
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2015

Stochastic

Path Tracing

Pacific Rim. Arnold renderer

MONTE CARLO INTEGRATION BASICS

• Is an important tool for evaluating the global illumination equation

• Evaluates integrals based on a selection of random samples in the
integration domain

• Given an integral of an arbitrary function f(x) in the interval [a,b]
and a uniform selection of N random samples in [a,b]:

Monte Carlo Integration (1)

1

()
() ()

b N

i

ia

b a
I f x dx I f x

N

Proof:

• Every different computation of will yield a different result

• But on average, we will get the same answer

Monte Carlo Integration (2)

1 1

1

()

() ()

()
[] [()] [()]

()
() () · ·

()

()

N N

i i

i i

b

b

N b

a a
i

a

b a
E I E f x E f x

N N

f x
f x p x dx N dx

N

b

N b

a

a

b a

f x dx

b

I

a

I

ab
xp

1
)(

Examples of uniform sampling:

Monte Carlo Integration (3)

a b

a b a b

a b

𝑁 = 2 𝑁 = 4

𝑁 = 8 𝑁 = 16

Monte Carlo Integration - Advantages

• Works no matter how complex the function to be integrated is
(even discontinuous)

• Does not even require the a priori knowledge of the
integrand!

• Slow converge rate: when drawing N samples, we expect a
converge rate of

– E.g., to decrease the error by a factor of 2 requires 4N samples

• The converge speed:

– Is lower than that of many other integration techniques, but

– Is independent of the number of dimensions in the integral

Monte Carlo Integration - Drawbacks

1/ N

• Drawing the samples with a non-uniform distribution with pdf
p(x) can bias the sample selection towards significant
directions:

• Again

• Requirements:

– p(x) > 0 for every x in [a,b]

–

Importance Sampling (1)

() 1
b

a
p x dx

2 2

1

()1 1 ()
 , [] ()

() ()

N b
i

a
i i

f x f x
I I I dx

N p x N p x

()E I I

Importance Sampling (2)

1 1

1

() 1 ()
[] [] []

() ()

()
() · · ()

()

1

1 1

()

N N
i

i ii

N b

b

b

a a
i

a

f x f x
E I E E

N p x N p x

f x
p x dx N f x dx

N p x N

f x dx I

Proof:

Importance Sampling (3)

• Why use non-uniform pdf?

– Can significantly reduce variance (for the same N)

• Example:

a b

𝑁 = 8

a b

𝑁 = 8

uniform pdf biased pdf

Importance Sampling (4)

• The selection of a “good” pdf is crucial to the
effectiveness of importance sampling

• Example:

a b

𝑁 = 8

a b

𝑁 = 8

bad pdf good pdf

Importance Sampling (5)

• What makes a pdf “good”?

– Minimize variance

– Use less samples to achieve the same result in terms of
quality

• What is an optimal pdf?

– It has been shown that optimal samples are chosen from a
distribution where 𝑝 𝑥 ∝ 𝑓 𝑥

Importance Sampling (6)

Ok… well… but, how can I know 𝑓 𝑥 ?

• We usually don’t, but:

• Can have hints about good sampling directions

• Can estimate 𝑓 𝑥 with a few samples using a known
distribution (e.g. uniform) and then construct a distribution
proportional to 𝑓 𝑥 to continue drawing better samples

Importance Sampling (7)

1 2 2 1

1 2

1 2

1 2

1 1 2

(, ,...,) ... ,

(,)1

(, ,...

