
Real-time Global Illumination Real-time Global Illumination

G. Papaioannou 2011 – M.Sc. Graphics Course

Real-time Global Illumination

G. Papaioannou 2011 – M.Sc. Graphics Course

Real-time Global Illumination

G. Papaioannou 2011 – M.Sc. Graphics Course

Real-time Global Illumination

Contents

Intro
Part A: Real-time Rendering Techniques
Part B: Representation of Illumination Functions
Part C: Real-time GI Methods

Real-time Global Illumination

Why Use GI Algorithms?

• Photorealistic simulation of illumination
 Indirect lighting Direct lighting only

Real-time Global Illumination

The Rendering Equation

• Expresses the equilibrium of light distribution in a
scene

x

y

dA

G(x,y)

V=1

V=1
V=0

Real-time Global Illumination

Non-real-time Approximations to GI

• The rendering equation must be solved
simultaneously for all possible light paths in the
environment
– Unrealistic and non-feasible
– Infinite light paths of uncertain importance

• Approximate solutions:
– Discretize and sample space to generate a

manageable set of light paths
– Keep only paths that reach the image pixels
– Rely on robust stochastic models to create unbiased

results (Monte Carlo, Russian roulette, Metropolis) or
– Use biased, light caching techniques (Photon maps)

Real-time Global Illumination

Non-real-time GI Results

Bidirectional path tracing Photon mapping

Real-time Global Illumination

Lighting components

• For computational efficiency and accuracy
light paths are distinguished according to:
– Direct lighting: unobstructed light from sources

Dense, directional sampling of visible portions of
emitters

– Indirect diffuse: Main scattering of light in
environment (ambient light)

– Specular reflections and refracted light
– Specular-to-diffuse light bounces (e.g. caustics)

• Except from direct lighting, all other types of
transmission are hard to tackle in real-time

Real-time Global Illumination

Lighting components

• For computational efficiency and accuracy
light paths are computed separately:

Direct diffuse

Indirect diffuse

Reflection

Refraction

Caustics

Real-time Global Illumination

Part A: Real-time Rendering Techniques

Rendering to a 2D texture
Multiple render targets
Deferred rendering
Layer re-targeting
Rendering to a volume (3D) texture
Point injection
Multi-resolution rendering

Real-time Global Illumination

Rendering to a 2D texture (1)

• Conventional direct rendering pipeline:
– Output of fragment processing operations to the

frame memory buffer
• Modern techniques require the output of the

fragments into intermediate memory:
– To post-process the results
– To use the rendered image as input to the next

rendering algorithm (as a texture, e.g. reflections,
shadow maps etc).

– To randomly access the stored values
– To stream the output to another application

Real-time Global Illumination

Rendering to a 2D texture (2)

• Modern graphics cards and APIs can redirect
graphics output to custom frame buffers that
write directly in textures (images)

• Steps:
– Prepare (allocate) a 2D texture
– Prepare a frame buffer object
– Link the 2D texture with one of the frame buffer

attachment attributes (color/depth)
– Enable the frame buffer object as current graphics

output

Real-time Global Illumination

Rendering to a 2D texture (3)

• In OpenGL:
Gluint buffer, FBO;

glGenTextures(1,&buffer);
glBindTexture(GL_TEXTURE_2D, buffer);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0,

GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glGenFramebuffersEXT(1, &FBO);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,FBO);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, buffer, 0);

Internal format

Attachment

Real-time Global Illumination

Multiple Render Targets (1)

• It is often useful to be able to write many
fragment operation results to multiple internal
buffers, without re-rendering the geometry

• Examples:
– Cube map generation (6 buffers, 6 viewing

transformations – also requires retargeting by a
geometry shader)

– Deferred rendering (3+ buffers, one viewing
transformation)

– Reflective shadow maps (ok, this is still deferred
rendering!)

Real-time Global Illumination

Multiple Render Targets (2)

• This is enables via the Multiple Render Targets
(MRT) mechanism:
– The geometry is sent once for primitive generation
– The pixel (fragment) shader writes results at the same

location on multiple buffers
– Different calculations and hence output values can

be written to each buffer in the same pixel shader

Real-time Global Illumination

Multiple Render Targets (3)

Geometry
processing

Rasterization

RT0
RT1

RT2
RT3

Fragment
shader

Real-time Global Illumination

Multiple Render Targets (4)

• OpenGL initialization:
GLuint FBO, buffer[4]; // up to 8 for now.
glGenTextures(4,buffer);
glGenFramebuffersEXT(1, &FBO);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,FBO);

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, buffer[0],0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, buffer[1],0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT2, GL_TEXTURE_2D, buffer[2],0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT3, GL_TEXTURE_2D, buffer[3],0);

Real-time Global Illumination

Multiple Render Targets (5)

• OpenGL usage:
GLenum targets[4] =
 { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT };

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, point_fbo);

If (glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT)

