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MONTE CARLO INTEGRATION BASICS




Monte Carlo Integration (1)

Is an important tool for evaluating the global illumination equation

Evaluates integrals based on a selection of random samples in the
integration domain

Given an integral of an arbitrary function f(X) in the interval [a,b]
and a uniform selection of N random samples in [a,b]:

| =j‘f(X)dX:><| >= (b&a)izl\ll:f(xi)




Monte Carlo Integration (2)

Proof:
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* Every different computation of (1) will yield a different result
 But on average, we will get the same answer




Monte Carlo Integration (3)

Examples of uniform sampling:

AKJ/\L | M\ N |




Monte Carlo Integration - Advantages

* Works no matter how complex the function to be integrated is
(even discontinuous)

Does not even require the a priori knowledge of the
integrand!




Monte Carlo Integration - Drawbacks

* Slow converge rate: when drawing N samples, we expect a
converge rate of 1/ JN

— E.g., to decrease the error by a factor of 2 2 requires 4N samples

* The converge speed:
— |Is lower than that of many other integration techniques, but
— |Is independent of the number of dimensions in the integral




Importance Sampling (1)

* Drawing the samples with a non-uniform distribution with pdf
P(X) can bias the sample selection towards significant

directions:
13 1() Ly
<|>—N§p(xi) . o[D]= j( 1) dx

© Again  E((1))=|

* Requirements:
— Pp(x) > 0 for every X in [a,b]

= [ p(odx =1




Importance Sampling (2)

Proof:

1 f (x)
E[(1)] = E[—
[KD]= N1 ‘) Z[()

1Y f(x)
WZJ o0 p(x)dx_—Nj f (X)dx =

= j f (x)dx = |




Importance Sampling (3)

 Why use non-uniform pdf?

— Can significantly reduce variance (for the same N)

e Example:

uniform pdf biased pdf

A

-l




Importance Sampling (4)

* The selection of a “good” pdf is crucial to the
effectiveness of importance sampling

 Example:
bad pdf good pdf
A N — 8 A ﬁ N — 8
THTJ &Y
| > — N >




Importance Sampling (5)

 What makes a pdf “good”?

— Minimize variance =2

— Use less samples to achieve the same result in terms of
quality

 What is an optimal pdf?

— It has been shown that optimal samples are chosen from a
distribution where p(x) < f(x)




Importance Sampling (6)

Ok... well... but, how can | know f(x)?

 We usually don’t, but:
e (Can have hints about good sampling directions

* Can estimate f(x) with a few samples using a known
distribution (e.g. uniform) and then construct a distribution
proportional to f (x) to continue drawing better samples




Importance Sampling (7)

* For multi-dimensional integrals of M-D functions:

tl pt2 tM
| = Sle--- LM (X, %, Xy, )OXy, - OX, 0%,

1 & F(X X Xy)
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RTRTTER




Sample Generation (1)

* To draw samples distributed according to p(X):

— Compute the cumulative distribution function P(X):

P() = p(y)dy
P(X) is a monotonic increasing function over [a,0]
P(a)=0and P(b) =1
— If arandom number lis generated uniformly over [0,1], then

X = P-Y(t) is distributed according to p(X)




@ Sample Generation (2)

* In practice, given a uniform sample generator, to compute the

inverse value quickly:
— Compute samples of g(x) « f(x) and normalize over sampling domain
— Compute CDF P(x) and store a mapping P(x) - x
— Generate uniform samples (in the CDF domain)

— Find closest values of stored P(x) and interpolate the respective x to obtain a
sample in the integration domain

. /
e Or, of course, find the above @ /
analytically (inversion method) | 7/
— Particularly useful when drawing samples
from known distributions using uniformly
distributed random numbers




STOCHASTIC PATH TRACING




Path Tracing Principles

* This is a direct approximation of the rendering
equation by Monte Carlo integration

— The integrand is unknown. It depends on the radiance
coming from a direction w; (equivalently, a visible point y):

— Recursive evaluation!

* We need to efficiently sample the domain, spending
more samples where they count!

e We need a termination mechanism for the recursion




Rendering Equation and MC Integration

 The rendering equation

Lo(X, ) = Lo(X, w,) + f L(X, w;)fs (X: Po, 80, ®;, 0, )dO-J_ (w;)
0
* Is approximated by:

L(x, wy)fs (X, w;, w, )|cosb;|
p(w;)

N

1
L, (%, a)o) = L, (x, a)o) T Nz
=1

* Where L(X, w;) is recovered by tracing a new ray towards w;




Path Tracing - Observations

* Using the MC rendering equation integral above we
can trace truly random paths and

* Given enough samples, we can estimate the
illumination in the scene
e But... how many paths actually reach light emitters?