,...,

,)

t t

s s

tM

M M
sM

M
N

i M

I f x x x dx dx dx

f x x
I

N p x x x

x

K

• For multi-dimensional integrals of M-D functions:

…

• To draw samples distributed according to p(x):

– Compute the cumulative distribution function P(x):

P(x) is a monotonic increasing function over [a,b]

P(a) = 0 and P(b) = 1

– If a random number t is generated uniformly over [0,1], then

x = P-1(t) is distributed according to p(x)

Sample Generation (1)

() ()
x

a
P x p y dy

Sample Generation (2)

• In practice, given a uniform sample generator, to compute the
inverse value quickly:
– Compute samples of 𝑔(𝑥) ∝ 𝑓(𝑥) and normalize over sampling domain

– Compute CDF 𝑃 𝑥 and store a mapping 𝑃 𝑥 → 𝑥

– Generate uniform samples (in the CDF domain)

– Find closest values of stored 𝑃 𝑥 and interpolate the respective 𝑥 to obtain a
sample in the integration domain

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

• Or, of course, find the above
analytically (inversion method)
– Particularly useful when drawing samples

from known distributions using uniformly
distributed random numbers

STOCHASTIC PATH TRACING

Path Tracing Principles

• This is a direct approximation of the rendering
equation by Monte Carlo integration

– The integrand is unknown. It depends on the radiance
coming from a direction 𝜔𝑖 (equivalently, a visible point 𝐲):

– Recursive evaluation!

• We need to efficiently sample the domain, spending
more samples where they count!

• We need a termination mechanism for the recursion

Rendering Equation and MC Integration

• The rendering equation

• Is approximated by:

• Where 𝐿 𝐱, 𝜔𝑖 is recovered by tracing a new ray towards 𝜔𝑖

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 + න

Ω

𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜑𝑜, 𝜃𝑜, 𝜑𝑖 , 𝜃𝑖 𝑑𝜎⊥(𝜔𝑖)

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 +
1

𝑁

𝑖=1

𝑁
𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱,𝜔𝑖 , 𝜔𝑜 cos𝜃𝑖

𝑝(𝜔𝑖)

Path Tracing - Observations

• Using the MC rendering equation integral above we
can trace truly random paths and

• Given enough samples, we can estimate the
illumination in the scene

• But… how many paths actually reach light emitters?

– Unfortunately, usually way too few!

– Most of the rays spawned randomly contribute nothing!

– We need to fix this…

Sampling the Lights (1)

• We know that light emitters (light sources) are the only source
of direct illumination

• We should always attempt to sample them, at each gathering
operation (rendering equation evaluation)

• Let’s try this out:

Can be expressed as a light transport operator:

𝐿𝑜 = 𝐿𝑒 + 𝑇Ω𝐿𝑖

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 + න

Ω

𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖)

Sampling the Lights (2)

𝐿𝑜 = 𝐿𝑒 + 𝑇Ω𝐿𝑖 = 𝐿𝑒 + 𝑇ΩL
𝐿𝑖 + 𝑇Ω−ΩL

𝐿𝑖

where ΩL is the solid angle subtended by contributing light
sources and Ω − ΩL the rest of the domain

Now, applying this recursively:

𝐿𝑜 = 𝐿𝑒 + 𝑇ΩL
𝐿𝑖 + 𝑇Ω−ΩL

𝐿𝑖 =

𝐿𝑒 + 𝑇ΩL
(𝐿𝑒𝐿 + 𝑇Ω

′ 𝐿𝑖′) + 𝑇Ω−ΩL
(0 + 𝑇Ω

′ 𝐿𝑖′) =

𝐿𝑒 + 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

Sampling the Lights (3)

𝐿𝑜 = 𝐿𝑒 + 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

And considering that for primary rays, light sources are directly
sampled by the measurement equation:

𝐿𝑜 = 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

This means that we sample the light sources separately and
indirect light gathering does not account for emittance (*) to
avoid overshooting

* With the exception of truly specular events (S: 𝑓𝑠 → ∞), where both

contributions are obtained by a deterministic ray

Direct Indirect

Sampling the Lights (4)

Moving back to the integral form, 𝐿𝑜 = 𝑇ΩL
𝐿𝑒𝐿 + 𝑇Ω 𝑇Ω

′ 𝐿𝑖′

becomes:

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝐷𝑖𝑟𝑒𝑐𝑡 + 𝐿𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =

න

Ω𝐿

𝐿𝑒 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖) +

න

Ω

𝐿𝑖 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖)

Sampling the Lights (4)

Since, for light sources we directly sample their (known)
surfaces, we switch to the area integral form :

