat surface that represents 
an embedding of an image into the 3D space

– We can define viewing systems where the 
“projection” surface is not planar (e.g. fish-eye 
lenses etc.)

• (Planar) projections are define by a projection 
(viewing) plane and a center of projection (eye) 



Taxonomy

• Two main categories:

– Parallel projections: 
infinite distance between 
CoP and viewing plane 

– Perspective projections: 
Finite distance between 
CoP and viewing plane



Where do We Perform the Projections?

• Since in projections we “collapse” a 3D shape onto a 
2D surface, we essentially want to loose one 
coordinate (say the depth z)

• Therefore, it is convenient to perform the projection 
when shapes are expressed in the ECS 



Orthographic Projection (1)

• The simplest projection:

• Collapse the coordinates on plane parallel to xy at 
z=d (usually 0) 

𝑦′ = 𝑦

𝑥′ = 𝑥

ECS
y

x

z

𝐩 = (𝑥, 𝑦, 𝑧)𝐩′ = (𝑥′, 𝑦′, 𝑑)

𝑑𝑧′ = 𝑑

𝑧 = 𝑑 (view plane)



Orthographic Projection (2)

• Very simple matrix representation

• Note that the rank of the matrix is less than its 
dimension: This not a reversible transformation!

– This is also intuitively justified since we “loose” all 
information about depth

𝐏𝑂𝑅𝑇𝐻𝑂 =

1 0 0 0
0 1 0 0
0 0 0 𝑑
0 0 0 1



The Pinhole Camera Model

• It is an ideal camera (i.e. cannot exist in practice)

• It is the simplest modeling of a camera:

photographic

Image sensor

For simplicity, graphics use a “front” 

symmetrical projection plane



The Perspective Projection

• From similar triangles, we have:

𝑦′ =
𝑑 ∙ 𝑦

𝑧

𝑥′ =
𝑑 ∙ 𝑥

𝑧 ECS
y

x

z

𝐩 = (𝑥, 𝑦, 𝑧)

𝐩′ = (𝑥′, 𝑦′, 𝑑)

𝑦′
𝑦

𝑑
𝑧

𝑧′ = 𝑑

𝑧 = 𝑑 (view plane)



Matrix Form of Perspective Projection

• The perspective projection is not a linear operation 
(division by z) 

• It cannot be completely represented by a linear 
operator such as a matrix multiplication

𝐏𝑃𝐸𝑅 =

𝑑 0 0 0
0 𝑑 0 0
0 0 𝑑 0
0 0 1 0

𝐏𝑃𝐸𝑅 ∙ 𝐩𝑊𝐶𝑆 =

𝑥 ∙ 𝑑
𝑦 ∙ 𝑑
𝑧 ∙ 𝑑
𝑧

𝑥 ∙ 𝑑
𝑦 ∙ 𝑑
𝑧 ∙ 𝑑
𝑧

/𝑧 =

𝑥 ∙ 𝑑/𝑧
𝑦 ∙ 𝑑/𝑧
𝑑
1

Requires a division by the w coordinate 

to rectify the homogeneous coordinates



Properties of the Perspective Projection

• Lines are projected to lines

• Distances are not preserved

• Angles between lines are not preserved unless lines 
are parallel to the view plane

• Perspective foreshortening: The size of the 
projected shape is inversely proportional to the 
distance to the plane



The Impact of Focal Distance d



What Happens After Projection? (1)

• Coordinates are transformed to a “post-projective” 
space

Y

X

ECS

Y

X

Post-projective 

space



What Happens After Projection? (2)

• Remember also that “depth” is for now collapsed to 
the focal distance

• How then are we going to use the projected 
coordinates to perform “depth” sorting in order to 
remove hidden surfaces?

• Also, how do we define the extents of what we can 
see?



Preserving the Depth

• Regardless of what the projection is, we also retain 
the transformed z values

• For numerical stability, representation accuracy and 
plausibility of displayed image, we limit the z-range  

• 𝑛 ≤ 𝑧 ≤ 𝑓, 

– 𝑛=near clipping value, 

– 𝑓=far clipping value, 



• The boundaries (line segments) of the image, form 
planes in space:

• The intersection of the visible subspaces, defines 
what we can see inside a view frustum

The View Frustum



Z

X

Y

The Clipping Volume (1)

• The viewing frustum, forms a clipping volume

• It defines which parts of the 3D world are discarded, i.e. do 
not contribute to the final rendering of the image

• For many rendering architectures, this is a closed volume 
(capped by the far plane) 

Right clipping

plane

Near clipping

plane

Orthographic

Clipping volume
Perspective

Clipping volume



The Clipping Volume (2)

• After projection, the contents of the clipping volume 
are warped to match a rectangular paralepiped

• This post-projective volume is usually considered 
normalized and its local coordinate system is called 
Canonical Screen Space (CSS)

• The respective device coordinates are also called 
Normalized Device Coordinates (NDC)



Orthographic Projection Revisited (1)

• Let us now create an orthographic projection that 
transforms a specific clipping box volume  (left, right, 
bottom, top, near, far) to CSS:

Z

X

Y



Orthographic Projection Revisited (2)

• A simple translation  scaling transformation can 
warp the clipping volume into NDC

Z

X

Y

(-1,-1,-1)

(1, 1, 1)

Notice the change of handedness here:

(-1 corresponds to “near”, while “far” is 1)



Orthographic Projection Revisited (3)



Perspective Projection Revisited (1)

• We want a similar transformation to warp the 
contents of the perspective frustum into a 
normalized cube space (CSS)

• Let us now see what happens to geometry when the 
Cartesian coordinates are perspectively projected 
(warped) after the transformation:



Perspective Projection Revisited (2)

• In perspective projection, the clipping space is a 
capped pyramid (frustum)



Perspective Projection Revisited (3)

• We still need to perform the perspective division

• We also need to retain the depth information

• Depth must obey the same transformation (division 
by z)  retain straight lines

• So it must be of the general form: zs=A+B/ze

• Solving A and B for the boundary conditions: 
f=A+B/f  and n=A+B/n:

• A=n+f

• B=-nf 

• zs=n+f-nf/ze



Perspective Projection Revisited (4)

• zs=n+f-nf/ze



Perspective Projection Revisited (5)

Viewing frustum                                      Post-projective (NDC) space



Perspective Projection Revisited (6)

• Next, we must normalize the result to bring it to the 
CSS coordinates:



Perspective Projection Revisited (7)

• Of course, we still need to divide with the w 
coordinate after the matrix multiplication



Extended Perspective Projection (1)

• In general, the frustum 
axis is not aligned with 
the viewing direction

• To bring this frustum to 
the CSS normalized 
volume, we must first 
skew it



Extended Perspective Projection (2)

• Why do we need an off-axis projection?
Stereo

Multi-view rendering

Planar reflections



Extended Perspective Projection (3)

• The center of the near and 
far cap must coincide with 
the z axis

• Therefore, using the z-based 
shear transformation:

• We require: 
𝑏0 + 𝑡𝑜

2
+ 𝐵𝑛𝑜 = 0

𝑙0 + 𝑟𝑜

2
+ 𝐴𝑛𝑜 = 0



Perspective: Putting Everything Together (1)

• The final extended perspective transformation matrix:
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