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Why Use GI Algorithms? 

• Photorealistic simulation of illumination 
 Indirect lighting                   Direct lighting only 
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The Rendering Equation 

• Expresses the equilibrium of light distribution in a 
scene 
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Non-real-time Approximations to GI  

• The rendering equation must be solved 
simultaneously for all possible light paths in the 
environment 
– Unrealistic and non-feasible 
– Infinite light paths of uncertain importance 

• Approximate solutions: 
– Discretize and sample space to generate a 

manageable set of light paths 
– Keep only paths that reach the image pixels 
– Rely on robust stochastic models to create unbiased 

results (Monte Carlo, Russian roulette, Metropolis) or 
– Use biased, light caching techniques (Photon maps)   
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Non-real-time GI Results 

Bidirectional path tracing       Photon mapping 
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Lighting components 

• For computational efficiency and accuracy 
light paths are distinguished according to: 
– Direct lighting: unobstructed light from sources  

Dense, directional sampling of visible portions of 
emitters 

– Indirect diffuse: Main scattering of light in 
environment (ambient light) 

– Specular reflections and refracted light 
– Specular-to-diffuse light bounces (e.g. caustics) 

• Except from direct lighting, all other types of 
transmission are hard to tackle in real-time   
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Lighting components 

• For computational efficiency and accuracy 
light paths are computed separately: 

Direct diffuse 

Indirect diffuse 

Reflection 

Refraction 

Caustics 
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Part A: Real-time Rendering Techniques 

Rendering to a 2D texture 
Multiple render targets 
Deferred rendering 
Layer re-targeting 
Rendering to a volume (3D) texture 
Point injection 
Multi-resolution rendering 
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Rendering to a 2D texture (1) 

• Conventional direct rendering pipeline: 
– Output of fragment processing operations to the 

frame memory buffer 
• Modern techniques require the output of the 

fragments into intermediate memory: 
– To post-process the results 
– To use the rendered image as input to the next 

rendering algorithm (as a texture, e.g. reflections, 
shadow maps etc). 

– To randomly access the stored values 
– To stream the output to another application 
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Rendering to a 2D texture (2) 

• Modern graphics cards and APIs can redirect 
graphics output to custom frame buffers that 
write directly in textures (images) 

•  Steps: 
– Prepare (allocate) a 2D texture 
– Prepare a frame buffer object 
– Link the 2D texture with one of the frame buffer 

attachment attributes (color/depth) 
– Enable the frame buffer object as current graphics 

output 
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Rendering to a 2D texture (3) 

• In OpenGL: 
Gluint buffer, FBO; 
 
glGenTextures(1,&buffer); 
glBindTexture(GL_TEXTURE_2D, buffer); 
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, 

GL_RGBA, GL_UNSIGNED_BYTE, NULL); 
 
glGenFramebuffersEXT(1, &FBO); 
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,FBO); 
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, 

GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, buffer, 0); 

Internal format 

Attachment 
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Multiple Render Targets (1) 

• It is often useful to be able to write many 
fragment operation results to multiple internal 
buffers, without re-rendering the geometry 

• Examples: 
– Cube map generation (6 buffers, 6 viewing 

transformations – also requires retargeting by a 
geometry shader) 

– Deferred rendering (3+ buffers, one viewing 
transformation) 

– Reflective shadow maps (ok, this is still deferred 
rendering!)  
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Multiple Render Targets (2) 

• This is enables via the Multiple Render Targets 
(MRT) mechanism: 
– The geometry is sent once for primitive generation 
– The pixel (fragment) shader writes results at the same 

location on multiple buffers 
– Different calculations and hence output values can 

be written to each buffer in the same pixel shader 
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Multiple Render Targets (3) 

Geometry 
processing 

Rasterization 

RT0 
RT1 

RT2 
RT3 

Fragment 
shader 
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Multiple Render Targets (4) 