So we typically combine two integral forms

𝐿𝑜 𝐱, 𝜔𝑜 = න

S𝐿

𝐿𝑒 𝐲,𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝐺(𝐱, 𝐲)𝑑𝐴(𝐲) +

න

Ω

𝐿𝑖 𝐱, 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑑𝜎⊥(𝜔𝑖)

Direct Illumination Estimation (1)

• For 𝐿𝐷𝑖𝑟𝑒𝑐𝑡, we use MC sampling on the surface of light
sources:

• For a single light:
– We must determine 𝑁𝐿 samples over its surface with a probability
𝑝(𝐲𝑖)

– Then test for visibility 𝑉(𝐱, 𝐲𝑖) (0 if obscured)

– Finally, gather its contribution with the above formula

𝐿𝐷𝑖𝑟𝑒𝑐𝑡 𝐱, 𝜔𝑜 =
1

𝑁𝐿

𝑖=1

𝑁𝐿
𝐿𝑒 𝐲𝑖 , 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑉(𝐱, 𝐲𝑖)𝐺(𝐱, 𝐲𝑖)

𝑝(𝐲𝑖)

Direct Illumination Estimation (2)

• Pdf p(y):

– generates surface points yi over the total light source area

– Is a 2D pdf (2 coordinates u and v)

– (u,v) pair is transformed to a 3D point on the light surface with a
proper mapping

u

u

v

v

Direct Illumination Estimation (3)

visibility test (failed here)

Light Sampling – Noise (1)

• The visibility function V(x, yi):

– V(x, yi) = 1 yi light source fully visible to x

– V(x, yi) = 0 yi light source fully occluded

• Large light sources require larger 𝑁𝐿 to adequately
sample the penumbrae for a smooth soft shadow

Light Sampling – Noise (2)

• The geometric coupling term G(x, yi):

– For points x close to large emitters:

1/ rxyj takes on arbitrary large values for light source
samples very close to the receiver

(instability) Results to very bright pixels

Multiple light sources

Two strategies:

• Separate light source sampling:
– Can use a different number of samples per light, e.g. according to

power or size

– At least one sample per light!

• Combined light sources
– Combined Monte Carlo integration domain

– Can even shoot a single ray for all lights combined!

– Samples can be statistically biased toward certain sources

• Assign each light a probability value for it being chosen

• It is a two-stage approach:

– A discrete pdf pL(k) generates a randomly selected light source ki

among NL lights

– A surface point yi ,on the selected light source k is selected using a

conditional pdf p(y|ki)

• Combined estimator:

Multiple light sources – Combined (1)

𝐿𝐷𝑖𝑟𝑒𝑐𝑡 𝐱, 𝜔𝑜 =
1

𝑁𝐿

𝑖=1

𝑁𝐿
𝐿𝑒 𝐲𝑖 , 𝜔𝑖 𝑓𝑠 𝐱, 𝜔𝑖 , 𝜔𝑜 𝑉(𝐱, 𝐲𝑖)𝐺(𝐱, 𝐲𝑖)

𝑝(𝑘𝑖)𝑝(𝐲𝑖|𝑘𝑖)

Multiple light sources – Combined (2)

• Any valid pL(k) and p(y|k) pdfs
unbiased results

• pdfs affect the variance of the
estimators

• Most common pdfs:
– Uniform source selection + uniform area

sampling

– Power-proportional source selection +
uniform sampling

Multiple light sources – Combined (3)

Drawbacks:

• We must be careful not to exclude any lights that contribute
to 𝐿𝐷𝑖𝑟𝑒𝑐𝑡 𝐱, 𝜔𝑜

• 3 random numbers are needed to generate a shadow ray:

– One to select the light source k

– 2 to select a specific surface point

Truly Random Paths – Complexity

• At each hit point, the rendering equation is evaluated using a
number of direct and indirect samples

• For indirect samples 𝑁 > 1, the rendering time grows
exponentially w.r.t the recursion depth 𝑂(𝑁𝑑𝑒𝑝𝑡ℎ)

