
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2015

Stochastic

Path Tracing

Pacific Rim. Arnold renderer

MONTE CARLO INTEGRATION BASICS

• Is an important tool for evaluating the global illumination equation

• Evaluates integrals based on a selection of random samples in the
integration domain

• Given an integral of an arbitrary function f(x) in the interval [a,b]
and a uniform selection of N random samples in [a,b]:

Monte Carlo Integration (1)

1

()
() ()

b N

i

ia

b a
I f x dx I f x

N 


   

Proof:

• Every different computation of will yield a different result

• But on average, we will get the same answer

Monte Carlo Integration (2)

1 1

1

()

() ()

()
[] [()] [()]

()
() () · ·

()

()

N N

i i

i i

b

b

N b

a a
i

a

b a
E I E f x E f x

N N

f x
f x p x dx N dx

N

b

N b

a

a

b a

f x dx

b

I

a

 




    

 








 

 

 



I 

ab
xp




1
)(

Examples of uniform sampling:

Monte Carlo Integration (3)

a b

a b a b

a b

𝑁 = 2 𝑁 = 4

𝑁 = 8 𝑁 = 16

Monte Carlo Integration - Advantages

• Works no matter how complex the function to be integrated is
(even discontinuous)

• Does not even require the a priori knowledge of the
integrand!

• Slow converge rate: when drawing N samples, we expect a
converge rate of

– E.g., to decrease the error by a factor of 2 requires 4N samples

• The converge speed:

– Is lower than that of many other integration techniques, but

– Is independent of the number of dimensions in the integral

Monte Carlo Integration - Drawbacks

1/ N

• Drawing the samples with a non-uniform distribution with pdf
p(x) can bias the sample selection towards significant
directions:

• Again

• Requirements:

– p(x) > 0 for every x in [a,b]

–

Importance Sampling (1)

() 1
b

a
p x dx 

2 2

1

()1 1 ()
 , [] ()

() ()

N b
i

a
i i

f x f x
I I I dx

N p x N p x




       

()E I I  

Importance Sampling (2)

1 1

1

() 1 ()
[] [] []

() ()

()
() · · ()

()

1

1 1

()

N N
i

i ii

N b

b

b

a a
i

a

f x f x
E I E E

N p x N p x

f x
p x dx N f x dx

N p x N

f x dx I

 



    

 

 

 

 



Proof:

Importance Sampling (3)

• Why use non-uniform pdf?

– Can significantly reduce variance (for the same N)

• Example:

a b

𝑁 = 8

a b

𝑁 = 8

uniform pdf biased pdf

Importance Sampling (4)

• The selection of a “good” pdf is crucial to the
effectiveness of importance sampling

• Example:

a b

𝑁 = 8

a b

𝑁 = 8

bad pdf good pdf

Importance Sampling (5)

• What makes a pdf “good”?

– Minimize variance 

– Use less samples to achieve the same result in terms of
quality

• What is an optimal pdf?

– It has been shown that optimal samples are chosen from a
distribution where 𝑝 𝑥 ∝ 𝑓 𝑥

Importance Sampling (6)

Ok… well… but, how can I know 𝑓 𝑥 ?

• We usually don’t, but:

• Can have hints about good sampling directions

• Can estimate 𝑓 𝑥 with a few samples using a known
distribution (e.g. uniform) and then construct a distribution
proportional to 𝑓 𝑥 to continue drawing better samples

Importance Sampling (7)

1 2 2 1

1 2

1 2

1 2

1 1 2

(, ,...,) ... ,

(,)1

(, ,...