• OpenGL initialization: 
GLuint FBO, buffer[4]; // up to 8 for now. 
glGenTextures(4,buffer); 
glGenFramebuffersEXT(1, &FBO); 
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,FBO); 
 
glFramebufferTexture2DEXT( GL_FRAMEBUFFER_EXT, 

GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, buffer[0],0 ); 
glFramebufferTexture2DEXT( GL_FRAMEBUFFER_EXT, 

GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, buffer[1],0 ); 
glFramebufferTexture2DEXT( GL_FRAMEBUFFER_EXT, 

GL_COLOR_ATTACHMENT2, GL_TEXTURE_2D, buffer[2],0 ); 
glFramebufferTexture2DEXT( GL_FRAMEBUFFER_EXT, 

GL_COLOR_ATTACHMENT3, GL_TEXTURE_2D, buffer[3],0 ); 
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Multiple Render Targets (5) 

• OpenGL usage: 
GLenum targets[4] = 
   { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT, 

GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT }; 
 
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, point_fbo); 
 
If (glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) 

!=GL_FRAMEBUFFER_COMPLETE_EXT) 
 { 
            // Failed to initialize the FBO. Handle the error here 
 } 
 
glDrawBuffers(4,targets);   
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Multiple Render Targets (6) 

• And in the GLSL shader, you simply write the 
data to the appropriate buffer: 

 
void main() 
{ 
     … // other fragment shader code 
 gl_FragData[0] = vec4(…); 
 gl_FragData[1] = vec4(…); 
 gl_FragData[2] = vec4(…); 
 gl_FragData[3] = vec4(…); 
} 
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Deferred Rendering (1) 

• In deferred rendering, the geometry is not 
immediately rendered but instead, it is used for 
the generation of intermediate data, which are 
later used for calculating the final image 

• The intermediate data are generated through 
the MRT mechanism in one pass 

• All shading calculations are postponed for the 
final (deferred) stage 

• Why? 
– Expensive shading calculations are performed once 

per pixel (visible fragments only)  
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Deferred Rendering (2) 
• Typically, the albedo, the normals, the depth and 

specular attributes are written in MRTs (G-buffer) 
 

• The final shading uses the above 
buffers as textures to calculate 
illumination: 

 

Albedo                   Normals                    Depth                   Specular 
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Texture Arrays and Rendering Layers 

• We have seen that textures can be bound as 
frame buffers 

• We can instruct the hardware to bind an array 
of textures as output of a single rendering target 

• Each texture in the array is treated as a 
separate rendering layer 

• The geometry shader can determine which 
layer to emit a primitive to 

• This technique can be combined with MRT 
rendering 
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Rendering Layers 

Geometry 
processing 

Rasterization 

Fragment 
shader 

Rasterization 

Rasterization 

Rasterization 

Fragment 
shader 

Fragment 
shader 

Fragment 
shader 

Layer 0 

Layer 1 

Layer 2 

Layer 3 

Fragment  
shader 
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Layers vs MRTs 
• Layers:  

– The geometry shader selects a buffer and emits a 
primitive for rasterization to it 

– A primitive can be generated and emitted to any 
number of layers 

– Each layer selection and primitive emission adds a 
new rasterization task to the primitve queue 

– Generated primitive fragments are unrelated across 
layers 

• MRTs:  
– The fragment shader simultaneously writes data to all 

MRTs 
– Number of RTs is predetermined 
– Fragment coordinates (x,y) are identical to all RTs 
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Layers using MRTs (1) 

• Layers and MRTs can be combined! 
• We can enable both. Essentially, we can have 

multiple layers, each one with multiple render 
targets 

• You can think of the extra RTs as extra channels 
in a texel (multiples of base type, e.g. 4XRGBA) 

• Each layer is a separate multichannel canvas 
• We decide which primitive to submit for 

rendering to which canvas (and how). 
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Layers using MRTs (2) 

Geometry 
shader 

Layer 0 
Rasterization 

Fragment 
shader 

Rasterization 

Rasterization 

Rasterization 

Fragment 
shader 

Fragment 
shader 

Fragment 
shader 

Layer 1 

Layer 2 

Layer 3 

RT0 
RT1 

Fragment  
shader 
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Volume Textures 