— Unfortunately, usually way too few!
— Most of the rays spawned randomly contribute nothing!

— We need to fix this...




Sampling the Lights (1)

* We know that light emitters (light sources) are the only source
of direct illumination

* We should always attempt to sample them, at each gathering
operation (rendering equation evaluation)

e Let’s try this out:

Lo (X, @) = Ly(%,@,) + f L(x, ), (% 05 00)do (@)
Q

Can be expressed as a light transport operator:

L, =L, + ToL;




Sampling the Lights (2)

LO — Le + TQLi — Le + T.Q.LLi + T.Q—.QLLi

where () is the solid angle subtended by contributing light
sources and () — (); the rest of the domain

Now, applying this recursively:

Lo =Le+Tq Li+Tqgq L =

Le + Tq, (Le, + Tyl + Ta—q, (0 + ToL;) =
Lo +Tq L., +Tq ToL;'




Sampling the Lights (3)

LO — Le + T-QLLeL + TQ TSIILi,
And considering that for primary rays, light sources are directly
sampled by the measurement equation:

Direct Indirect

LO — TQLL + TQ TéLi,

€L

This means that we sample the light sources separately and
indirect light gathering does not account for emittance (*) to
avoid overshooting

* With the exception of truly specular events (S: f; = ), where both
contributions are obtained by a deterministic ray




Sampling the Lights (4)

Moving back to the integral form, L, = Tq, L., + Tq ToL;'
becomes:

L, (X: (Uo) = Lpirect + Lindirect =

f Lo 0Dy (X, i, wp)do () +
973

f Li(% 0 f, (% g, wg)do ()

Q




Sampling the Lights (4)

Since, for light sources we directly sample their (known)
surfaces, we switch to the area integral form :

LO(X: (1)0) = j Le(YJwi)fS (X:wi: wo)G(X: Y)dA(Y) +
SL

f L% 0 fs (% w5, g)do ()

Q

So we typically combine two integral forms




Direct lllumination Estimation (1)

* For Lpjrect, We use MC sampling on the surface of light

sources:
N
_ 1 A Lo (i, w) fs (X, wi, 0o)V (X, ¥:)G(X,¥;)
<LDirect (%, (1)0)) = N_
L & p(yi)

* For asingle light:
— We must determine N; samples over its surface with a probability

p(¥:)
— Then test for visibility V' (X,y;) (0 if obscured)

— Finally, gather its contribution with the above formula




Direct lllumination Estimation (2)

« Pdf p(y):

— generates surface points y; over the total light source area
— Is a 2D pdf (2 coordinates U and V)

— (u,v) pair is transformed to a 3D point on the light surface with a
proper mapping

\Y

T v /LN

- U




AUEB
COMPUTER
GRAPHICS

=y Direct lllumination Estimation (3)

light source

!
I
!
!
I
I

b

— : 1 random shadow ray N 9 random shadow rays

36 random shadow rays ] - 100 random shadow rays

visibility test (failed here)




Light Sampling — Noise (1)

* The visibility function V(X, Y;):
— V(X,¥;) =1 y; > light source fully visible to X
— V(X,¥;) =0 y;> light source fully occluded

 Large light sources require larger N; to adequately
sample the penumbrae for a smooth soft shadow




Light Sampling — Noise (2)

* The geometric coupling term G(X, Y;):
— For points X close to large emitters:

1/ Iy takes on arbitrary large values for light source
samples very close to the receiver

(instability) = Results to very bright pixels
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(, Multiple light sources

Two strategies:

e Separate light source sampling:

— Can use a different number of samples per light, e.g. according to
power or size

— At least one sample per light!

e Combined light sources
— Combined Monte Carlo integration domain
— Can even shoot a single ray for all lights combined!
— Samples can be statistically biased toward certain sources




Multiple light sources — Combined (1)

e Assign each light a probability value for it being chosen
e Itisatwo-stage approach:

— A discrete pdf pL(k) generates a randomly selected light source ki
among N lights

— Asurface point Y; ,on the selected light source K is selected using a
conditional pdf P(Y/|K;)

e Combined estimator.

Ny,

1 z Le (yl'; wi)ﬁ? (X, Wi, (‘)O)V(XJ Yi)G(X' YL)

(Lpirect (% @o)) = - p(k)p(yilky)

i=1




Multiple light sources — Combined (2)

* Any valid p,_(k) and p(ylk) pdfs = o
unbiased results g g Sourees —

 pdfs affect the variance of the |
estimators :

 Most common pdfs.