,...,

,)

t t

s s

tM

M M
sM

M
N

i M

I f x x x dx dx dx

f x x
I

N p x x x

x





  

  



K

• For multi-dimensional integrals of M-D functions:

…

• To draw samples distributed according to p(x):

– Compute the cumulative distribution function P(x):

P(x) is a monotonic increasing function over [a,b]

P(a) = 0 and P(b) = 1

– If a random number t is generated uniformly over [0,1], then

x = P-1(t) is distributed according to p(x)

Sample Generation (1)

() ()
x

a
P x p y dy 

Sample Generation (2)

• In practice, given a uniform sample generator, to compute the
inverse value quickly:
– Compute samples of 𝑔(𝑥) ∝ 𝑓(𝑥) and normalize over sampling domain

– Compute CDF 𝑃 𝑥 and store a mapping 𝑃 𝑥 → 𝑥

– Generate uniform samples (in the CDF domain)

– Find closest values of stored 𝑃 𝑥 and interpolate the respective 𝑥 to obtain a
sample in the integration domain

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

• Or, of course, find the above
analytically (inversion method)
– Particularly useful when drawing samples

from known distributions using uniformly
distributed random numbers

STOCHASTIC PATH TRACING

Path Tracing Principles

• This is a direct approximation of the rendering
equation by Monte Carlo integration

– The integrand is unknown. It depends on the radiance
coming from a direction 𝜔𝑖 (equivalently, a visible point 𝐲):

– Recursive evaluation!

• We need to efficiently sample the domain, spending
more samples where they count!

• We need a termination mechanism for the recursion

Rendering Equation and MC Integration

• The rendering equation

• Is approximated by:

• Where 𝐿 𝐱, 𝜔𝑖 is recovered by tracing a new ray towards 𝜔𝑖

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 + න

Ω

𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜑𝑜, 𝜃𝑜, 𝜑𝑖 , 𝜃𝑖 𝑑𝜎⊥(𝜔𝑖)

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 +
1

𝑁
෍

𝑖=1

𝑁
𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱,𝜔𝑖 , 𝜔𝑜 cos𝜃𝑖

𝑝(𝜔𝑖)

Path Tracing - Observations

• Using the MC rendering equation integral above we
can trace truly random paths and

• Given enough samples, we can estimate the
illumination in the scene

• But… how many paths actually reach light emitters?

– Unfortunately, usually way too few!

– Most of the rays spawned randomly contribute nothing!

– We need to fix this…

Sampling the Lights (1)

• We know that light emitters (light sources) are the only source
of direct illumination

• We should always attempt to sample them, at each gathering
operation (rendering equation evaluation)

• Let’s try this out:

Can be expressed as a light transport operator:

𝐿𝑜 = 𝐿𝑒 + 𝑇Ω𝐿𝑖

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 + න

Ω

𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖)

Sampling the Lights (2)

𝐿𝑜 = 𝐿𝑒 + 𝑇Ω𝐿𝑖 = 𝐿𝑒 + 𝑇ΩL
𝐿𝑖 + 𝑇Ω−ΩL

𝐿𝑖

where ΩL is the solid angle subtended by contributing light
sources and Ω − ΩL the rest of the domain

Now, applying this recursively:

𝐿𝑜 = 𝐿𝑒 + 𝑇ΩL
𝐿𝑖 + 𝑇Ω−ΩL

𝐿𝑖 =

𝐿𝑒 + 𝑇ΩL
(𝐿𝑒𝐿 + 𝑇Ω

′ 𝐿𝑖′) + 𝑇Ω−ΩL
(0 + 𝑇Ω

′ 𝐿𝑖′) =

𝐿𝑒 + 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

Sampling the Lights (3)

𝐿𝑜 = 𝐿𝑒 + 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

And considering that for primary rays, light sources are directly
sampled by the measurement equation:

𝐿𝑜 = 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

This means that we sample the light sources separately and
indirect light gathering does not account for emittance (*) to
avoid overshooting

* With the exception of truly specular events (S: 𝑓𝑠 → ∞), where both

contributions are obtained by a deterministic ray

Direct Indirect

Sampling the Lights (4)

Moving back to the integral form, 𝐿𝑜 = 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

becomes:

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝐷𝑖𝑟𝑒𝑐𝑡 + 𝐿𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =

න

Ω𝐿

𝐿𝑒 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖) +

න

Ω

𝐿𝑖 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖)

Sampling the Lights (4)

Since, for light sources we directly sample their (known)
surfaces, we switch to the area integral form :

So we typically combine two integral forms

𝐿𝑜 𝐱, 𝜔𝑜 = න

S𝐿

𝐿𝑒 𝐲,𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝐺(𝐱, 𝐲)𝑑𝐴(𝐲) +

න

Ω

𝐿𝑖 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖)

Direct Illumination Estimation (1)

• For 𝐿𝐷𝑖𝑟𝑒𝑐𝑡, we use MC sampling on the surface of light
sources:

• For a single light:
– We must determine 𝑁𝐿 samples over its surface with a probability
𝑝(𝐲𝑖)

– Then test for visibility 𝑉(𝐱, 𝐲𝑖) (0 if obscured)

– Finally, gather its contribution with the above formula

𝐿𝐷𝑖𝑟𝑒𝑐𝑡 𝐱, 𝜔𝑜 =
1

𝑁𝐿
෍

𝑖=1

𝑁𝐿
𝐿𝑒 𝐲𝑖 , 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑉(𝐱, 𝐲𝑖)𝐺(𝐱, 𝐲𝑖)

𝑝(𝐲𝑖)

Direct Illumination Estimation (2)

• Pdf p(y):

– generates surface points yi over the total light source area

– Is a 2D pdf (2 coordinates u and v)

– (u,v) pair is transformed to a 3D point on the light surface with a
proper mapping

u

u

v

v

Direct Illumination Estimation (3)

visibility test (failed here)

Light Sampling – Noise (1)

• The visibility function V(x, yi):

– V(x, yi) = 1 yi  light source fully visible to x

– V(x, yi) = 0 yi light source fully occluded

• Large light sources require larger 𝑁𝐿 to adequately
sample the penumbrae for a smooth soft shadow

Light Sampling – Noise (2)

• The geometric coupling term G(x, yi):

– For points x close to large emitters:

1/ rxyj takes on arbitrary large values for light source
samples very close to the receiver

(instability) Results to very bright pixels

Multiple light sources

Two strategies:

• Separate light source sampling:
– Can use a different number of samples per light, e.g. according to

power or size

– At least one sample per light!

• Combined light sources
– Combined Monte Carlo integration domain

– Can even shoot a single ray for all lights combined!

– Samples can be statistically biased toward certain sources

• Assign each light a probability value for it being chosen

• It is a two-stage approach:

– A discrete pdf pL(k) generates a randomly selected light source ki

among NL lights

– A surface point yi ,on the selected light source k is selected using a

conditional pdf p(y|ki)

• Combined estimator:

Multiple light sources – Combined (1)

𝐿𝐷𝑖𝑟𝑒𝑐𝑡 𝐱, 𝜔𝑜 =
1

𝑁𝐿
෍

𝑖=1

𝑁𝐿
𝐿𝑒 𝐲𝑖 , 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑉(𝐱, 𝐲𝑖)𝐺(𝐱, 𝐲𝑖)

𝑝(𝑘𝑖)𝑝(𝐲𝑖|𝑘𝑖)

Multiple light sources – Combined (2)

• Any valid pL(k) and p(y|k) pdfs 
unbiased results

• pdfs affect the variance of the
estimators

• Most common pdfs:
– Uniform source selection + uniform area

sampling

– Power-proportional source selection +
uniform sampling

Multiple light sources – Combined (3)

Drawbacks:

• We must be careful not to exclude any lights that contribute
to 𝐿𝐷𝑖𝑟𝑒𝑐𝑡 𝐱, 𝜔𝑜

• 3 random numbers are needed to generate a shadow ray:

– One to select the light source k

– 2 to select a specific surface point

Truly Random Paths – Complexity

• At each hit point, the rendering equation is evaluated using a
number of direct and indirect samples