!=GL_FRAMEBUFFER_COMPLETE_EXT)
 {
 // Failed to initialize the FBO. Handle the error here
 }

glDrawBuffers(4,targets);

Real-time Global Illumination

Multiple Render Targets (6)

• And in the GLSL shader, you simply write the
data to the appropriate buffer:

void main()
{
 … // other fragment shader code
 gl_FragData[0] = vec4(…);
 gl_FragData[1] = vec4(…);
 gl_FragData[2] = vec4(…);
 gl_FragData[3] = vec4(…);
}

Real-time Global Illumination

Deferred Rendering (1)

• In deferred rendering, the geometry is not
immediately rendered but instead, it is used for
the generation of intermediate data, which are
later used for calculating the final image

• The intermediate data are generated through
the MRT mechanism in one pass

• All shading calculations are postponed for the
final (deferred) stage

• Why?
– Expensive shading calculations are performed once

per pixel (visible fragments only)

Real-time Global Illumination

Deferred Rendering (2)
• Typically, the albedo, the normals, the depth and

specular attributes are written in MRTs (G-buffer)

• The final shading uses the above
buffers as textures to calculate
illumination:

Albedo Normals Depth Specular

Real-time Global Illumination

Texture Arrays and Rendering Layers

• We have seen that textures can be bound as
frame buffers

• We can instruct the hardware to bind an array
of textures as output of a single rendering target

• Each texture in the array is treated as a
separate rendering layer

• The geometry shader can determine which
layer to emit a primitive to

• This technique can be combined with MRT
rendering

Real-time Global Illumination

Rendering Layers

Geometry
processing

Rasterization

Fragment
shader

Rasterization

Rasterization

Rasterization

Fragment
shader

Fragment
shader

Fragment
shader

Layer 0

Layer 1

Layer 2

Layer 3

Fragment
shader

Real-time Global Illumination

Layers vs MRTs
• Layers:

– The geometry shader selects a buffer and emits a
primitive for rasterization to it

– A primitive can be generated and emitted to any
number of layers

– Each layer selection and primitive emission adds a
new rasterization task to the primitve queue

– Generated primitive fragments are unrelated across
layers

• MRTs:
– The fragment shader simultaneously writes data to all

MRTs
– Number of RTs is predetermined
– Fragment coordinates (x,y) are identical to all RTs

Real-time Global Illumination

Layers using MRTs (1)

• Layers and MRTs can be combined!
• We can enable both. Essentially, we can have

multiple layers, each one with multiple render
targets

• You can think of the extra RTs as extra channels
in a texel (multiples of base type, e.g. 4XRGBA)

• Each layer is a separate multichannel canvas
• We decide which primitive to submit for

rendering to which canvas (and how).

Real-time Global Illumination

Layers using MRTs (2)

Geometry
shader

Layer 0
Rasterization

Fragment
shader

Rasterization

Rasterization

Rasterization

Fragment
shader

Fragment
shader

Fragment
shader

Layer 1

Layer 2

Layer 3

RT0
RT1

Fragment
shader

Real-time Global Illumination

Volume Textures

• Volume textures are packed arrays of equally
sized 2D textures, slice by slice

• They are different from 2D texture arrays:
– They are indexed by 3 normalized params (s,t,r)
– They can be trilinearly filtered. Texture arrays are not

interpolated across different slices
– They are also accessible from fixed graphics pipeline

t

s

r

Real-time Global Illumination

Rendering into 3D Textures (1)

• To directly render into a 3D texture, we can bind
a frame buffer object to it

• Each slice of the 3D texture is treated as a
frame buffer attachment and indexed as a
separate layer

• The geometry shader redirects output of a
primitive to one or more depth layers

t

s

r

Layer 1

Real-time Global Illumination

Rendering into 3D Textures (2)

• 3D textures can be also used as MRTs
• Each (identical) 3D texture can be bound to a

different FBO attachment
• Each primitive is submitted for rendering into a

specific layer, where its fragments update the
corresponding pixels of the same layer in all MRT
volumes

Layer 1

RT 0 RT 1 RT 2

Fragment shader A primitive fragment

Real-time Global Illumination

Rendering into 3D Textures (3)
• OpenGL Initialization:
GLuint fbo, buffers[4];
glGenFramebuffersEXT(1, &fbo);
glGenTextures(4, buffers);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,fbo);

glBindTexture(GL_TEXTURE_3D, buffers[0]);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA16F, resx,resy,resz, 0,

GL_RGBA, GL_HALF_FLOAT, NULL);
glFramebufferTexture3DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0, GL_TEXTURE_3D, buffers[0], 0, 0);
… // do the same for other textures as well
GLenum targets[4] =
 { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT };
glDrawBuffers(4,targets);

Real-time Global Illumination

Rendering into 3D Textures (4)

