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AMBIENT OCCLUSION 



Ambient Occlusion 

• Simplified shader for one-bounce case 
• Radiance from other surfaces is regarded constant 

over all directions 
• Energy reception from a distant environment treated 

as attenuation of light due to blocking 
• Relates “openness” of a surface to brightness 

– No blocking: Full radiance received from all directions 
– Partial blocking: Near surfaces attenuate light 
– Full blocking: No light enters the surface. 



Why Use Ambient Occlusion? 

• A cheap way to simulate contribution of ambient 
(global) lighting 
– Though only convincing for outdoor scenes mostly 

• Accentuates crevices  increases image contrast  



Ambient Occlusion Estimation (1) 

• Local or global illumination model? 
• Hybrid! 

– Does not exchange light with other 
locations 

– Potentially search for occlusion up to a 
distance 

– Still requires visibility checks  
intersections with other geometry 



Ambient Occlusion Estimation (2) 

• The value of occlusion shading can be easily determined if we 
set 𝐿𝐿𝑖𝑖  in the reflectance equation to 1 and replace visibility 
with an attenuation score: 
 
 
 
 

• Where 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖  is the distance to the closest hit point within 
a radius 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (or +∞ if no hit occurred) 
– 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 can be set to ∞  
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Ambient Occlusion – Attenuation Function 

• 𝜇𝜇 𝑑𝑑 𝐩𝐩,𝜔𝜔𝑖𝑖  can be any intuitive function  
• Simplest case: 

 
 

• But other forms can be used to limit the impact of distant 
occluders 
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A.O. : How is it Applied? 

• We usually apply AO as a visibility function to 
attenuate ambient / sky color 

• Some implementations also blend AO with diffuse or 
even specular lighting (not really correct…) 



A.O. Example 



A.O. Example 



A.O. - Effect of maximum distance 



Ambient Occlusion vs Uniform Light 

Hemispherical light                                    Ambient occlusion 



Ambient Occlusion Calculation 

• For every visible point x: 
– Compute AO as Monte Carlo hemispherical integral. Sample the 

hemisphere with N rays: 

• Find closest intersection y with occluding geometry (the most 
expensive calculation) 

• Compute distance d(x,y) 
• Compute attenuation ρ(d)  

 
• Also fast implementations 
    for real-time graphics 

– Use screen-space information 



Precalculated A.O. 

• In real-time graphics, sometimes we can evaluate AO per 
vertex and store it as vertex color on meshes 

• At runtime, we can then apply it on any shading for free 
• Requires careful geometry tesselation during modeling to 

avoid problems: 



IMAGE-BASED LIGHTING 



Image-based Lighting 

• Very important in CG 
• Helps a rendered image blend with a real 

surrounding 
– Mix synthesized and real imagery (films, games, AR) 

 



Environment Maps (1) 

• An environment map is a representation of distant radiance 
parameterized w.r.t. an incoming direction 𝜔𝜔𝑖𝑖  

• Usually this information is discretely encoded on a set of 
images 

• Other typical representations include spherical function 
coefficients 



Environment Maps (2) 

• Environment maps typically encode incoming illumination 
from the entire sphere around a point 

• But can also be: 
– Hemispherical (e.g. sky lighting) 
– Cylindrical  



Environment Maps (2) 

• Mostly in real time graphics, it is convenient to store the 
spherical environment in cube maps: 



Light Probes (1) 

• Environment lighting images can be captured using physical 
light probes: 

• Highly polished metallic spheres photographed to capture the 
real environment 
– Multiple exposures are typically taken to capture an HDR environment 

map 



Light Probes (2) 

• To properly map the environment:  
– with low distortion and  
– Elimination of the photographic equipment from the image 

• Multiple photos of the probe are captured  
• The results are merged into an (inverse) panorama 



Using an Environment Map (1) 

• The basic assumption about environment maps is that the 
environment is distant 

