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Mathematical Background 



Some Mathematical Tools we Need 

• In the next slides we are summarizing some 
important properties of vector and affine spaces in 
order to: 
– Establish a formal representation of our data and their 

operations 
– Provide the mathematical tools to process and extract 

information from our geometrical representations 



Vector Spaces (1) 

• A set V with elements called vectors and denoted 
𝐚𝐚, �⃗�𝐛, 𝐯𝐯 etc. is a vector space if two operations are 
defined: 
– vector addition between two vectors, denoted 𝐚𝐚 + �⃗�𝐛 

whose result is also a vector 
– scalar multiplication between a scalar and a vector 

denoted 𝜆𝜆𝐚𝐚, whose result is also a vector 

• and the following properties are satisfied: 



Vector Spaces (2) 

• Addition properties: 
– Commutativity: 𝐚𝐚 + �⃗�𝐛 = �⃗�𝐛 + 𝐚𝐚,  ∀ 𝐚𝐚, �⃗�𝐛 ∈ 𝑉𝑉 
 

– Associativity: 𝐚𝐚 + (�⃗�𝐛 + 𝐜𝐜) = (𝐚𝐚 + �⃗�𝐛) + 𝐜𝐜,  ∀ 𝐚𝐚, �⃗�𝐛, 𝐜𝐜 ∈ 𝑉𝑉 
 

– Existence of a zero element 𝟎𝟎 ∈ 𝑉𝑉: 𝐚𝐚 + 𝟎𝟎 = 𝟎𝟎 + 𝐚𝐚 = 𝐚𝐚, 
 ∀ 𝐚𝐚 ∈ 𝑉𝑉 

 

– Inversibility: ∀ 𝐚𝐚 ∈ 𝑉𝑉,∃ 𝐚𝐚′ = −𝐚𝐚 ∶     𝐚𝐚 + −𝐚𝐚 = 𝟎𝟎 



Vector Spaces (3) 

• Scalar multiplication properties: 
– Associativity: 𝜆𝜆(𝜇𝜇𝐚𝐚) = (𝜆𝜆𝜇𝜇)𝐚𝐚,  ∀ 𝐚𝐚 ∈ 𝑉𝑉 and ∀ 𝜆𝜆, 𝜇𝜇 ∈ ℝ 
 
– Identity element:1 ∙ 𝐚𝐚 = 𝐚𝐚,  ∀ 𝐚𝐚 ∈ 𝑉𝑉 
 
– Distributivity of scalar multiplication over vector addition: 
𝜆𝜆 𝐚𝐚 + �⃗�𝐛 = 𝜆𝜆𝐚𝐚 + 𝜆𝜆�⃗�𝐛, ∀ 𝐚𝐚, �⃗�𝐛 ∈ 𝑉𝑉 and ∀ 𝜆𝜆 ∈ ℝ 
 

– Distributivity of vector addition over scalar multiplication: 
(𝜆𝜆 + 𝜇𝜇)𝐚𝐚 = 𝜆𝜆𝐚𝐚 + 𝜇𝜇𝐚𝐚, ∀ 𝐚𝐚 ∈ 𝑉𝑉 and ∀ 𝜆𝜆, 𝜇𝜇 ∈ ℝ 
 



2D and 3D Vectors 

• The common 2D and 3D vectors we use in computer 
graphics form corresponding vector spaces  

• For 3D: 
 
 

• With the following well-known operations: 
 

𝐯𝐯 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =
𝑥𝑥
𝑦𝑦
𝑧𝑧

= 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑇𝑇 

𝐚𝐚 + �⃗�𝐛 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥 𝑎𝑎𝑦𝑦 + 𝑏𝑏𝑦𝑦 𝑎𝑎𝑧𝑧 + 𝑏𝑏𝑧𝑧 𝑇𝑇 

𝜆𝜆𝐚𝐚 = 𝜆𝜆𝑎𝑎𝑥𝑥 𝜆𝜆𝑎𝑎𝑦𝑦 𝜆𝜆𝑎𝑎𝑧𝑧 𝑇𝑇 



Linear Combinations 

• For a set of vectors 𝐚𝐚1, 𝐚𝐚2, … , 𝐚𝐚𝑘𝑘 ∈ 𝑉𝑉, an expression 
of the form:   