• Volume textures are packed arrays of equally 
sized 2D textures, slice by slice 

• They are different from 2D texture arrays: 
– They are indexed by 3 normalized params (s,t,r) 
– They can be trilinearly filtered. Texture arrays are not 

interpolated across different slices 
– They are also accessible from fixed graphics pipeline  

t 
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r 



Real-time Global Illumination 

Rendering into 3D Textures (1) 

• To directly render into a 3D texture, we can bind 
a frame buffer object to it 

• Each slice of the 3D texture is treated as a 
frame buffer attachment and indexed as a 
separate layer 

• The geometry shader redirects output of a 
primitive to one or more depth layers 
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Layer 1 
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Rendering into 3D Textures (2) 

• 3D textures can be also used as MRTs 
• Each (identical) 3D texture can be bound to a 

different FBO attachment 
• Each primitive is submitted for rendering into a 

specific layer, where its fragments update the 
corresponding pixels of the same layer in all MRT 
volumes 

Layer 1 

RT 0                     RT 1                        RT 2    

Fragment shader A primitive fragment  



Real-time Global Illumination 

Rendering into 3D Textures (3) 
• OpenGL Initialization: 
GLuint fbo, buffers[4]; 
glGenFramebuffersEXT(1, &fbo); 
glGenTextures(4, buffers); 
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,fbo); 
 
glBindTexture(GL_TEXTURE_3D, buffers[0]); 
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA16F, resx,resy,resz, 0, 

GL_RGBA, GL_HALF_FLOAT, NULL); 
glFramebufferTexture3DEXT( GL_FRAMEBUFFER_EXT, 

GL_COLOR_ATTACHMENT0, GL_TEXTURE_3D, buffers[0], 0, 0 ); 
… // do the same for other textures as well 
GLenum targets[4] =  
   { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT, 

GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT }; 
glDrawBuffers(4,targets); 
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Rendering into 3D Textures (4) 

• GLSL geometry shader: 
// Example: 
//  Point rendering. Incoming points are redirected for rendering 
//  to a 3D volume slice according to relative z-value in (minz,maxz) 
uniform vec3 pmin, pmax; 
void main() 
{  
 int layer = 32*floor((gl_PositionIn[0].z-pmin.z)/(pmax.z-pmin.z));   
     gl_Position = gl_PositionIn[0];  
 gl_Layer = layer; 
 EmitVertex();  
}"; 
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Point Rendering 

• Point rendering is the drawing of a (dense) 
cloud of points to substitute surface geometry 

• “Points” may occupy more than one fragment 
(depending on the point size) 

• Dense point clouds can effectively replace 
complex geometry at a moderate cost 

• Sparse point clouds can be used in algorithms 
that require only a general spatial “geometry 
distribution” in the scene. 

• Many modern GI algorithms depend on point 
injection (rendering) in volume textures. 
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Point Injection 

• Is the process of placing point samples inside a 
volume that represents the spatial extents of a 
3D scene 

• It is implemented via the volume layer 
mechanism: 

• P=(x,y,z)(u,v, layerID) 
LayerID layer  Fragment (u,v) 
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Point Injection – The Volume 

• Usually, a grid represented as a 3D texture is 
defined covering the bounding box (extents) of 
the scene 

• Then a scale and translation transform the 
coordinates inside the bounding box to the 
normalized 3D texture coordinates: 
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Point Injection - Implementation 
• The volume point injection can be easily 

implemented in the geometry shader: 
– A grid of points or the vertices of the geometry as 

transformed according to             
– The layer is selected where the points will be emitted 

for rasterization  
• Point coordinates are mostly derived from: 

– Raw (WCS) triangle vertices 
– Stored geometry images (textures encoding x,y,z 

coordinates as RGB data) 
– Un-projected points in a depth or shadow map 

• Additional transformations may need to be 
applied before the injection procedure 
 