• If assumed distant, incoming light is parameterized only by 
direction, as different points on the geometry will still index 
the same location on the environment map 



Using an Environment Map (2) 

• Using as lighting the environment map on each point instead 
of using light sources: 
– Can provide a very natural look to artificial objects 
– Can blend the synthetic geometry with the captured environment 

• This has been extensively used in movies  

http://www.fxguide.com/featured/vfx-roll-call-for-the-avengers/ 



Using an Environment Map (3) 

• When environment distances are 
comparable to the size of the synthetic 
objects, a single environment map 
cannot do the trick  
 

• Env. maps are also only valid for a 
particular region near the capture point 



Virtual Light Probes (1) 

• In the previous example, the environment map was not 
captured from a real scene, but rather from a synthetic 
environment 

Why do this? 
• To significantly speed up indirect lighting calculations 
• To apply indirect lighting to real-time rendering! 

– “Bake” incident light from a rendered environment 
– This lighting is the contribution of the env. Lighting to a surface 
– Can be combined with local shading from light sources  

 



Virtual Light Probes (2) 

• Generation: 
– Via cube maps: setup 6 views and render the scene  



Virtual Light Probes (3) 

• Generation: 
– Directly sample the geometry and store a compressed 

spherical representation (see RT GI slides)  



Environment Mapping in RT Applications 

• Used for baking both rough indirect lighting and sky / ambient 
lighting  

 Call of Duty: Ghosts 



Multiple Light Probes 

• To alleviate the invalidation of environment maps in different 
scene positions, multiple (virtual or physical) light maps can 
be generated from different locations 

• At runtime, their contribution is interpolated  

http://www.fxguide.com/featured/game-environments-parta-remember-me-rendering/ 



Importance Sampling Environment Maps (1) 

• Environment maps cover the entire field of view around a 
point 
– At best, the hemisphere above the surface 

• How do we sample the rendering equation integrand with 
only a few samples? 
–  importance sampling 

• With env. maps, we do have the 𝐿𝐿𝑒𝑒(𝐩𝐩,𝜔𝜔𝑖𝑖) ! 
 



Importance Sampling Environment Maps (2) 

 
 
 
 
 

• So we are done: we mipmap and sample the map, after 
thresholding its values to obtain a sample mask 

• No? 

 



Importance Sampling Environment Maps (3) 

• The lighting information is not enough! 
• Remember the integrand also contains a visibility term! 
• So we need to first evaluate the visibility function, then 

combine it with the env. map to obtain a distribution of good 
sampling locations 
– We need to find a way to approximately and quickly compute the 

visibility function…  



Pre-Convolved Environment Maps 

• To reduce the number of samples without introducing 
variance, another solution is to:  
– Prefilter the environment map (similar to mip-mapping) 
– During rendering, choose and blend environment mipmap 

levels according to the spread of the BSDF  

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html 



PRECOMPUTED RADIANCE TRANSFER 



Orthonormal Basis Functions 

• A basis function bn is an element of a particular basis for a 
function space 

• Every continuous function in the function space can be 
represented as a linear combination of basis functions: 

 
 

• Check similarity with vector spaces 
• An orthonormal basis additionally satisfies the property: 
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Signal Projection on Orthonormal Bases 

• The projection of an arbitrary continuous function on a set of 
basis functions results in the definition of the blending 
coefficients an 

• It can be proven that for orthonormal function bases, the best 
least squares fitting of a function f over a predefined set of 
basis functions bn results in: 
 
 
 

• (Again, relate this with the dot product projection in 
orthonormal bases for vector spaces) 
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Signal Reconstruction 

• The number of basis (blending) functions may be infinite or 
too large and therefore we must choose a finite subset of 
them that converges “reasonably” to the desired result 
 

• The reconstructed function (signal) is derived from the linear 
combination of the (truncated series) of basis functions: 
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Spherical Harmonics (1) 

• Spherical Harmonics define an orthonormal basis over the 
sphere S.  