— Uniform source selection + uniform area
sampling

— Power-proportional source selection +
uniform sampling




Multiple light sources — Combined (3)

Drawbacks:

* We must be careful not to exclude any lights that contribute
to <LDirect (X: wo))
* 3 random numbers are needed to generate a shadow ray:

— One to select the light source K
— 2 to select a specific surface point




Truly Random Paths — Complexity

e At each hit point, the rendering equation is evaluated using a
number of direct and indirect samples

 For indirect samples N > 1, the rendering time grows
exponentially w.r.t the recursion depth O (N 4€Pth)

 With always 1 indirect sample:
— O(depth)
— We trace a single path for each pixel sample
— Slower convergence but faster feedback
— Typically hundreds to thousands of paths are traced
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Convergence

1 sample 4 samples 16 samples 64 samples

1024 samples 4096 samples
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@ Truly Random Paths — Termination (1)

* Any ray tracing algorithm needs a stopping condition

* Otherwise:
— the generated paths could be of infinite length
— the algorithm would not come to a halt

* But finite length = introduces bias to the final image (disregards possibly
important segments)

* Have to find a way to:
— limit the length of the paths
— still be able to obtain a correct solution
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@ Truly Random Paths — Termination (2)

* C(lassic ray-tracing uses 2 techniques:

(a) Fixed depth:
— cuts off the recursion after a fixed number of evaluations
— upper bound on the amount of rays that need to be traced
— May ignore important light transport = biased image
— Manual setting of depth according to type of materials
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@ Truly Random Paths — Termination (3)

(b) Adaptive recursion depth:

— The cumulative ray “strength” of the path so far is maintained. Terminates
when strength too low

— more efficient technique
— Can still omit highly contributing sub-paths (intense lights) = bias
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(Z, Russian Roulette Ray Generation

* Addresses the problem of keeping the lengths and number of the paths
manageable

* Leaves room for exploring all possible paths of any length
* Produces an unbiased image by:

— Applying a hit/miss strategy to replace the probabilistic bias

— Not indiscriminately eliminating unimportant samples but doing so with a
probability €.
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(5) Russian Roulette Principle (1)

* Russian Roulette sampling is a very important tool in rendering
* Theideais that an estimator F can be replaced by:

(1
Fl = ;F, with probability p
\O, otherwise

* |Insimple terms, if for N trials, (1-p)N times we choose to discard the
solution, the pN trials must be boosted to counter the loss
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(5) Russian Roulette Principle (2)

Example:

Let at a particular light bounce the probability of rejecting a ray be 3/4

If we do nothing, this bounce will contribute 3/4 less light than normal,
because we are deliberately zeroing its contribution 3 out 4 times

To counter this, the radiance returned by the 1 ray actually cast out of 4
attempts, must be quadrupled
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(5) Russian Roulette Principle (3)

Why Russian Roulette works?

* E[<Igr>] evaluates to |

* Missed samples in the integral evaluation are compensated by scaling the
incoming radiance by 1/p

e If 1-p (absorption) is small:
— the recursion will continue many times
— the final estimator will be more accurate
e Ifl-pislarge:
— the recursion will stop sooner
— the estimator will have a higher variance




Practical Russian Roulette Implementation

* Choose areasonable probability p to cast a ray, often related
to:
— Max {reflectivity , transmission coef}
— Total path contribution up to this event
— Recursion depth (i.e. bounce)

 Generate a uniform random number ¢
e |f &< p, cast the ray and weight the result by 1/p
 Otherwise, don’t spawn a ray
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@ Sampling (1)

e At each ray hit, the following questions must be answered:

— How many rays to spawn? (when forming a single path, 1 or 0: RR
termination)

— Which direction should the ray take?
— What distribution to use?
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@ Sampling (2)

* Typically, paths are distributed differently under reflection
and transmission

* In asingle path implementation, we must choose either
transmission or reflection

e We can use RR to determine the above!

Pspawn Dr 1 .
X Pspawn = transmitted
“7 Pspawn * Pr importance

pr = F (Fresnel term)

Absorb X !
1-pspawn 1=pr Pspawn * (1-p,)
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@ Sampling the BSDF (1)

Depending on the material attributes (roughness, reflectance, shader, etc)
and the event chosen (reflection, transmission), we can determine the
next path direction using the appropriate directional sampling
distribution:

|deally specular - BTDF or BRDF — oo:
— Determine ray direction analytically
— Do not sample the lights separately
(O contribution outside ideal scattering direction)
— Measure both L, and Gl at hit location

or

— Use probability p(w;) = 1
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@ Sampling the BSDF (2)

* Low gloss / high out-scatter — large BRDF / BTDF
spread:

— Use hemisphere cosine sampler

— Use p(w;) = %%/,

* High gloss / tight focus:

— Use microfacet pdf of local shading model to
generate incident direction
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() Multiple Importance Sampling (1)

 We have seen how to sample directions towards the lights and use them

either as a separate direct lighting component or as the direction of the
next path segment

 We have used BRDF-based sampling to give preference to the scattering
direction

* However, the pdf we chose only conforms to one of the terms in the

rendering equation integrant, therefore the distribution does not
necessarily match the integrant!