• GLSL geometry shader:
// Example:
// Point rendering. Incoming points are redirected for rendering
// to a 3D volume slice according to relative z-value in (minz,maxz)
uniform vec3 pmin, pmax;
void main()
{
 int layer = 32*floor((gl_PositionIn[0].z-pmin.z)/(pmax.z-pmin.z));
 gl_Position = gl_PositionIn[0];
 gl_Layer = layer;
 EmitVertex();
}";

Real-time Global Illumination

Point Rendering

• Point rendering is the drawing of a (dense)
cloud of points to substitute surface geometry

• “Points” may occupy more than one fragment
(depending on the point size)

• Dense point clouds can effectively replace
complex geometry at a moderate cost

• Sparse point clouds can be used in algorithms
that require only a general spatial “geometry
distribution” in the scene.

• Many modern GI algorithms depend on point
injection (rendering) in volume textures.

Real-time Global Illumination

Point Injection

• Is the process of placing point samples inside a
volume that represents the spatial extents of a
3D scene

• It is implemented via the volume layer
mechanism:

• P=(x,y,z)(u,v, layerID)
LayerID layer Fragment (u,v)

Real-time Global Illumination

Point Injection – The Volume

• Usually, a grid represented as a 3D texture is
defined covering the bounding box (extents) of
the scene

• Then a scale and translation transform the
coordinates inside the bounding box to the
normalized 3D texture coordinates:

(xmin,ymin,zmin)

(xmax,ymax,zmax)

z

x

y minminmin

minmaxminmaxminmax

,,1,1,1 zyx
zzyyxx

Vol TS −−−
−−−

=M

• Finding the slice is easy:

 +⋅=

⋅===

2
1

),,().,,(

z

volVol

Volsizewlayer

pwvupzyxp M

Real-time Global Illumination

Point Injection - Implementation
• The volume point injection can be easily

implemented in the geometry shader:
– A grid of points or the vertices of the geometry as

transformed according to
– The layer is selected where the points will be emitted

for rasterization
• Point coordinates are mostly derived from:

– Raw (WCS) triangle vertices
– Stored geometry images (textures encoding x,y,z

coordinates as RGB data)
– Un-projected points in a depth or shadow map

• Additional transformations may need to be
applied before the injection procedure

VolM

Real-time Global Illumination

Part B: Illumination Functions Compression

• Projection and reconstruction of signals
• Frequency analysis of light field
• Light and visibility as functions over the sphere
• Spherical harmonics
• Spherical radial basis functions
• Low-frequency illumination storage

Real-time Global Illumination

Orthonormal Basis Functions

• A basis function bn is an element of a particular
basis for a function space

• Every continuous function in the function space
can be represented as a linear combination of
basis functions:

• Check similarity with vector spaces
• An orthonormal basis additionally satisfies the

property:

∑
∈

=
Nn

nn xbaxf)()(

∫ Ν∈∀−= jijibb ji ,)(δ

Real-time Global Illumination

Signal Projection on Orthonormal Bases
• The projection of an arbitrary continuous

function on a set of basis functions results in the
definition of the blending coefficients an

• It can be proven that for orthonormal function
bases, the best least squares fitting of a function
f over a predefined set of basis functions bn
results in:

• (Again, relate this with the dot product
projection in orthonormal bases for vector
spaces)

∫= xxbxfa nn d)()(

Real-time Global Illumination

Signal Reconstruction

• The number of basis (blending) functions may
be infinite or too large and therefore we must
choose a finite subset of them that converges
“reasonably” to the desired result

• The reconstructed function (signal) is derived
from the linear combination of the (truncated
series) of basis functions:

 ∑

=

=
N

n
nn xbaxf

1
)()(~

Real-time Global Illumination

Spherical Harmonics (1)

• Spherical Harmonics define an orthonormal
basis over the sphere S.

• A point s on the sphere is parameterized as:

• They are harmonic functions and more
specifically they constitute the angular part of
the solution of the Laplace’s equation on the
unit sphere:

)cos,cossin,cos(sin),,(θϕθϕθ== zyxs

02

2

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂

z
f

y
f

x
f

Real-time Global Illumination

Spherical Harmonics (2)

• The (complex) basis functions are defined as:

 where Pl
m are the associated Legendre

polynomials and Kl
m are the following

normalization factors:

Real-time Global Illumination

Spherical Harmonics (3)

• Real versions of the SH basis functions can be
obtained from the transformation:

• l represents the band of the SH functions
• Each band has 2l+1 SH basis functions
• Each band corresponds to an increasing

angular frequency

Real-time Global Illumination

Spherical Harmonics (4)

Real-time Global Illumination

Spherical Harmonics (5)

Real-time Global Illumination

Spherical Harmonics (6)

• Being an orthonormal set of basis functions:

• The reconstruction of the signal can use up to
any order of SH bands, truncating the infinite
series of coefficients and respective basis
functions

• Similarly, the encoded (projected) signal has to
be band limited and encoded in a finite set of
SH coefficients

• How many bands should we use?