VolM
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Part B: Illumination Functions Compression 

• Projection and reconstruction of signals 
• Frequency analysis of light field 
• Light and visibility as functions over the sphere 
• Spherical harmonics 
• Spherical radial basis functions 
• Low-frequency illumination storage   
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Orthonormal Basis Functions 

• A basis function bn is an element of a particular 
basis for a function space 

• Every continuous function in the function space 
can be represented as a linear combination of 
basis functions: 

 
• Check similarity with vector spaces 
• An orthonormal basis additionally satisfies the 

property: 
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Signal Projection on Orthonormal Bases 
• The projection of an arbitrary continuous 

function on a set of basis functions results in the 
definition of the blending coefficients an 

• It can be proven that for orthonormal function 
bases, the best least squares fitting of a function 
f over a predefined set of basis functions bn 
results in: 
 
 

• (Again, relate this with the dot product 
projection in orthonormal bases for vector 
spaces) 

 

∫= xxbxfa nn d)()(
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Signal Reconstruction 

• The number of basis (blending) functions may 
be infinite or too large and therefore we must 
choose a finite subset of them that converges 
“reasonably” to the desired result 

• The reconstructed function (signal) is derived 
from the linear combination of the (truncated 
series) of basis functions: 
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Spherical Harmonics (1) 

• Spherical Harmonics define an orthonormal 
basis over the sphere S.  

• A point s on the sphere is parameterized as: 
 

• They are harmonic functions and more 
specifically they constitute the angular part of 
the solution of the Laplace’s equation on the 
unit sphere: 
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Spherical Harmonics (2) 

• The (complex) basis functions are defined as: 
 
 

    where Pl
m are the associated Legendre 

polynomials and Kl
m are the following 

normalization factors: 
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Spherical Harmonics (3) 

• Real versions of the SH basis functions can be 
obtained from the transformation: 
 
 
 
 

• l represents the band of the SH functions 
• Each band has 2l+1 SH basis functions 
• Each band corresponds to an increasing 

angular frequency  
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Spherical Harmonics (4) 
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Spherical Harmonics (5) 
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Spherical Harmonics (6) 

• Being an orthonormal set of basis functions: 
 
 

• The reconstruction of the signal can use up to 
any order of SH bands, truncating the infinite 
series of coefficients and respective basis 
functions 

• Similarly, the encoded (projected) signal has to 
be band limited and encoded in a finite set of 
SH coefficients 

• How many bands should we use? 
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Radiance Field 

• In broad terms, radiance is the light power 
transmitted over a path connecting two points 
in space (see Advanced Shading Models 
presentation for a detailed definition) 

• Incident or emitted radiance is parameterized 
as function of space and direction (5 DoF) 

• Therefore, in its more general form, it can be 
represented as a 5D field 

• What are the spectral characteristics of this 
field? 
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Visibility Field 

• Similar to radiance, we can encode visibility as 
a 5D field: 
– What is the visibility (how open is the environment) at 

a point (x,y,z) in space in a direction (θ,φ)? 
– Encodes the ability of the specific point to receive 

light from an incident direction (θ,φ) 
 
 
 
 

• What are the spectral characteristics of this 
field? 

0ϕϕ =

θ

0 , [ / 2, / 2]ϕ ϕ θ π π= ∈ −
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Frequency Analysis of Illumination (1) 

• Global illumination effects have distinctively 
different spectral characteristics 

• As a principle: 
– Diffuse inter-reflections produce low frequency 

directional radiance 
– The same holds for most cases involving occlusion in 

diffuse light bounces 
– Direct illumination with occlusion (shadows) contains 

high frequencies in general (discontinuities) 
– Specular transmission usually contains high 

frequencies  
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Frequency Analysis of Illumination (2) 
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Encoding the Radiance/Visibility Field (1) 

• Why? 
– Direct illumination is cheap to calculate at every 

point on the geometry 
– Indirect illumination is not (see presentation about GI) 

