COMPUTER GRAPHICS COURSE

Mathematical Background

Some Mathematical Tools we Need

- In the next slides we are summarizing some important properties of vector and affine spaces in order to:
- Establish a formal representation of our data and their operations
- Provide the mathematical tools to process and extract information from our geometrical representations

Vector Spaces (1)

- A set V with elements called vectors and denoted $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{v}}$ etc. is a vector space if two operations are defined:
- vector addition between two vectors, denoted $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ whose result is also a vector
- scalar multiplication between a scalar and a vector denoted $\lambda \overrightarrow{\mathbf{a}}$, whose result is also a vector
- and the following properties are satisfied:

Vector Spaces (2)

- Addition properties:
- Commutativity: $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}}, \forall \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}} \in V$
- Associativity: $\overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{c}}, \forall \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \in V$
- Existence of a zero element $\overrightarrow{\mathbf{0}} \in V: \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}}$, $\forall \overrightarrow{\mathbf{a}} \in V$
- Inversibility: $\forall \overrightarrow{\mathbf{a}} \in V, \exists \overrightarrow{\mathbf{a}}^{\prime}=-\overrightarrow{\mathbf{a}}: \quad \overrightarrow{\mathbf{a}}+(-\overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{0}}$

Vector Spaces (3)

- Scalar multiplication properties:
- Associativity: $\lambda(\mu \overrightarrow{\mathbf{a}})=(\lambda \mu) \overrightarrow{\mathbf{a}}, \forall \overrightarrow{\mathbf{a}} \in V$ and $\forall \lambda, \mu \in \mathbb{R}$
- Identity element: $1 \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}}, \forall \overrightarrow{\mathbf{a}} \in V$
- Distributivity of scalar multiplication over vector addition: $\lambda(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=\lambda \overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}, \forall \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}} \in V$ and $\forall \lambda \in \mathbb{R}$
- Distributivity of vector addition over scalar multiplication: $(\lambda+\mu) \overrightarrow{\mathbf{a}}=\lambda \overrightarrow{\mathbf{a}}+\mu \overrightarrow{\mathbf{a}}, \forall \overrightarrow{\mathbf{a}} \in V$ and $\forall \lambda, \mu \in \mathbb{R}$

2D and 3D Vectors

- The common 2D and 3D vectors we use in computer graphics form corresponding vector spaces
- For 3D:

$$
\overrightarrow{\mathbf{v}}=(x, y, z)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right]^{T}
$$

- With the following well-known operations:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\left[\begin{array}{lll}
a_{x}+b_{x} & a_{y}+b_{y} & a_{z}+b_{z}
\end{array}\right]^{T} \\
& \lambda \overrightarrow{\mathbf{a}}=\left[\begin{array}{lll}
\lambda a_{x} & \lambda a_{y} & \lambda a_{z}
\end{array}\right]^{T}
\end{aligned}
$$

Linear Combinations

- For a set of vectors $\overrightarrow{\mathbf{a}_{1}}, \overrightarrow{\mathbf{a}_{2}}, \ldots, \overrightarrow{\mathbf{a}_{k}} \in V$, an expression of the form:
$\overrightarrow{\mathbf{v}}=\lambda_{1} \overrightarrow{\mathbf{a}_{1}}+\lambda_{2} \overrightarrow{\mathbf{a}_{2}}+\ldots+\lambda_{k} \overrightarrow{\mathbf{a}_{k}}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$ is a linear combination of these vectors.
- If $\sum_{i=1}^{k} \lambda_{i}=1$, then this is an affine combination
- If additionally, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \geq 0$, it is a convex combination, and we say that $\overrightarrow{\mathbf{v}}$ resides within the convex hull of $\overrightarrow{\mathbf{a}_{1}}, \overrightarrow{\mathbf{a}_{2}}, \ldots, \overrightarrow{\mathbf{a}_{k}}$

Linear Independence

- $\overrightarrow{\mathbf{a}_{1}}, \overrightarrow{\mathbf{a}_{2}}, \ldots, \overrightarrow{\mathbf{a}_{k}} \in V$ are linearly independent if: $\overrightarrow{\mathbf{0}}=\lambda_{1} \overrightarrow{\mathbf{a}_{1}}+\lambda_{2} \overrightarrow{\mathbf{a}_{2}}+\ldots+\lambda_{k} \overrightarrow{\mathbf{a}_{k}}$ only when: $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$
- Direct consequence:
- If a vector can be written as a linear combination of some linearly independent vectors $\overrightarrow{\mathbf{a}_{1}}, \overrightarrow{\mathbf{a}_{2}}, \ldots, \overrightarrow{\mathbf{a}_{k}}$, this expression is unique

Basis of a Vector Space

- A basis of a vector space is a set of linearly independent vectors having the additional property that every vector of the space can be written as a linear combination of them
- The (unique) coefficients with which a vector is written as a linear combination of the elements of a basis are called the coordinates of the vector in terms of this basis.
- Every vector space has at least one basis
- The number of elements in a vector space basis is called the dimension of the vector space.