Real-time Global Illumination

Radiance Field

• In broad terms, radiance is the light power
transmitted over a path connecting two points
in space (see Advanced Shading Models
presentation for a detailed definition)

• Incident or emitted radiance is parameterized
as function of space and direction (5 DoF)

• Therefore, in its more general form, it can be
represented as a 5D field

• What are the spectral characteristics of this
field?

Real-time Global Illumination

Visibility Field

• Similar to radiance, we can encode visibility as
a 5D field:
– What is the visibility (how open is the environment) at

a point (x,y,z) in space in a direction (θ,φ)?
– Encodes the ability of the specific point to receive

light from an incident direction (θ,φ)

• What are the spectral characteristics of this
field?

0ϕϕ =

θ

0 , [/ 2, / 2]ϕ ϕ θ π π= ∈ −

Real-time Global Illumination

Frequency Analysis of Illumination (1)

• Global illumination effects have distinctively
different spectral characteristics

• As a principle:
– Diffuse inter-reflections produce low frequency

directional radiance
– The same holds for most cases involving occlusion in

diffuse light bounces
– Direct illumination with occlusion (shadows) contains

high frequencies in general (discontinuities)
– Specular transmission usually contains high

frequencies

Real-time Global Illumination

Frequency Analysis of Illumination (2)

Real-time Global Illumination

Encoding the Radiance/Visibility Field (1)

• Why?
– Direct illumination is cheap to calculate at every

point on the geometry
– Indirect illumination is not (see presentation about GI)

• Solution:
– Precalculate on surfaces/cache points OR
– Calculate at sparse locations at run time

• What:
– Visibility AND/OR
– Radiance field of indirect lighting

Real-time Global Illumination

Encoding the Radiance/Visibility Field (2)

• Calculating and storing the radiance/visibility
field once or per frame:
– Disassociates its utilization from the geometry
– Enables the easy evaluation of GI in real-time

graphics (direct rendering techniques)

Real-time Global Illumination

Encoding Visibility (Distant Illumination) (1)

• From the rendering equation:

• If we assume only a “distant” environment
emitting the radiance (e.g. sky, sun, distant light
sources etc), then:

 radiance transfer function

∫
Ω

=
i

iiiirrriiiirrr dfVLL ωθθφθφθφθφθφ cos),,,(),(),(),(

Real-time Global Illumination

Encoding Visibility (Distant Illumination) (2)

• For diffuse surfaces this is simplified to:

• The hemisphere is aligned with the surface
normal at every point

• The transfer function characterizes the specific
point but for diffuse inter-reflection can be
considered a slow varying quantity (thus
sparsely evaluated).

(,) (,) (,) cos
i

r r r i i i i i iL L V dρφ θ φ θ φ θ θ ω
π Ω

= ∫
),(iiT θφ

Real-time Global Illumination

Encoding Visibility (Distant Illumination) (3)

• We can encode both the transfer function and
the incident radiance using a set of basis
functions

• Orthonormal bases (such as SH) are ideal as
they provide the useful property:

• i.e.: The integral of two band limited functions
equals the dot product of their coefficients
when projected to the orthonormal basis

∑∫
=

=
k

i
kk gfdssgsf

1
)(~)(~

Real-time Global Illumination

Precomputed Radiance Transfer (1)

• The transfer (visibility over the hemisphere)
function T can be precomputed and encoded
in compact form

• When using Spherical Harmonics, 9 or 16
coefficients can effectively encode both T and
Li for diffuse light transfer

• The coefficients for T can be sparsely (pre-)
evaluated, stored to and evaluated from:
– A sparse lattice
– A texture atlas

Real-time Global Illumination

Precomputed Radiance Transfer (2)

(,) (,) (,) cos
i

r r r i i i i i iL L V dρφ θ φ θ φ θ θ ω
π Ω

= ∫

(,) (,) cos
i

r r r i i i iL L dρφ θ φ θ θ ω
π Ω

= ∫

Real-time Global Illumination

Encoding the radiance field for diffuse GI (1)

• If is the incident radiance field at point p
from direction ω, then the diffusely reflected
light at p is:

• Diffuse light is band limited, so using a projection
to an orthonormal basis:
– reflected radiance can be obtained from the N low

order coefficients of the two functions:

),(ωxL

() (,) cos (,) (,)
i i

r i i i i i i iL L d L H dρ ρω θ ω ω ω ω
π πΩ Ω

= =∫ ∫x x x n

1

() () ()
N

r k k
k

L L Hr
p =
εx x n;

Real-time Global Illumination

Encoding the radiance field for diffuse GI (2)

• are computed and interpolated at sparse
locations (radiance field caching)

• are computed at each evaluation point
(closed form)

• can be superimposed:

)(xkL

()kH n

)(xkL

1(,)L wx
1w

1 1 1(,)... (,)NL Lw wx x

2(,)L wx
2w

1 2 2(,)... (,)NL Lw wx x

+

1 1 2 1 2(,(,))... (,(,))NL Lw w w wx x

Real-time Global Illumination

Part C: Real-time GI Methods

Techniques for completely dynamic scenes: no
pre-computation

• Screen-space near field GI
• Instant radiosity
• Reflective shadow maps
• Radiance caching
• Volume-based global illumination
• Light propagation volumes
• Cascaded volume techniques

Real-time Global Illumination

Screen Space Near Field GI (1)

Real-time Global Illumination

Screen Space Near Field GI (2)

• Distributes sample locations in
hemisphere above a point p in
screen space

• Check depth buffer for occlusion
• Directions to unoccluded points

(C here) contribute to the direct
lighting

Real-time Global Illumination

Screen Space Near Field GI (3)

• Occluded points are projected
onto the depth map and their
lighting and normal is
measured

• Light is transferred to p
according to the individual
form factors calculated

Real-time Global Illumination

Screen Space Near Field GI (4)

• Cons:
– Very approximate solution
– View dependency
– Erroneous occlusion

• Pros:
– Fast technique
– Easy to implement

Real-time Global Illumination

Instant Radiosity(1)

• Covers a wide range of methods, both
interactive and off-line

• The concept is to replace indirect light bounces
with direct illumination produced by virtual
point lights (VPLs)

• VPLs (complete with visibility information) are
placed at the intersection of photons from the
light source with the geometry

• VPLs model the radiosity emitted from those
intersection points

• VPLs are not limited to the first bounce only

Real-time Global Illumination

Instant Radiosity(2)

VPL placement Indirect illumination
from VPLs

Real-time Global Illumination

Instant Radiosity – Dynamic VPL Update

• Original CPU technique supported VPL updates
• When the scene changes, VPLs are updated:

– Test VPL against shadow map
– If invisible (beyond SM), discard VPL and add a new

one

Real-time Global Illumination

Reflective Shadow Maps(1)

Real-time Global Illumination

Reflective Shadow Maps(1)

• Is a fast indirect lighting technique using:
• Shadow maps (depth maps) extended to also

store VPL data:
– Normals at visible points
– Illumination (VPL power) at visible points
– Optionally, location of VPLs and other data

Real-time Global Illumination

Reflective Shadow Maps(2)

• Essentially, an RSM replaces the tracing of VPLs
in the scene:

• Each SM texel is considered a VPL
• The shadow map contains the nearest scene

points to the light source
• The extra data completely describe the power

distribution of each VPL (shadow map texel)
• The extended SM storage is used by other GI

techniques RSM now also refers to the multi-
channel shadow map storage.

Real-time Global Illumination

Reflective Shadow Maps (2)

• What the RSM does NOT provide is visibility
information for each VPL

• Therefore, the light from each VPL is considered
unoccluded no secondary bounce occlusion

• Also, RSM provides first-bounce GI only

Real-time Global Illumination

RSM – VPL Lighting Calculations (1)

• In the bibliography, the RSM illumination
channel stores anything, from radiosity, intensity,
to power

• Each texel (VPL) can be considered a cosine
weighted point light but a more accurate
modeling is a small (trapezoid) area light:

Visible polygon
fragment

Fragment normal
RSM texel

RSM

Real-time Global Illumination

RSM – VPL Lighting Calculations (2)

• Assume a directional light source with total flux
 , a shadow map with square texels,
distance d from the projection plane and
vertical half aperture :

totΦ hw NN ×

aθ

aθ texelA
d

w

h

()wN

()hN

=Ω

2
sin

2
sinarcsin4 hw

RSM

2

22 tan
tantan

h

a

hw

aa
h

w

hw
texel N

d
NN

dd
N
N

NN
whA θ

θθ
=

==

RSMW

Real-time Global Illumination

RSM – VPL Lighting Calculations (3)
w

h
()wN

()hN

2 3
,
2 2 2

cos (,) tan cos (,)(,)
(,) (,)

texel PROJECTED texel a

h

A A i j i ji j
d i j d i j N

q q qw = =;

()jid ,
),(jit

),(texel ji

 +−

 ++−=

hw N
hjh

N
wiwji

2
1

2
,

2
1

2
),(t

(,)i jq

=

d
ji

ji
),(

arctan),(
t

θ

),(cos/),(jidjid θ=

Real-time Global Illumination

RSM – VPL Lighting Calculations (4)

• The power transmitted through RSM texel (i,j)
that corresponds to the power of the (i,j) virtual
area light is:

• Using the recorded RSM depth and normal at
(i,j), we can also estimate the radiosity at any
point on the virtual light:

(,)(,) (,) tot
RSM

i ji j i j wrF = F
W

(,)(,)
VL

i jB i j
A

F;