• A point s on the sphere is parameterized as: 
 

• They are harmonic functions and more specifically they 
constitute the angular part of the solution of the Laplace’s 
equation on the unit sphere: 
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Spherical Harmonics (2) 

• The (complex) basis functions are defined as: 
 
 

    where Pl
m are the associated Legendre polynomials and Kl

m 
are the following normalization factors: 

 



Spherical Harmonics (3) 

• Real versions of the SH basis functions can be obtained from 
the transformation: 
 
 
 
 

• l represents the band of the SH functions 
• Each band has 2l+1 SH basis functions 
• Each band corresponds to an increasing angular frequency  



Spherical Harmonics (4) 



Spherical Harmonics (5) 



• Being an orthonormal set of basis functions: 
 
 

• The reconstruction of the signal can use up to any order of SH 
bands, truncating the infinite series of coefficients and 
respective basis functions 

• Similarly, the encoded (projected) signal has to be band 
limited and encoded in a finite set of SH coefficients 

• How many bands should we use? 

Spherical Harmonics (6) 



Frequency Analysis of Radiance Field 

• Similar to radiance, we can encode visibility as a 5D field: 
– What is the visibility (how open is the environment) at a point (x,y,z) in 

space in a direction (θ,φ)? 
– Encodes the ability of the specific point to receive light from an 

incident direction (θ,φ) 

 
 
 
 

 
• What are the spectral characteristics of these fields? 
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Frequency Analysis of Illumination (1) 

• Global illumination effects have distinctively different 
spectral characteristics 

• As a principle: 
– Diffuse inter-reflections produce low frequency directional 

radiance 
– The same holds for most cases involving occlusion in 

diffuse light bounces 
– Direct illumination with occlusion (shadows) contains high 

frequencies in general (discontinuities) 
– Specular transmission usually contains high frequencies  



Frequency Analysis of Illumination (2) 



Encoding the Radiance/Visibility Field (1) 

• Why? 
– Direct illumination is cheap to calculate at every point on the 

geometry 
– Indirect illumination is not  

• Solution: 
– Precalculate on surfaces/cache points OR 
– Calculate at sparse locations at run time 

• What: 
– Visibility AND/OR 
– Radiance field of indirect lighting 



Encoding the Radiance/Visibility Field (2) 

For real-time graphics: 
• Calculating and storing the radiance/visibility field once or per 

frame: 
– Disassociates its utilization from the geometry  
– Enables the easy evaluation of GI in real-time graphics 

(direct rendering techniques) 
 



Encoding Visibility (Distant Illumination) (1) 

• From the rendering equation: 
 
 

• If we assume only a “distant” environment emitting the 
radiance (e.g. sky, sun, distant light sources etc), then: 
 
 

                                radiance        transfer function 
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Encoding Visibility (Distant Illumination) (2) 

• For diffuse surfaces this is simplified to: 
 
 
 

• The hemisphere is aligned with the surface normal at every 
point 

• The transfer function characterizes the specific point but for 
diffuse inter-reflection can be considered a slowly varying 
quantity (thus sparsely evaluated). 
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Encoding Visibility (Distant Illumination) (3) 

• We can encode both the transfer function and the incident 
radiance using a set of basis functions 

• Orthonormal bases (such as SH) are ideal as they provide the 
useful property: 
 
 
 

• i.e.: The integral of two band limited functions equals the dot 
product of their coefficients when projected to the 
orthonormal basis 
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Precomputed Radiance Transfer (1) 

• The transfer (visibility over the hemisphere) function T can be 
precomputed and encoded in compact form 

• When using Spherical Harmonics, 9 or 16 coefficients can 
effectively encode both T and Li for diffuse light transfer 

• The coefficients for T can be sparsely (pre-) evaluated, stored 
to and evaluated from: 
– A sparse lattice  
– A texture atlas 



Precomputed Radiance Transfer (2) 
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