• Solution: 
– Precalculate on surfaces/cache points OR 
– Calculate at sparse locations at run time 

• What: 
– Visibility AND/OR 
– Radiance field of indirect lighting 
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Encoding the Radiance/Visibility Field (2) 

• Calculating and storing the radiance/visibility 
field once or per frame: 
– Disassociates its utilization from the geometry  
– Enables the easy evaluation of GI in real-time 

graphics (direct rendering techniques) 
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Encoding Visibility (Distant Illumination) (1) 

• From the rendering equation: 
 
 

• If we assume only a “distant” environment 
emitting the radiance (e.g. sky, sun, distant light 
sources etc), then: 
 
 

                       radiance        transfer function 
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Encoding Visibility (Distant Illumination) (2) 

• For diffuse surfaces this is simplified to: 
 
 
 

• The hemisphere is aligned with the surface 
normal at every point 

• The transfer function characterizes the specific 
point but for diffuse inter-reflection can be 
considered a slow varying quantity (thus 
sparsely evaluated). 
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Encoding Visibility (Distant Illumination) (3) 

• We can encode both the transfer function and 
the incident radiance using a set of basis 
functions 

• Orthonormal bases (such as SH) are ideal as 
they provide the useful property: 
 
 
 

• i.e.: The integral of two band limited functions 
equals the dot product of their coefficients 
when projected to the orthonormal basis 
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Precomputed Radiance Transfer (1) 

• The transfer (visibility over the hemisphere) 
function T can be precomputed and encoded 
in compact form 

• When using Spherical Harmonics, 9 or 16 
coefficients can effectively encode both T and 
Li for diffuse light transfer 

• The coefficients for T can be sparsely (pre-) 
evaluated, stored to and evaluated from: 
– A sparse lattice  
– A texture atlas 
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Precomputed Radiance Transfer (2) 
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Encoding the radiance field for diffuse GI (1) 

• If            is the incident radiance field at point p 
from direction ω, then the diffusely reflected 
light at p is: 
 
 

• Diffuse light is band limited, so using a projection 
to an orthonormal basis: 
– reflected radiance can be obtained from the N low 

order coefficients of the two functions: 

),( ωxL
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Encoding the radiance field for diffuse GI (2) 

•           are computed and interpolated at sparse 
locations (radiance field caching)  

•            are computed at each evaluation point 
(closed form) 

•             can be superimposed: 
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Part C: Real-time GI Methods 

Techniques for completely dynamic scenes: no 
pre-computation 
 

• Screen-space near field GI 
• Instant radiosity 
• Reflective shadow maps 
• Radiance caching 
• Volume-based global illumination 
• Light propagation volumes 
• Cascaded volume techniques 
 



Real-time Global Illumination 

Screen Space Near Field GI (1) 
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Screen Space Near Field GI (2) 

• Distributes sample locations in 
hemisphere above a point p in 
screen space 

• Check depth buffer for occlusion 
• Directions to unoccluded points 

(C here) contribute to the direct 
lighting  
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Screen Space Near Field GI (3) 

• Occluded points are projected 
onto the depth map and their 
lighting and normal is 
measured 

• Light is transferred to p 
according to the individual 
form factors calculated 
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Screen Space Near Field GI (4) 

• Cons: 
– Very approximate solution 
– View dependency 
– Erroneous occlusion 

• Pros: 
– Fast technique 
– Easy to implement 
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Instant Radiosity(1) 

• Covers a wide range of methods, both 
interactive and off-line 

• The concept is to replace indirect light bounces 
with direct illumination produced by virtual 
point lights (VPLs) 

• VPLs (complete with visibility information) are 
placed at the intersection of photons from the 
light source with the geometry 

• VPLs model the radiosity emitted from those 
intersection points 

• VPLs are not limited to the first bounce only 
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Instant Radiosity(2) 

VPL placement Indirect illumination 
from VPLs 
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Instant Radiosity – Dynamic VPL Update 

• Original CPU technique supported VPL updates 
• When the scene changes, VPLs are updated: 