),(),(
),(

),(),,(),(
),(

),(
),(

2

2

2

2

2

2

, jijid
Ajidepth

jijijid
AjidepthAA

jid
jidepthA

z

texeltexel
VLtexelPROJECTEDVL nnl

=
><

=⇒=
+

Average radiosity over area light

Real-time Global Illumination

Using the RSM for Global Illumination (1)

• RSM texels are sampled in the same manner as
VPLs

• Light transfer can be estimated between each
RSM virtual area light (or point light, depending
on model) and the illuminated point

• Caution: Light transfer does not evaluate
visibility between RSM samples and the
receiving point

Real-time Global Illumination

Using the RSM for Global Illumination (2)

• Practical RSM sampling:
– Project receiving point on RSM
– Determine an area around projected point in RSM

parametric space to sample
– Accumulate RSM sample contribution

Real-time Global Illumination

Radiance Field Caching (1)

Real-time Global Illumination

Radiance Field Caching (2)

• Estimates the incident radiance field at the
vertices of a uniform grid

• Radiance is captured by rendering the scene
on a cubical environment map

• Compresses the radiance field using SH
• Evaluates the reflected radiance on surfaces by

direct integration of the radiance field with the
BRDF at each point in SH space

• SHs for points in between lattice vertices are
interpolated.

Real-time Global Illumination

Radiance Field Caching (3)

• For each node, the SH
coefs are the superposition
of the individual cubemap
texel radiance projection:

Real-time Global Illumination

Radiance Field Caching (4)

• Reflected radiance can be directly evaluated
from the radiance field SH coefficients and the
SH coefs of the transfer function (oriented
BRDF):

Real-time Global Illumination

Radiance Field Caching (5)

• For Lambertian surfaces (diffuse reflection):

• Diffuse GI is well approximated with 2-3 order SH
• The transfer function can be generalized to

Phong-like models (symmetric lobes) but require
a significantly larger SH order (6+) impractical
storage

()() () ()
l

m m
indirect l l

l m l
L L Hρ

π =−

= ∑ ∑pp p n

Radiance field SH coefs
interpolated from 8 nearest
lattice points

Normal-aligned projected
cosine-weighted hemisphere
on SH basis

Real-time Global Illumination

Radiance Field Caching (6)

• Practical issues:
– For truly dynamic scenes, cubemaps must be

completely re-evaluated often
– Secondary bounces may be handled by exchanging

light among lattice points
– The sparseness of the grid necessitates additional

occlusion criteria when evaluating the radiance field:
• Depth maps are also acquired per node
• Instead of simply trilinearly interpolating the node radiance,

a visibility check is performed against the node’s range in
the direction of the sample

Real-time Global Illumination

Volume-based Global Illumination

Real-time Global Illumination

Volume-based GI (1)

• Uses an intermediate regular approximation of
the geometry (voxel grid) to store lighting and
geometry data

• Rough discretization of the shaded environment
• Why volume-based GI?

– Decouples local pixel calculations (GPU pipeline)
from full-scene data

– Provides access to full-scene data in the local-only
context of a shaded pixel

– GI calculations independent of scene complexity

Real-time Global Illumination

Volume-based GI (2)

• The “lit” voxels represent virtual point lights
• Occupied voxels effectively block light

transport
• What do we need to store for one-bounce GI

(per voxel):
– Direct lighting (VPLs) directionally encoded using the

normal at the shaded fragments
– Voxel coverage as occupancy (same storage –

black voxels)
• What do we need for extra bounces?

– Averaged (per voxel) surface normals
– Average (per voxel) albedo

Real-time Global Illumination

Volume-based GI (3)

• All methods have two phases:
– Volume data generation
– GI estimation

• Volume generation:
– Point injection

• Geometry-based
• Image-based

– Multi-channel full-scene voxelization
• GI estimation:

– Iterative radiance diffusion (light propagation
volumes)

– Ray marching

Real-time Global Illumination

VBGI – Image-based Point Injection (1)

• Samples from the available frame buffers are
injected into the volume using the technique
discussed in part A

• Shadow maps (RSMs) hold a sampling of the
surfaces lit by the particular light source VPLs

• The camera buffer (MRT G-buffer) contributes
additional occupancy-only points

Real-time Global Illumination

VBGI – Image-based Point Injection (2)

• How are the points injected?
– Reflective shadow map acquisition:

Light setup Shadow map points (WCS)

Real-time Global Illumination

VBGI – Image-based Point Injection (3)

• How are the points injected (cont)?
– Camera g-buffer acquisition (deferred rendering):

Camera setup camera depth points (WCS)

Real-time Global Illumination

• How are the points injected (cont)?
– Geometry (points) generation:

VBGI – Image-based Point Injection (4)

• Render a planar grid of
points.