• With always 1 indirect sample:
– 𝑂 𝑑𝑒𝑝𝑡ℎ

– We trace a single path for each pixel sample

– Slower convergence but faster feedback

– Typically hundreds to thousands of paths are traced

Convergence

1 sample 4 samples 64 samples16 samples

256 samples 1024 samples 16384 samples4096 samples

Truly Random Paths – Termination (1)

• Any ray tracing algorithm needs a stopping condition

• Otherwise:
– the generated paths could be of infinite length

– the algorithm would not come to a halt

• But finite length introduces bias to the final image (disregards possibly
important segments)

• Have to find a way to:

– limit the length of the paths

– still be able to obtain a correct solution

Truly Random Paths – Termination (2)

• Classic ray-tracing uses 2 techniques:

(a) Fixed depth:

– cuts off the recursion after a fixed number of evaluations

– upper bound on the amount of rays that need to be traced

– May ignore important light transport biased image

– Manual setting of depth according to type of materials

Truly Random Paths – Termination (3)

(b) Adaptive recursion depth:

– The cumulative ray “strength” of the path so far is maintained. Terminates
when strength too low

– more efficient technique

– Can still omit highly contributing sub-paths (intense lights) bias

Russian Roulette Ray Generation

• Addresses the problem of keeping the lengths and number of the paths
manageable

• Leaves room for exploring all possible paths of any length

• Produces an unbiased image by:

– Applying a hit/miss strategy to replace the probabilistic bias

– Not indiscriminately eliminating unimportant samples but doing so with a
probability ξ.

Russian Roulette Principle (1)

• Russian Roulette sampling is a very important tool in rendering

• The idea is that an estimator 𝐹 can be replaced by:

• In simple terms, if for N trials, (1-p)N times we choose to discard the
solution, the pN trials must be boosted to counter the loss

𝐹′ = ൞

1

𝑝
𝐹,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Russian Roulette Principle (2)

Example:

• Let at a particular light bounce the probability of rejecting a ray be 3/4

• If we do nothing, this bounce will contribute 3/4 less light than normal,
because we are deliberately zeroing its contribution 3 out 4 times

• To counter this, the radiance returned by the 1 ray actually cast out of 4
attempts, must be quadrupled

Russian Roulette Principle (3)

Why Russian Roulette works?

• E[<IRR>] evaluates to I
• Missed samples in the integral evaluation are compensated by scaling the

incoming radiance by 1/p

• If 1-p (absorption) is small:

– the recursion will continue many times

– the final estimator will be more accurate

• If 1-p is large:

– the recursion will stop sooner

– the estimator will have a higher variance

Practical Russian Roulette Implementation

• Choose a reasonable probability p to cast a ray, often related
to:
– Max {reflectivity , transmission coef}

– Total path contribution up to this event

– Recursion depth (i.e. bounce)

– …

• Generate a uniform random number ξ

• If ξ < p, cast the ray and weight the result by 1/p

• Otherwise, don’t spawn a ray

Sampling (1)

• At each ray hit, the following questions must be answered:
– How many rays to spawn? (when forming a single path, 1 or 0: RR

termination)

– Which direction should the ray take?

– What distribution to use?

Sampling (2)

• Typically, paths are distributed differently under reflection
and transmission

• In a single path implementation, we must choose either
transmission or reflection

• We can use RR to determine the above!

Hit

Spawn
ray

Absorb

Reflect

transmit

𝑝𝑠𝑝𝑎𝑤𝑛 𝑝𝑟

1-𝑝𝑠𝑝𝑎𝑤𝑛
1 − 𝑝𝑟

𝑝𝑠𝑝𝑎𝑤𝑛 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑝𝑟 = 𝐹 (𝐹𝑟𝑒𝑠𝑛𝑒𝑙 𝑡𝑒𝑟𝑚)

×
1

𝑝𝑠𝑝𝑎𝑤𝑛 ∙ (1 − 𝑝𝑟)

×
1

𝑝𝑠𝑝𝑎𝑤𝑛 ∙ 𝑝𝑟

Sampling the BSDF (1)