—> Can introduce serious variance
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(55 Multiple Importance Sampling (2)

However, the pdf we chose only conforms to one of the terms in the rendering
equation integrant, therefore the distribution does not necessarily match the
integrant!

—> Can introduce serious variance

L(x, w;)fs (X, w;, w, )|cosb;]
p(w;)

N

1
Lo (X, wo) = Le(X, wo) T Nz
i=1

—
n
A

Wo
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@ Multiple Importance Sampling (3)

* Sampling the light sources for highly glossy BRDFs leads to zero-valued
evaluations of the latter and only erratic contribution of light

* Sampling rough BRDF for lights subtended through very small solid angles has
the same effect

Radius

Shininess

Sampling the light source Sampling the BRDF
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@ Multiple Importance Sampling (3)

Solution:
« Sample directions using both strategies simultaneously! = MIS

Radius

Shininess

Sampling the light source Sampling the BRDF
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() Multiple Importance Sampling (4)

* Draw samples from all distributions
— Can use different number of samples per distribution
— Can combine any sampling strategy. Here: cosine-weighted, BRDF
sampling and light domain sampling
* Weight their relative contribution based on the quality of the
samples drawn (pdf value):

Number of samples drawn Weight per sample per

from each distribution distribution
MC sampling using

Number of distributions — N f( ) / i-th distribution
X;
J \LjJ

b= z Z p(XJ)




Multiple Importance Sampling (5)

* Arithmetic average is maybe the worst weighting function:

Additively blends two or more possibly bad distributions =
Always increases variance

The Balance heuristic: w;(x) = Nibi(x)
[ J : i —_—
Zk Ny py(x)

— Itis almost optimal
— D Wi (%)=1
* Each sample generator contributes to the result
proportionally to its pdf
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@ Multiple Importance Sampling (6)

Practical example:

* Draw one sample wy, towards the light source using the area sampling
approach with pdf p; (w;)

* Draw one sample wy using BRDF sampling with pdf ps(wy)
e Evaluate the MC estimator for each one:

_ frwpwo)L(wp)lcosty| . fr(wfpwe)L(ws)|cosby|

I, = [, =
L p(wL) ' p(wy)
* Estimate the weights:
. _ pL(wL) _ pr@f)
WLlwL) = 5 s W) = b s

* Evaluate the rendering equation:

° — _ fT(erwo)L(wL)ICOSQLI f’r‘(wf;wo)L((l)fNCOSefl
(I) = w(w)I+ Wf(wf)lf = LDt (D) + o(or) tpr()




Efficient Implementation (1)

* Recursive implementation is not optimally
implemented:
— Excessive call stack thrashing
— Incoherent rays
— Bad resource pooling & cache coherence

* Use a ray-parallel iterative implementation
— Allocate once and reuse ray storage

— No recursive function call
— Easy vectorization / threaded execution (also in GPUs)
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@ Efficient Implementation (2)

Ray data Until no more active

array  5ctive

/

Intersect rays

Setup primary rays
Setup secondary rays

4
4
4
4
—
<
<
4

| Shadow ray
array

N X Primary

Buffer allocation phase
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@ Efficient Implementation (5)

Until no more active

)
)
4
)
—4

(%)
>
(©
S
)
O
)
(%)
| -
Q
=
=

Setup secondary rays

You can pack the rays to avoid wasting
cycles/threads on inactive paths




Efficient Implementation (6)

* Notes:

— You can combine MIS with RR to only evaluate one
sampling direction at a time, even with multiple samplers

— In the light vs BRDF sampler example:

fr(wpwo)L(wy)|cosy|  fr(wpwo)L(ws)|cosby|
— I I, =
(1) = wy (@)l + wy(wr)ly pL@Dtpr@n) | pu(wp)tpr(wp)

We can choose I}, or I¢ using RR With pseiectrigne

wy (wp)I} /pSelectLight

<I> - Wf(wf)lf/(l — pSelectLight)
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(&) ffficient Implementation (6)

* Pros:

— Well-behaved threaded execution, with predictable loads and load
balancing

— Tiling efficiently boosts parallel unit utilization
— No recursion
— Simple, generic and well-structured code for next segment sampling

e Cons:

— Increased variance: Every event spawns only one ray

— Paths with multiple samples along the segments very tricky to handle
(volumetric scattering): must handle samples as separate events
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