– Test VPL against shadow map 
– If invisible (beyond SM), discard VPL and add a new 

one 
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Reflective Shadow Maps(1) 
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Reflective Shadow Maps(1) 

• Is a fast indirect lighting technique using: 
• Shadow maps (depth maps) extended to also 

store VPL data: 
– Normals at visible points 
– Illumination (VPL power) at visible points 
– Optionally, location of VPLs and other data 
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Reflective Shadow Maps(2) 

• Essentially, an RSM replaces the tracing of VPLs 
in the scene: 

• Each SM texel is considered a VPL  
• The shadow map contains the nearest scene 

points to the light source 
• The extra data completely describe the power 

distribution of each VPL (shadow map texel)   
• The extended SM storage is used by other GI 

techniques  RSM now also refers to the multi-
channel shadow map storage. 
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Reflective Shadow Maps (2) 

• What the RSM does NOT provide is visibility 
information for each VPL 

• Therefore, the light from each VPL is considered 
unoccluded  no secondary bounce occlusion 

• Also, RSM provides first-bounce GI only 
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RSM – VPL Lighting Calculations (1) 

• In the bibliography, the RSM illumination 
channel stores anything, from radiosity, intensity, 
to power 

• Each texel (VPL) can be considered a cosine 
weighted point light but a more accurate 
modeling is a small (trapezoid) area light:  

Visible polygon  
fragment 

Fragment normal 
RSM texel 

RSM 
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RSM – VPL Lighting Calculations (2) 

• Assume a directional light source with total flux           
 , a shadow map with              square texels, 
distance d from the projection plane and 
vertical half aperture     : 
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RSM – VPL Lighting Calculations (3) 
w
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RSM – VPL Lighting Calculations (4) 

• The power transmitted through RSM texel (i,j) 
that corresponds to the power of the (i,j) virtual 
area light is: 
 

• Using the recorded RSM depth and normal at 
(i,j), we can also estimate the radiosity at any 
point on the virtual light:  
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Using the RSM for Global Illumination (1) 

• RSM texels are sampled in the same manner as 
VPLs 

• Light transfer can be estimated between each 
RSM virtual area light (or point light, depending 
on model) and the illuminated point 

• Caution: Light transfer does not evaluate 
visibility between RSM samples and the 
receiving point 
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Using the RSM for Global Illumination (2) 

• Practical RSM sampling: 
– Project receiving point on RSM 
– Determine an area around projected point in RSM 

parametric space to sample 
– Accumulate RSM sample contribution 
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Radiance Field Caching (1) 
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Radiance Field Caching (2) 

• Estimates the incident radiance field at the 
vertices of a uniform grid 

• Radiance is captured by rendering the scene 
on a cubical environment map  

• Compresses the radiance field using SH 
• Evaluates the reflected radiance on surfaces by 

direct integration of the radiance field with the 
BRDF at each point in SH space 

• SHs for points in between lattice vertices are 
interpolated. 
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Radiance Field Caching (3) 

• For each node, the SH 
coefs are the superposition 
of the individual cubemap 
texel radiance projection: 



Real-time Global Illumination 

Radiance Field Caching (4) 

• Reflected radiance can be directly evaluated 
from the radiance field SH coefficients and the 
SH coefs of the transfer function (oriented 
BRDF): 
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Radiance Field Caching (5) 

• For Lambertian surfaces (diffuse reflection): 
 
 
 
 
 

• Diffuse GI is well approximated with 2-3 order SH 
• The transfer function can be generalized to 

Phong-like models (symmetric lobes) but require 
a significantly larger SH order (6+) impractical 
storage 
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Radiance field SH coefs  
interpolated from 8 nearest 
lattice points 

Normal-aligned projected  
cosine-weighted hemisphere  
on SH basis 
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Radiance Field Caching (6) 

• Practical issues: 
– For truly dynamic scenes, cubemaps must be 

completely re-evaluated often 
– Secondary bounces may be handled by exchanging 

light among lattice points 
– The sparseness of the grid necessitates additional 

occlusion criteria when evaluating the radiance field: 
• Depth maps are also acquired per node 
• Instead of simply trilinearly interpolating the node radiance, 

a visibility check is performed against the node’s range in 
the direction of the sample 
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Volume-based Global Illumination 
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Volume-based GI (1) 

• Uses an intermediate regular approximation of 
the geometry (voxel grid) to store lighting and 
geometry data  

• Rough discretization of the shaded environment 
• Why volume-based GI? 