• For indirect samples 𝑁 > 1, the rendering time grows
exponentially w.r.t the recursion depth 𝑂(𝑁𝑑𝑒𝑝𝑡ℎ)

• With always 1 indirect sample:
– 𝑂 𝑑𝑒𝑝𝑡ℎ

– We trace a single path for each pixel sample

– Slower convergence but faster feedback

– Typically hundreds to thousands of paths are traced

Convergence

1 sample 4 samples 64 samples16 samples

256 samples 1024 samples 16384 samples4096 samples

Truly Random Paths – Termination (1)

• Any ray tracing algorithm needs a stopping condition

• Otherwise:
– the generated paths could be of infinite length

– the algorithm would not come to a halt

• But finite length  introduces bias to the final image (disregards possibly
important segments)

• Have to find a way to:

– limit the length of the paths

– still be able to obtain a correct solution

Truly Random Paths – Termination (2)

• Classic ray-tracing uses 2 techniques:

(a) Fixed depth:

– cuts off the recursion after a fixed number of evaluations

– upper bound on the amount of rays that need to be traced

– May ignore important light transport biased image

– Manual setting of depth according to type of materials

Truly Random Paths – Termination (3)

(b) Adaptive recursion depth:

– The cumulative ray “strength” of the path so far is maintained. Terminates
when strength too low

– more efficient technique

– Can still omit highly contributing sub-paths (intense lights) bias

Russian Roulette Ray Generation

• Addresses the problem of keeping the lengths and number of the paths
manageable

• Leaves room for exploring all possible paths of any length

• Produces an unbiased image by:

– Applying a hit/miss strategy to replace the probabilistic bias

– Not indiscriminately eliminating unimportant samples but doing so with a
probability ξ.

Russian Roulette Principle (1)

• Russian Roulette sampling is a very important tool in rendering

• The idea is that an estimator 𝐹 can be replaced by:

• In simple terms, if for N trials, (1-p)N times we choose to discard the
solution, the pN trials must be boosted to counter the loss

𝐹′ = ൞

1

𝑝
𝐹,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Russian Roulette Principle (2)

Example:

• Let at a particular light bounce the probability of rejecting a ray be 3/4

• If we do nothing, this bounce will contribute 3/4 less light than normal,
because we are deliberately zeroing its contribution 3 out 4 times

• To counter this, the radiance returned by the 1 ray actually cast out of 4
attempts, must be quadrupled

Russian Roulette Principle (3)

Why Russian Roulette works?

• E[<IRR>] evaluates to I
• Missed samples in the integral evaluation are compensated by scaling the

incoming radiance by 1/p

• If 1-p (absorption) is small:

– the recursion will continue many times

– the final estimator will be more accurate

• If 1-p is large:

– the recursion will stop sooner

– the estimator will have a higher variance

Practical Russian Roulette Implementation

• Choose a reasonable probability p to cast a ray, often related
to:
– Max {reflectivity , transmission coef}

– Total path contribution up to this event

– Recursion depth (i.e. bounce)

– …

• Generate a uniform random number ξ

• If ξ < p, cast the ray and weight the result by 1/p

• Otherwise, don’t spawn a ray

Sampling (1)

• At each ray hit, the following questions must be answered:
– How many rays to spawn? (when forming a single path, 1 or 0: RR

termination)

– Which direction should the ray take?

– What distribution to use?

Sampling (2)

• Typically, paths are distributed differently under reflection
and transmission

• In a single path implementation, we must choose either
transmission or reflection

• We can use RR to determine the above!