Coordinates and Coordinate Systems

- In 3D we typically use the orthonormal basis:

$$
\begin{aligned}
& (\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}) \\
& \overrightarrow{\mathbf{i}}=(1,0,0), \overrightarrow{\mathbf{j}}=(0,1,0), \overrightarrow{\mathbf{k}}=(0,0,1)
\end{aligned}
$$

- Similarly, we use $\overrightarrow{\mathbf{i}}=(1,0), \overrightarrow{\mathbf{j}}=(0,1)$ for 2 D space

Coordinate System Conventions (1)

- In 3D space, we can use an arrangement of the axes so that the z axis points either "towards" us or "away" from us:

The "right-handed" (counter-clockwise) system

The "left-handed" (clockwise) system

Coordinate System Conventions (2)

- We most frequently use the right-handed (CCW) system in computer graphics (z axis pointing "outwards" to us, x pointing right, y up)

Coordinate System Conventions (3)

- Positive angles are counter-clockwise
- Conveniently, we can use the rule of thumb (see previous slide) to determine the winding

Vector Norm

- The norm of a vector is a non-negative real number, which is actually the length of the vector:

$$
|\overrightarrow{\mathbf{a}}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

- Vectors with norm 1 are called unit vectors
- Given any vector with non-zero norm, we can obtain a corresponding unit vector via a process called normalization:

$$
\hat{\mathbf{a}}=\frac{\overrightarrow{\mathbf{a}}}{|\overrightarrow{\mathbf{a}}|}=\frac{1}{|\overrightarrow{\mathbf{a}}|}\left[\begin{array}{ll}
x & y z
\end{array}\right]^{T}
$$

Dot (Inner) Product

- The dot product of two vectors is defined as:

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

- Properties:
- Commutativity: $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}$
- Bilinearity: $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}}+\lambda \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\lambda(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}})$
- The dot product is also:
- $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta$:

$$
-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 \Leftrightarrow \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}
$$

Cross (External) Product

- The cross product of two 3D vectors is perpendicular to both of them and is defined as:

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left(a_{y} b_{z}-a_{z} b_{y}, \quad a_{z} b_{x}-a_{x} b_{z}, \quad a_{x} b_{y}-a_{y} b_{x}\right)
$$

Properties:

$$
\begin{gathered}
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=-\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}) \\
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
\end{gathered}
$$

$|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ equals the area of the parallelogram $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$

Affine Spaces

- A set S of elements \mathbf{p}, \mathbf{q}, etc. called points is an affine space with an associated vector space V, if an operation called addition is defined between a point and a vector whose result is a point.
- Addition must obey the following properties:
- Associativity: $(\mathbf{p}+\overrightarrow{\mathbf{a}})+\overrightarrow{\mathbf{b}}=\mathbf{p}+(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})$
- Zero element: $\mathbf{p}+\overrightarrow{\mathbf{0}}=\mathbf{p}, \forall \mathbf{p} \in S$
- Difference: $\forall \mathbf{p}, \mathbf{q} \in S, \exists \overrightarrow{\mathbf{a}} \in V: \mathbf{p}+\overrightarrow{\mathbf{a}}=\mathbf{q}$ and $\mathbf{q}-\mathbf{p}=\overrightarrow{\mathbf{a}}$
- In graphics, we use 2D and 3D points defined in the Euclidean spaces $\mathbb{E}^{2}, \mathbb{E}^{3}$

Points vs Vectors

- Affine spaces have no origin (no reference point) \rightarrow we cannot inherently define coordinates, which requires a vector space! So:
- Adding two points has no meaning
- Using a point as a reference and adding a vector yields another point
- The difference of two points constructs a vector
- Points denote position
- Vectors have direction and magnitude, but are not based on a specific point

Coordinate Systems for Points

- If we consider a specific point $\mathbf{o} \in S$ as reference (i.e. an origin) and a basis ($\overrightarrow{\mathbf{b}_{1}}, \overrightarrow{\mathbf{b}_{2}}, \ldots \overrightarrow{\mathbf{b}_{n}}$) of the associated vector space V, then $\left(\mathbf{o}, \overrightarrow{\mathbf{b}_{1}}, \overrightarrow{\mathbf{b}_{2}}, \ldots \overrightarrow{\mathbf{b}_{n}}\right)$ constitutes an (affine) coordinate system of S
- Given a point $\mathbf{p} \in \boldsymbol{S}$ so that:

$$
\mathbf{p}-\mathbf{o}=\lambda_{1} \overrightarrow{\mathbf{b}_{1}}+\lambda_{2} \overrightarrow{\mathbf{b}_{2}}+\cdots+\lambda_{n} \overrightarrow{\mathbf{b}_{n}}
$$

- $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the coordinates of \mathbf{p} w.r.t $\left(\mathbf{o}, \overrightarrow{\mathbf{b}_{1}}, \overrightarrow{\mathbf{b}_{2}}, \ldots \overrightarrow{\mathbf{b}_{n}}\right)$

Contributors

- Georgios Papaioannou
- Sources:
- T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, Graphics \& Visualization: Principles and Algorithms, CRC Press