• Depending on the material attributes (roughness, reflectance, shader, etc)
and the event chosen (reflection, transmission), we can determine the
next path direction using the appropriate directional sampling
distribution:

• Ideally specular - BTDF or BRDF → ∞:
– Determine ray direction analytically

– Do not sample the lights separately

(0 contribution outside ideal scattering direction)

– Measure both 𝐿𝑒 and GI at hit location

– Use probability 𝑝 𝜔𝑖 = 1

or

• Low gloss / high out-scatter – large BRDF / BTDF
spread:

– Use hemisphere cosine sampler

– Use 𝑝 𝜔𝑖 = Τcos 𝜃𝑖
𝜋

• High gloss / tight focus:

– Use microfacet pdf of local shading model to
generate incident direction

Sampling the BSDF (2)

Multiple Importance Sampling (1)

• We have seen how to sample directions towards the lights and use them
either as a separate direct lighting component or as the direction of the
next path segment

• We have used BRDF-based sampling to give preference to the scattering
direction

• However, the pdf we chose only conforms to one of the terms in the
rendering equation integrant, therefore the distribution does not
necessarily match the integrant!

 Can introduce serious variance

Multiple Importance Sampling (2)

𝐿𝑜 𝐱, 𝜔𝑜 = 𝐿𝑒 𝐱, 𝜔𝑜 +
1

𝑁

𝑖=1

𝑁
𝐿 𝐱, 𝜔𝑖 𝑓𝑠 𝐱,𝜔𝑖 , 𝜔𝑜 cos𝜃𝑖

𝑝(𝜔𝑖)

𝐧
𝜔𝑜

𝐱

However, the pdf we chose only conforms to one of the terms in the rendering

equation integrant, therefore the distribution does not necessarily match the

integrant!

 Can introduce serious variance

Multiple Importance Sampling (3)

• Sampling the light sources for highly glossy BRDFs leads to zero-valued
evaluations of the latter and only erratic contribution of light

• Sampling rough BRDF for lights subtended through very small solid angles has
the same effect

Multiple Importance Sampling (3)

Solution:

• Sample directions using both strategies simultaneously! MIS

Multiple Importance Sampling (4)

• Draw samples from all distributions
– Can use different number of samples per distribution

– Can combine any sampling strategy. Here: cosine-weighted, BRDF
sampling and light domain sampling

• Weight their relative contribution based on the quality of the
samples drawn (pdf value):

𝐹 =

𝑖=1

𝑁
1

𝑁𝑖

𝑗=1

𝑁𝑖

𝑤𝑖(𝑋𝑖,𝑗)
𝑓(𝑋𝑖,𝑗)

𝑝(𝑋𝑖,𝑗)

Number of samples drawn

from each distribution

Number of distributions

Weight per sample per

distribution

MC sampling using

i-th distribution

Multiple Importance Sampling (5)

• Arithmetic average is maybe the worst weighting function:
Additively blends two or more possibly bad distributions
Always increases variance

• The Balance heuristic:

– It is almost optimal

– σ𝑘𝑤𝑘(𝑥)=1

• Each sample generator contributes to the result
proportionally to its pdf

𝑤𝑖(𝑥) =
𝑁𝑖𝑝𝑖(𝑥)

σ𝑘𝑁𝑘𝑝𝑘(𝑥)

Multiple Importance Sampling (6)

Practical example:
• Draw one sample 𝜔L towards the light source using the area sampling

approach with pdf 𝑝𝐿(𝜔𝐿)

• Draw one sample 𝜔𝑓 using BRDF sampling with pdf 𝑝𝑓(𝜔𝑓)

• Evaluate the MC estimator for each one:

𝐼𝐿 =
𝑓𝑟 𝜔𝐿,𝜔𝑜 𝐿 𝜔𝐿 𝑐𝑜𝑠𝜃𝐿

𝑝(𝜔𝐿)
, 𝐼𝑓 =

𝑓𝑟 𝜔𝑓,𝜔𝑜 𝐿 𝜔𝑓 𝑐𝑜𝑠𝜃𝑓

𝑝(𝜔𝑓)