– Decouples local pixel calculations (GPU pipeline) 
from full-scene data 

– Provides access to full-scene data in the local-only 
context of a shaded pixel 

– GI calculations independent of scene complexity 
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Volume-based GI (2) 

• The “lit” voxels represent virtual point lights 
• Occupied voxels effectively block light 

transport 
• What do we need to store for one-bounce GI 

(per voxel): 
– Direct lighting (VPLs) directionally encoded using the 

normal at the shaded fragments 
– Voxel coverage as occupancy (same storage – 

black voxels) 
• What do we need for extra bounces? 

– Averaged (per voxel) surface normals 
– Average (per voxel) albedo 
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Volume-based GI (3) 

• All methods have two phases: 
– Volume data generation 
– GI estimation 

• Volume generation: 
– Point injection 

• Geometry-based 
• Image-based 

– Multi-channel full-scene voxelization 
• GI estimation: 

– Iterative radiance diffusion (light propagation 
volumes) 

– Ray marching 
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VBGI – Image-based Point Injection (1) 

• Samples from the available frame buffers are 
injected into the volume using the technique 
discussed in part A 

• Shadow maps (RSMs) hold a sampling of the 
surfaces lit by the particular light source  VPLs 

• The camera buffer (MRT G-buffer) contributes 
additional occupancy-only points 
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VBGI – Image-based Point Injection (2) 

• How are the points injected? 
– Reflective shadow map acquisition: 

 
 
 
 
 
 
 

Light setup                Shadow map points (WCS) 
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VBGI – Image-based Point Injection (3) 

• How are the points injected (cont)? 
– Camera g-buffer acquisition (deferred rendering): 

 
 
 
 
 
 
 

Camera setup                camera depth points (WCS) 
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• How are the points injected (cont)? 
– Geometry (points) generation: 

 
 
 
 
 
 
 

VBGI – Image-based Point Injection (4) 

• Render a planar grid of 
points. 

 For simplicity, arrange 
points in ([0,1],[0,1],0) 
interval 

In a geometry shader: 
• Lookup the (x,y) depth from the SM 
• Transform (x,y,depth) to vol. coords 
• Inject the transformed point in volume 
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• How are the points injected (cont)? 
– Do the same for the camera buffer points: 

 
 
 
 
 
 
 

VBGI – Image-based Point Injection (5) 

• Additional camera points are unlit points 
• We repeat the process for all available buffers (lights, reflection 

buffers, env. maps etc) 
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• The corresponding voxels now store the 
encoded lighting, occupancy and other data: 

VBGI – Image-based Point Injection (6) 

• The injected point contribution is not the same for all points! More 
on this later  
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VBGI – Full Scene Voxelization (1) 

• Rasterizes the geometry into the volume buffer 
directly from the geometric data 

• Imprints a complete occlusion information, 
regardless of visibility to buffers 

• Voxelization  3D Rasterization: 
– Voxel shaders compute and encode direct lighting, 

normals, albedo and occupancy 
– 2-5 volume textures required  

• Many ways to perform it 
• All methods slice the geometry into volume 

layers 
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VBGI – Full Scene Voxelization (2) 

Luminance 
only 
 
 
 
Full color GI 
 
 
 
 
+ color 
bleeding 
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VBGI – Full Scene Voxelization (3) 
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VBGI – Full Scene Voxelization (4) 

                         Binary data: OR op.     Scalar data: MAX op. 