𝐯𝐯 = 𝜆𝜆1𝐚𝐚1 + 𝜆𝜆2𝐚𝐚2+. . . +𝜆𝜆𝑘𝑘𝐚𝐚𝑘𝑘 , 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘 ∈ ℝ is a 
linear combination of these vectors. 
• If ∑ 𝜆𝜆𝑖𝑖𝑘𝑘

𝑖𝑖=1 = 1, then this is an affine combination 
• If additionally, 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑘𝑘 ≥ 0, it is a convex 

combination, and we say that 𝐯𝐯 resides within the 
convex hull of 𝐚𝐚1,𝐚𝐚2, … , 𝐚𝐚𝑘𝑘 

Convex hull 



Linear Independence 

• 𝐚𝐚1, 𝐚𝐚2, … ,𝐚𝐚𝑘𝑘 ∈ 𝑉𝑉 are linearly independent if: 
𝟎𝟎 = 𝜆𝜆1𝐚𝐚1 + 𝜆𝜆2𝐚𝐚2+. . . +𝜆𝜆𝑘𝑘𝐚𝐚𝑘𝑘 only when: 

    𝜆𝜆1 = 𝜆𝜆2 = ⋯ = 𝜆𝜆𝑘𝑘 = 0  
• Direct consequence: 

– If a vector can be written as a linear combination of some 
linearly independent vectors 𝐚𝐚1,𝐚𝐚2, … ,𝐚𝐚𝑘𝑘 , this expression 
is unique  



Basis of a Vector Space 

• A basis of a vector space is a set of linearly 
independent vectors having the additional property 
that every vector of the space can be written as a 
linear combination of them 

• The (unique) coefficients with which a vector is 
written as a linear combination of the elements of a 
basis are called the coordinates of the vector in 
terms of this basis. 

• Every vector space has at least one basis 
• The number of elements in a vector space basis is 

called the dimension of the vector space. 



Coordinates and Coordinate Systems 

• In 3D we typically use the orthonormal basis: 

     (�⃗�𝐢, �⃗�𝐣, �⃗�𝐤) 

    �⃗�𝐢 = 1,0,0 , �⃗�𝐣 = 0,1,0 , �⃗�𝐤 = 0,0,1   
• Similarly, we use �⃗�𝐢 = 1,0 , �⃗�𝐣 = 0,1  for 2D space 

𝐯𝐯 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
𝑦𝑦 ∙ �⃗�𝐣 

𝑧𝑧 ∙ �⃗�𝐤 
𝑥𝑥 ∙ �⃗�𝐢 

Y 

X 

Z 



Coordinate System Conventions (1) 

• In 3D space, we can use an arrangement of the axes 
so that the z axis points either “towards” us or 
“away” from us: 

The “right-handed”  
(counter-clockwise) system 

The “left-handed”  
(clockwise) system 



• We most frequently use the right-handed (CCW) 
system in computer graphics (z axis pointing 
“outwards” to us, x pointing right, y up) 
 

Coordinate System Conventions (2) 



• Positive angles are counter-clockwise 
– Conveniently, we can use the rule of thumb (see previous 

slide) to determine the winding 

Coordinate System Conventions (3) 

Y 

X 

Z 

𝜃𝜃𝑧𝑧 > 0 

Y 

X 

Z 

𝜃𝜃𝑥𝑥 > 0 

Y 

X 

Z 

𝜃𝜃𝑦𝑦 > 0 



Vector Norm 

• The norm of a vector is a non-negative real number, 
which is actually the length of the vector: 

𝐚𝐚 = 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 
• Vectors with norm 1 are called unit vectors 
• Given any vector with non-zero norm, we can obtain 

a corresponding unit vector via a process called 
normalization:  

𝐚𝐚� =
𝐚𝐚
𝐚𝐚

=
1
𝐚𝐚

𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑇𝑇 



Dot (Inner) Product 

• The dot product of two vectors is defined as:  

 𝐚𝐚 ∙ �⃗�𝐛 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑏𝑏𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 
• Properties: 