 For simplicity, arrange
points in ([0,1],[0,1],0)
interval

In a geometry shader:
• Lookup the (x,y) depth from the SM
• Transform (x,y,depth) to vol. coords
• Inject the transformed point in volume

Real-time Global Illumination

• How are the points injected (cont)?
– Do the same for the camera buffer points:

VBGI – Image-based Point Injection (5)

• Additional camera points are unlit points
• We repeat the process for all available buffers (lights, reflection

buffers, env. maps etc)

Real-time Global Illumination

• The corresponding voxels now store the
encoded lighting, occupancy and other data:

VBGI – Image-based Point Injection (6)

• The injected point contribution is not the same for all points! More
on this later

Real-time Global Illumination

VBGI – Full Scene Voxelization (1)

• Rasterizes the geometry into the volume buffer
directly from the geometric data

• Imprints a complete occlusion information,
regardless of visibility to buffers

• Voxelization 3D Rasterization:
– Voxel shaders compute and encode direct lighting,

normals, albedo and occupancy
– 2-5 volume textures required

• Many ways to perform it
• All methods slice the geometry into volume

layers

Real-time Global Illumination

VBGI – Full Scene Voxelization (2)

Luminance
only

Full color GI

+ color
bleeding

Real-time Global Illumination

VBGI – Full Scene Voxelization (3)

G
eo

m
et

ry
 sh

ad
er

 c
lip

pi
ng

Fr
ag

m
en

t s
ha

de
r c

lip
pi

ng

Real-time Global Illumination

VBGI – Full Scene Voxelization (4)

 Binary data: OR op. Scalar data: MAX op.

• Polygons are
rasterized to the
volume sweep of
maximum projection

• This ensures dense,
coherent sampling

Volume sweep plane

Real-time Global Illumination

Blocking – Geometry Orientation/Coverage

• As volume textures are quite crude (e.g. 323),
voxels should not be either on or off

• Regardless of volume generation method,
volumes should store:
– Occupancy proportional to voxel coverage and

alpha This is easier in full voxelization
– Directional data (SHs) for each injected fragment

• Multiple surfaces with different orientations cross the voxel

Real-time Global Illumination

Light Propagation Volumes

Real-time Global Illumination

Light Propagation Volumes (1)

• Iteratively propagates flux from each cell to the next
• Blocks (attenuates) light according to occupancy data

Occlusion

Real-time Global Illumination

Light Propagation Volumes (2)

• The flux incident to each one of the faces of the
neighboring cell is difficult to approximate as an
integral using low-order SHs

• A rough empirical approximation is suggested:
– Estimate the intensity in direction ωc to the cone V(ω)

center
– Scale by the ratio of the solid angle subtended by

the face against 4π (spherical solid angle)

cω

Real-time Global Illumination

Light Propagation Volumes (3)

• Then a new VPL is generated at the
neighboring cell with intensity matching the
total flux of the face

• The VPL is encoded as SH and added to the
cells intensity distribution

Real-time Global Illumination

Light Propagation Volumes (4)

• Not a physically correct solution:
• Although flux balance is maintained,
• Flux is assumed to get diffused on “translucent walls”

due to the change in propagation direction

Real-time Global Illumination

• Some leaking still occurs due to low SH order (series
truncation) and approximate blocking

Light Propagation Volumes - Bounces

O O
O O
O O
O O

O O
O O
O O
O O

O O
O O
O O
O O

O O
O O
O O
O O

O O
O O
O O
O O

O O
O O
O O
O O

O O
O O
O O
O O

iterations

Spherical harmonic buffer (pair – swapped for reading/writing)

GI accumulation buffer (flux sampled from decoded SH)

Real-time Global Illumination

Light Propagation Volumes - Requirements

• Geometry (occlusion) volumes: 2nd order SH
(l=1: 4 coefs) to encode directionality

• RGB Flux volumes: 3 X 2nd order SH: 12 coefs
• Need to duplicate flux volumes for ping pong

rendering (iterations)

Real-time Global Illumination

Cascaded LPVs
• Why?

– Scenes are large to be covered by a single low-res
volume (large volumes are slow and costly)

– We need many iterations to transport flux across the
scene

• Solution: Cascades
– Overlapped volumes of same resolution but different

size
– Denser sampling near camera

Real-time Global Illumination

VBGI - Ray Marching

Real-time Global Illumination

VBGI - Ray Marching (1)

• We can approximate a gathering operation
(Monte Carlo integration) by marching rays in
the volume instead of intersecting them with
the scene

• We can march rays either from the shaded
fragments or from the GI volume voxels (faster
but cruder)

Real-time Global Illumination

VBGI - Ray Marching (2)

• Ray marching:
– Iteratively sample the volume along a line until a fully

blocked voxel is reached
– Gather light along the line from occupied voxels,

according to orientation stored in them
– Perform integration with the BRDF at the shaded

point Simple SH dot product for diffuse reflection

Real-time Global Illumination

VBGI - Ray Marching (3)