Hit

Spawn
ray

Absorb

Reflect

transmit

𝑝𝑠𝑝𝑎𝑤𝑛 𝑝𝑟

1-𝑝𝑠𝑝𝑎𝑤𝑛
1 − 𝑝𝑟

𝑝𝑠𝑝𝑎𝑤𝑛 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑝𝑟 = 𝐹 (𝐹𝑟𝑒𝑠𝑛𝑒𝑙 𝑡𝑒𝑟𝑚)

×
1

𝑝𝑠𝑝𝑎𝑤𝑛 ∙ (1 − 𝑝𝑟)

×
1

𝑝𝑠𝑝𝑎𝑤𝑛 ∙ 𝑝𝑟

Sampling the BSDF (1)

• Depending on the material attributes (roughness, reflectance, shader, etc)
and the event chosen (reflection, transmission), we can determine the
next path direction using the appropriate directional sampling
distribution:

• Ideally specular - BTDF or BRDF → ∞:
– Determine ray direction analytically

– Do not sample the lights separately

(0 contribution outside ideal scattering direction)

– Measure both 𝐿𝑒 and GI at hit location

– Use probability 𝑝 𝜔𝑖 = 1

or

• Low gloss / high out-scatter – large BRDF / BTDF
spread:

– Use hemisphere cosine sampler

– Use 𝑝 𝜔𝑖 = Τcos 𝜃𝑖
𝜋

• High gloss / tight focus:

– Use microfacet pdf of local shading model to
generate incident direction

Sampling the BSDF (2)

Multiple Importance Sampling (1)

• We have seen how to sample directions towards the lights and use them
either as a separate direct lighting component or as the direction of the
next path segment

• We have used BRDF-based sampling to give preference to the scattering
direction

• However, the pdf we chose only conforms to one of the terms in the
rendering equation integrant, therefore the distribution does not
necessarily match the integrant!

 Can introduce serious variance

Multiple Importance Sampling (2)

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 +
1

𝑁
෍

𝑖=1

𝑁
𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱,𝜔𝑖 , 𝜔𝑜 cos𝜃𝑖

𝑝(𝜔𝑖)

𝐧
𝜔𝑜

𝐱

However, the pdf we chose only conforms to one of the terms in the rendering

equation integrant, therefore the distribution does not necessarily match the

integrant!

 Can introduce serious variance

Multiple Importance Sampling (3)

• Sampling the light sources for highly glossy BRDFs leads to zero-valued
evaluations of the latter and only erratic contribution of light

• Sampling rough BRDF for lights subtended through very small solid angles has
the same effect

Multiple Importance Sampling (3)

Solution:

• Sample directions using both strategies simultaneously! MIS

Multiple Importance Sampling (4)

• Draw samples from all distributions
– Can use different number of samples per distribution

– Can combine any sampling strategy. Here: cosine-weighted, BRDF
sampling and light domain sampling

• Weight their relative contribution based on the quality of the
samples drawn (pdf value):

𝐹 =෍

𝑖=1

𝑁
1

𝑁𝑖
෍

𝑗=1

𝑁𝑖

𝑤𝑖(𝑋𝑖,𝑗)
𝑓(𝑋𝑖,𝑗)

𝑝(𝑋𝑖,𝑗)

Number of samples drawn

from each distribution

Number of distributions

Weight per sample per

distribution

MC sampling using

i-th distribution

Multiple Importance Sampling (5)

• Arithmetic average is maybe the worst weighting function:
Additively blends two or more possibly bad distributions 
Always increases variance

• The Balance heuristic:

– It is almost optimal

– σ𝑘𝑤𝑘(𝑥)=1

• Each sample generator contributes to the result
proportionally to its pdf

𝑤𝑖(𝑥) =
𝑁𝑖𝑝𝑖(𝑥)

σ𝑘𝑁𝑘𝑝𝑘(𝑥)

Multiple Importance Sampling (6)

Practical example:
• Draw one sample 𝜔L towards the light source using the area sampling

approach with pdf 𝑝𝐿(𝜔𝐿)

• Draw one sample 𝜔𝑓 using BRDF sampling with pdf 𝑝𝑓(𝜔𝑓)

• Evaluate the MC estimator for each one:

𝐼𝐿 =
𝑓𝑟 𝜔𝐿,𝜔𝑜 𝐿 𝜔𝐿 𝑐𝑜𝑠𝜃𝐿

𝑝(𝜔𝐿)
, 𝐼𝑓 =

𝑓𝑟 𝜔𝑓,𝜔𝑜 𝐿 𝜔𝑓 𝑐𝑜𝑠𝜃𝑓

𝑝(𝜔𝑓)

• Estimate the weights:

• 𝑤𝐿(𝜔𝐿) =
𝑝𝐿(𝜔𝐿)

𝑝𝐿 𝜔𝐿 +𝑝𝑓(𝜔𝐿)
, 𝑤𝑓(𝜔𝑓) =

𝑝𝑓(𝜔𝑓)

𝑝𝐿 𝜔𝑓 +𝑝𝑓(𝜔𝑓)

• Evaluate the rendering equation:

• 𝐼 = 𝑤𝐿(𝜔𝐿)𝐼𝐿+ 𝑤𝑓 𝜔𝑓 𝐼𝑓 =
𝑓𝑟 𝜔𝐿,𝜔𝑜 𝐿 𝜔𝐿 𝑐𝑜𝑠𝜃𝐿

𝑝𝐿 𝜔𝐿 +𝑝𝑓(𝜔𝐿)
+
𝑓𝑟 𝜔𝑓,𝜔𝑜 𝐿 𝜔𝑓 𝑐𝑜𝑠𝜃𝑓

𝑝𝐿 𝜔𝑓 +𝑝𝑓(𝜔𝑓)

Efficient Implementation (1)

• Recursive implementation is not optimally
implemented:

– Excessive call stack thrashing

– Incoherent rays

– Bad resource pooling & cache coherence

• Use a ray-parallel iterative implementation

– Allocate once and reuse ray storage

– No recursive function call

– Easy vectorization / threaded execution (also in GPUs)

Efficient Implementation (2)

Ray data

array active

Se
tu

p
 p

ri
m

ar
y

ra
ys

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Shadow ray

array

Buffer allocation phase

Until no more active

N X Primary

Efficient Implementation (3)

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Until no more active

Efficient Implementation (4)

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Until no more active

Efficient Implementation (5)

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Until no more active

Pa
ck

 r
ay

s

You can pack the rays to avoid wasting

cycles/threads on inactive paths

Efficient Implementation (6)

• Notes:

– You can combine MIS with RR to only evaluate one
sampling direction at a time, even with multiple samplers

– In the light vs BRDF sampler example:

𝐼 = 𝑤𝐿(𝜔𝐿)𝐼𝐿+ 𝑤𝑓 𝜔𝑓 𝐼𝑓 =
𝑓𝑟 𝜔𝐿,𝜔𝑜 𝐿 𝜔𝐿 𝑐𝑜𝑠𝜃𝐿

𝑝𝐿 𝜔𝐿 +𝑝𝑓(𝜔𝐿)
+
𝑓𝑟 𝜔𝑓,𝜔𝑜 𝐿 𝜔𝑓 𝑐𝑜𝑠𝜃𝑓

𝑝𝐿 𝜔𝑓 +𝑝𝑓(𝜔𝑓)

We can choose 𝐼𝐿 or 𝐼𝑓 using RR with 𝑝𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑖𝑔ℎ𝑡 :

𝐼 = ൝
𝑤𝐿 𝜔𝐿 𝐼𝐿/𝑝𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑖𝑔ℎ𝑡

𝑤𝑓 𝜔𝑓 𝐼𝑓/(1 − 𝑝𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑖𝑔ℎ𝑡)

Efficient Implementation (6)

• Pros:
– Well-behaved threaded execution, with predictable loads and load

balancing

– Tiling efficiently boosts parallel unit utilization

– No recursion

– Simple, generic and well-structured code for next segment sampling

• Cons:
– Increased variance: Every event spawns only one ray

– Paths with multiple samples along the segments very tricky to handle
(volumetric scattering): must handle samples as separate events

Contributors

• Georgios Papaioannou