– Commutativity: 𝐚𝐚 ∙ �⃗�𝐛 = �⃗�𝐛 ∙ 𝐚𝐚 

– Bilinearity: 𝐚𝐚 ∙ (�⃗�𝐛 + 𝜆𝜆𝐜𝐜) = 𝐚𝐚 ∙ �⃗�𝐛 + 𝜆𝜆(𝐚𝐚 ∙ 𝐜𝐜)  

• The dot product is also: 

• 𝐚𝐚 ∙  �⃗�𝐛 = 𝐚𝐚 �⃗�𝐛 cos𝜃𝜃: 

– 𝐚𝐚 ∙  �⃗�𝐛 = 0⇔𝐚𝐚 ⊥  �⃗�𝐛 
𝜃𝜃 



Cross (External) Product 

• The cross product of two 3D vectors is perpendicular 
to both of them and is defined as: 

 𝐚𝐚 × �⃗�𝐛 = (𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦, 𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥 − 𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧, 𝑎𝑎𝑥𝑥𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥) 

𝐚𝐚 × �⃗�𝐛 

𝐚𝐚 

�⃗�𝐛 

θ 

Properties: 
𝐚𝐚 × �⃗�𝐛 = −�⃗�𝐛 × 𝐚𝐚 

𝐚𝐚 × (�⃗�𝐛 + 𝐜𝐜) = 𝐚𝐚 × �⃗�𝐛 + 𝐚𝐚 × 𝐜𝐜) 
𝐚𝐚 × �⃗�𝐛 = 𝐚𝐚 �⃗�𝐛 sin𝜃𝜃  

 
𝐚𝐚 × �⃗�𝐛  equals the area of the 

parallelogram 𝐚𝐚, �⃗�𝐛 

𝐚𝐚 × �⃗�𝐛  



Affine Spaces 

• A set S of elements 𝐩𝐩,𝐪𝐪, etc. called points is an affine 
space with an associated vector space 𝑉𝑉, if an 
operation called addition is defined between a point 
and a vector whose result is a point. 

• Addition must obey the following properties: 
– Associativity: 𝐩𝐩 + 𝐚𝐚 + �⃗�𝐛 = 𝐩𝐩 + (𝐚𝐚 + �⃗�𝐛) 

– Zero element: 𝐩𝐩 + 𝟎𝟎 = 𝐩𝐩, ∀ 𝐩𝐩 ∈ 𝑆𝑆  
– Difference: ∀ 𝐩𝐩,𝐪𝐪 ∈ 𝑆𝑆,∃ 𝐚𝐚 ∈ 𝑉𝑉: 𝐩𝐩 + 𝐚𝐚 = 𝐪𝐪 and 𝐪𝐪 − 𝐩𝐩 = 𝐚𝐚  

• In graphics, we use 2D and 3D points defined in the 
Euclidean spaces 𝔼𝔼2,𝔼𝔼3 



Points vs Vectors 

• Affine spaces have no origin (no reference point)  
we cannot inherently define coordinates, which 
requires a vector space! So:  
– Adding two points has no meaning 
– Using a point as a reference and adding a vector yields 

another point 
– The difference of two points constructs a vector 

• Points denote position 
• Vectors have direction and magnitude, but are not 

based on a specific point  



Coordinate Systems for Points 

• If we consider a specific point 𝐨𝐨 ∈ 𝑺𝑺 as reference (i.e. 
an origin) and a basis (𝐛𝐛1,𝐛𝐛2, …𝐛𝐛𝑛𝑛) of the 
associated vector space 𝑉𝑉, then (𝐨𝐨,𝐛𝐛1,𝐛𝐛2, …𝐛𝐛𝑛𝑛) 
constitutes an (affine) coordinate system of S 

• Given a point 𝐩𝐩 ∈ 𝑺𝑺 so that: 

      𝐩𝐩 − 𝐨𝐨 = 𝜆𝜆1𝐛𝐛1 + 𝜆𝜆2𝐛𝐛2 + ⋯+ 𝜆𝜆𝑛𝑛𝐛𝐛𝑛𝑛 
•  𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 are the coordinates of 𝐩𝐩 w.r.t 

(𝐨𝐨,𝐛𝐛1,𝐛𝐛2, …𝐛𝐛𝑛𝑛) 
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• Sources: 
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