• Estimate the weights:

• 𝑤𝐿(𝜔𝐿) =
𝑝𝐿(𝜔𝐿)

𝑝𝐿 𝜔𝐿 +𝑝𝑓(𝜔𝐿)
, 𝑤𝑓(𝜔𝑓) =

𝑝𝑓(𝜔𝑓)

𝑝𝐿 𝜔𝑓 +𝑝𝑓(𝜔𝑓)

• Evaluate the rendering equation:

• 𝐼 = 𝑤𝐿(𝜔𝐿)𝐼𝐿+ 𝑤𝑓 𝜔𝑓 𝐼𝑓 =
𝑓𝑟 𝜔𝐿,𝜔𝑜 𝐿 𝜔𝐿 𝑐𝑜𝑠𝜃𝐿

𝑝𝐿 𝜔𝐿 +𝑝𝑓(𝜔𝐿)
+
𝑓𝑟 𝜔𝑓,𝜔𝑜 𝐿 𝜔𝑓 𝑐𝑜𝑠𝜃𝑓

𝑝𝐿 𝜔𝑓 +𝑝𝑓(𝜔𝑓)

Efficient Implementation (1)

• Recursive implementation is not optimally
implemented:

– Excessive call stack thrashing

– Incoherent rays

– Bad resource pooling & cache coherence

• Use a ray-parallel iterative implementation

– Allocate once and reuse ray storage

– No recursive function call

– Easy vectorization / threaded execution (also in GPUs)

Efficient Implementation (2)

Ray data

array active

Se
tu

p
 p

ri
m

ar
y

ra
ys

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Shadow ray

array

Buffer allocation phase

Until no more active

N X Primary

Efficient Implementation (3)

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Until no more active

Efficient Implementation (4)

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Until no more active

Efficient Implementation (5)

In
te

rs
e

ct
 r

ay
s

Tr
ac

e
sh

ad
o

w
 r

ay
s

Sh
ad

in
g

Se
tu

p
 s

e
co

n
d

ar
y

ra
ys

Until no more active

Pa
ck

 r
ay

s

You can pack the rays to avoid wasting

cycles/threads on inactive paths

Efficient Implementation (6)

• Notes:

– You can combine MIS with RR to only evaluate one
sampling direction at a time, even with multiple samplers

– In the light vs BRDF sampler example:

𝐼 = 𝑤𝐿(𝜔𝐿)𝐼𝐿+ 𝑤𝑓 𝜔𝑓 𝐼𝑓 =
𝑓𝑟 𝜔𝐿,𝜔𝑜 𝐿 𝜔𝐿 𝑐𝑜𝑠𝜃𝐿

𝑝𝐿 𝜔𝐿 +𝑝𝑓(𝜔𝐿)
+
𝑓𝑟 𝜔𝑓,𝜔𝑜 𝐿 𝜔𝑓 𝑐𝑜𝑠𝜃𝑓

𝑝𝐿 𝜔𝑓 +𝑝𝑓(𝜔𝑓)

We can choose 𝐼𝐿 or 𝐼𝑓 using RR with 𝑝𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑖𝑔ℎ𝑡 :

𝐼 = ൝
𝑤𝐿 𝜔𝐿 𝐼𝐿/𝑝𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑖𝑔ℎ𝑡

𝑤𝑓 𝜔𝑓 𝐼𝑓/(1 − 𝑝𝑆𝑒𝑙𝑒𝑐𝑡𝐿𝑖𝑔ℎ𝑡)

Efficient Implementation (6)

• Pros:
– Well-behaved threaded execution, with predictable loads and load

balancing

– Tiling efficiently boosts parallel unit utilization

– No recursion

– Simple, generic and well-structured code for next segment sampling

• Cons:
– Increased variance: Every event spawns only one ray

– Paths with multiple samples along the segments very tricky to handle
(volumetric scattering): must handle samples as separate events

Contributors

• Georgios Papaioannou