Generate N random rays
L_gi = 0;
for each ray dir:
 s = ds;
 while s < r_max
 v = p + s*dir;
 if Occ(v)>0.5
 break;
 s += ds;
 if s >= r_max
 continue;
 F = clamp(dot(-Normal(v),dir),0,1);
 F *= clamp(dot(Normal(p),dir),0,1);
 L_gi += F*L(v);
L(p) += Color(p)*L_gi/N;

Real-time Global Illumination

VBGI - Comparison

• Light propagation volumes:
– Is fast
– Not physically correct
– Cannot guarantee that light reaches opposite

surface
– View dependent

• incomplete occlusion
• Temporal aliasing (popping artifacts)

• Full voxelization GI:
– More accurate
– Stable
– Slower

	Slide Number 1
	Contents
	Why Use GI Algorithms?
	The Rendering Equation
	Non-real-time Approximations to GI
	Non-real-time GI Results
	Lighting components
	Lighting components
	Part A: Real-time Rendering Techniques
	Rendering to a 2D texture (1)
	Rendering to a 2D texture (2)
	Rendering to a 2D texture (3)
	Multiple Render Targets (1)
	Multiple Render Targets (2)
	Multiple Render Targets (3)
	Multiple Render Targets (4)
	Multiple Render Targets (5)
	Multiple Render Targets (6)
	Deferred Rendering (1)
	Deferred Rendering (2)
	Texture Arrays and Rendering Layers
	Rendering Layers
	Layers vs MRTs
	Layers using MRTs (1)
	Layers using MRTs (2)
	Volume Textures
	Rendering into 3D Textures (1)
	Rendering into 3D Textures (2)
	Rendering into 3D Textures (3)
	Rendering into 3D Textures (4)
	Point Rendering
	Point Injection
	Point Injection – The Volume
	Point Injection - Implementation
	Part B: Illumination Functions Compression
	Orthonormal Basis Functions
	Signal Projection on Orthonormal Bases
	Signal Reconstruction
	Spherical Harmonics (1)
	Spherical Harmonics (2)
	Spherical Harmonics (3)
	Spherical Harmonics (4)
	Spherical Harmonics (5)
	Spherical Harmonics (6)
	Radiance Field
	Visibility Field
	Frequency Analysis of Illumination (1)
	Frequency Analysis of Illumination (2)
	Encoding the Radiance/Visibility Field (1)
	Encoding the Radiance/Visibility Field (2)
	Encoding Visibility (Distant Illumination) (1)
	Encoding Visibility (Distant Illumination) (2)
	Encoding Visibility (Distant Illumination) (3)
	Precomputed Radiance Transfer (1)
	Precomputed Radiance Transfer (2)
	Encoding the radiance field for diffuse GI (1)
	Encoding the radiance field for diffuse GI (2)
	Part C: Real-time GI Methods
	Screen Space Near Field GI (1)
	Screen Space Near Field GI (2)
	Screen Space Near Field GI (3)
	Screen Space Near Field GI (4)
	Instant Radiosity(1)
	Instant Radiosity(2)
	Instant Radiosity – Dynamic VPL Update
	Reflective Shadow Maps(1)
	Reflective Shadow Maps(1)
	Reflective Shadow Maps(2)
	Reflective Shadow Maps (2)
	RSM – VPL Lighting Calculations (1)
	RSM – VPL Lighting Calculations (2)
	RSM – VPL Lighting Calculations (3)
	RSM – VPL Lighting Calculations (4)
	Using the RSM for Global Illumination (1)
	Using the RSM for Global Illumination (2)
	Radiance Field Caching (1)
	Radiance Field Caching (2)
	Radiance Field Caching (3)
	Radiance Field Caching (4)
	Radiance Field Caching (5)
	Radiance Field Caching (6)
	Volume-based Global Illumination
	Volume-based GI (1)
	Volume-based GI (2)
	Volume-based GI (3)
	VBGI – Image-based Point Injection (1)
	VBGI – Image-based Point Injection (2)
	VBGI – Image-based Point Injection (3)
	VBGI – Image-based Point Injection (4)
	VBGI – Image-based Point Injection (5)
	VBGI – Image-based Point Injection (6)
	VBGI – Full Scene Voxelization (1)
	VBGI – Full Scene Voxelization (2)
	VBGI – Full Scene Voxelization (3)
	VBGI – Full Scene Voxelization (4)
	Blocking – Geometry Orientation/Coverage
	Light Propagation Volumes
	Light Propagation Volumes (1)
	Light Propagation Volumes (2)
	Light Propagation Volumes (3)
	Light Propagation Volumes (4)
	Light Propagation Volumes - Bounces
	Light Propagation Volumes - Requirements
	Cascaded LPVs
	VBGI - Ray Marching
	VBGI - Ray Marching (1)
	VBGI - Ray Marching (2)
	VBGI - Ray Marching (3)
	VBGI - Comparison