• Polygons are 
rasterized to the 
volume sweep of 
maximum projection 

• This ensures dense, 
coherent sampling 

Volume sweep plane 
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Blocking – Geometry Orientation/Coverage 

• As volume textures are quite crude (e.g. 323), 
voxels should not be either on or off 

• Regardless of volume generation method, 
volumes should store: 
– Occupancy proportional to voxel coverage and 

alpha  This is easier in full voxelization 
– Directional data (SHs) for each injected fragment  

• Multiple surfaces with different orientations cross the voxel  
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Light Propagation Volumes  
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Light Propagation Volumes (1) 

• Iteratively propagates flux from each cell to the next 
• Blocks (attenuates) light according to occupancy data 

 
 

Occlusion 
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Light Propagation Volumes (2) 

• The flux incident to each one of the faces of the 
neighboring cell is difficult to approximate as an 
integral using low-order SHs 

• A rough empirical approximation is suggested: 
– Estimate the intensity in direction ωc to the cone V(ω) 

center 
– Scale by the ratio of the solid angle subtended by 

the face against 4π (spherical solid angle) 

cω
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Light Propagation Volumes (3) 

• Then a new VPL is generated at the 
neighboring cell with intensity matching the 
total flux of the face 

• The VPL is encoded as SH and added to the 
cells intensity distribution 
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Light Propagation Volumes (4) 

• Not a physically correct solution: 
• Although flux balance is maintained, 
• Flux is assumed to get diffused on “translucent walls” 

due to the change in propagation direction 
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• Some leaking still occurs due to low SH order (series 
truncation) and approximate blocking  

Light Propagation Volumes - Bounces 

O O 
O O 
O O 
O O 
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O O 
O O 
O O 

O O 
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O O 
O O 
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O O 
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O O 
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O O 

iterations 

Spherical harmonic buffer (pair – swapped for reading/writing) 

GI accumulation buffer (flux sampled from decoded SH) 
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Light Propagation Volumes - Requirements 

• Geometry (occlusion) volumes: 2nd order SH 
(l=1: 4 coefs) to encode directionality 

• RGB Flux volumes: 3 X 2nd order SH: 12 coefs 
• Need to duplicate flux volumes for ping pong 

rendering (iterations) 
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Cascaded LPVs 
• Why? 

– Scenes are large to be covered by a single low-res 
volume (large volumes are slow and costly) 

– We need many iterations to transport flux across the 
scene 

• Solution: Cascades 
– Overlapped volumes of same resolution but different 

size 
– Denser sampling near camera 
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VBGI - Ray Marching  
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VBGI - Ray Marching (1) 

• We can approximate a gathering operation 
(Monte Carlo integration) by marching rays in 
the volume instead of intersecting them with 
the scene 

• We can march rays either from the shaded 
fragments or from the GI volume voxels (faster 
but cruder) 
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VBGI - Ray Marching (2) 

• Ray marching: 
– Iteratively sample the volume along a line until a fully 

blocked voxel is reached 
– Gather light along the line from occupied voxels, 

according to orientation stored in them 
– Perform integration with the BRDF at the shaded 

point  Simple SH dot product for diffuse reflection 
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VBGI - Ray Marching (3) 

Generate N random rays 
L_gi = 0; 
for each ray dir: 
    s = ds; 
    while s < r_max 
        v = p + s*dir; 
        if Occ(v)>0.5 
            break; 
        s += ds; 
    if s >= r_max 
        continue; 
    F = clamp(dot(-Normal(v),dir),0,1); 
    F *= clamp(dot(Normal(p),dir),0,1); 
    L_gi += F*L(v); 
L(p) += Color(p)*L_gi/N; 
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VBGI - Comparison 

• Light propagation volumes: 
– Is fast 
– Not physically correct 
– Cannot guarantee that light reaches opposite 

surface 
– View dependent   

• incomplete occlusion 
• Temporal aliasing (popping artifacts) 

• Full voxelization GI: 
– More accurate  
– Stable 
– Slower 
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