

COMPUTER GRAPHICS COURSE

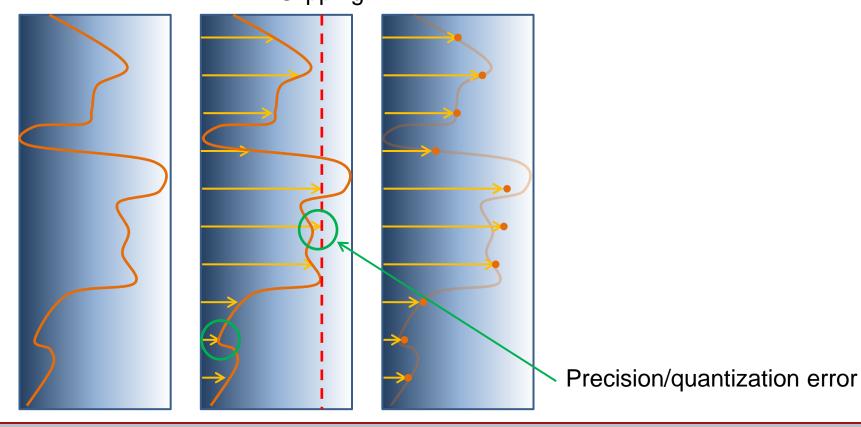
The Digital Image

Georgios Papaioannou - 2014

- Both computer graphics and photography create a discretized representation of a continuous light signal:
 - Photography: Continuous Incident light \rightarrow Sensor \rightarrow Raster
 - CG: Mathematical geometry representation \rightarrow Raster

- The digital image signal generation suffers from all digitization problems:
 - Aliasing
 - Quantization errors
- Both digital photography and photorealistic rendering can also suffer from noise
 - Different in nature: statistical vs thermal

• The pixel represents a single sample in the image, not a square! Clipping

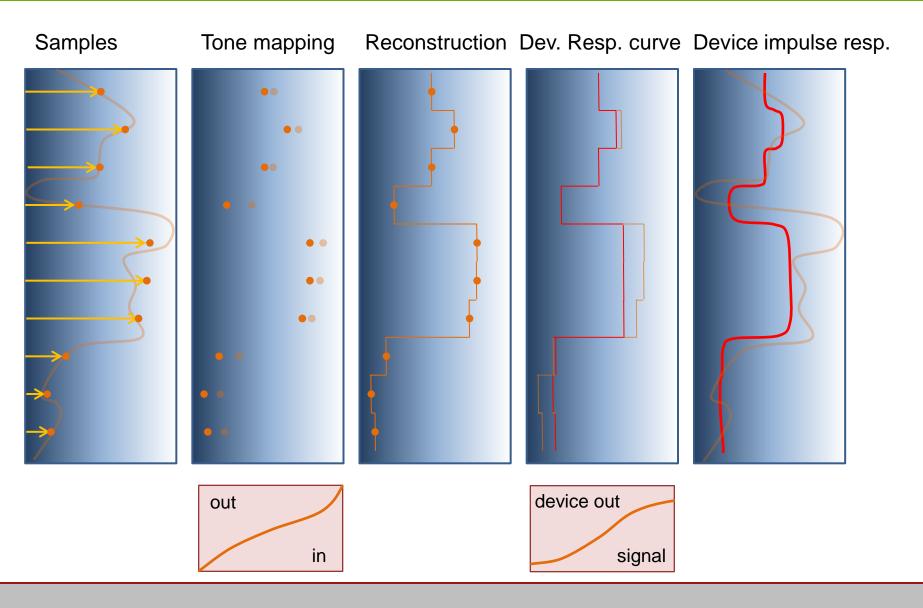


- The sampling rate in an image is determined by the image resolution vs (physical) image size
 - Denser sampling (higher resolution) can correctly capture higher image detail
 - There is always a limit of what a specific resolution can correctly represent (see Nyquist criterion next)
 - E.g. doubling the resolution will only mitigate the problem to a higher image frequency

- Roughly speaking, we can correctly reconstruct (see) a repeating variation in intensity with a (sine) period of 2 pixels or more
- Faster intensity changes cannot be systematically and correctly sampled, leading to **aliasing** and noise
- To alleviate this, we purposefully limit the frequency (detail) of the input signal to match our sampling capabilities

- In order to perceive the color of an image, we have to go through a reconstruction of an analog intensity from the samples. This involves:
 - A reconstruction filter \rightarrow obtain a continuous signal
 - A tone mapping stage → adjust intensity to actual displayable range
 - The device's response curve → translates nominal intensities to actual light
 - The device's spatiotemporal impulse response → spreads intensity over screen surface and time

The Pixels We See (2)

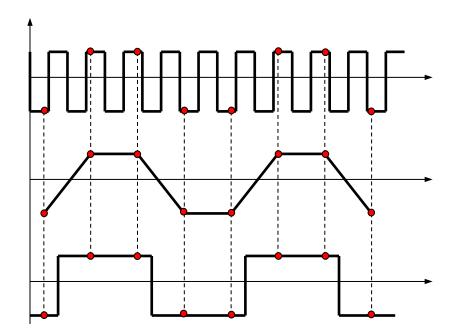


- "Spread" isolated discrete samples to form an analog signal
- Try to rectify the original signal

Nearest neighbor (piecewise constant) Bilinear

Bicubic

 Aliasing is the miss-interpretation of the samples as a different signal than the original during the reconstruction



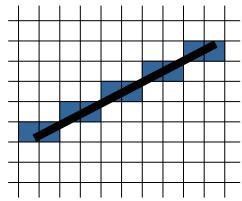
Major Aliasing Cases in Graphics

Image-space

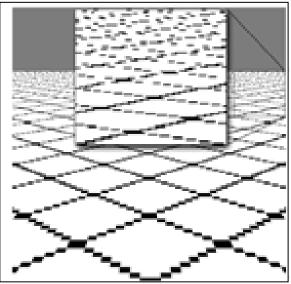
- Geometry aliasing
 - Erratic and discontinuous sampling of boundaries and thin structures ("juggies", holes)
- Texture aliasing
- Temporal aliasing
 - Unutural apparent motion

Geometric Aliasing

- Erratic and discontinuous sampling of boundaries and thin structures (holes, noise)
- Sampling of smooth structures at regular locations ("juggies")

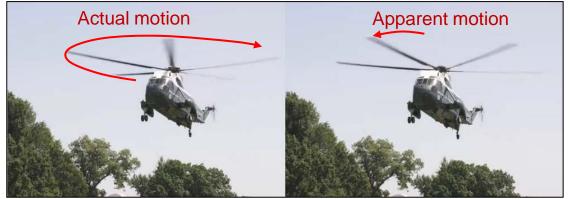


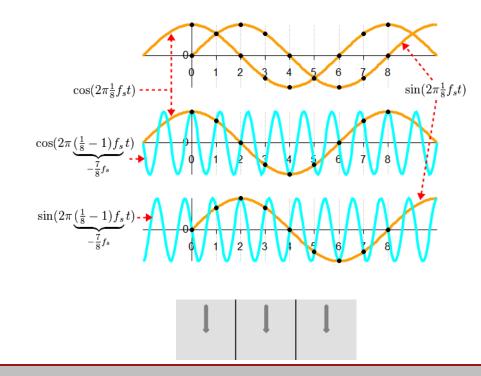
- Textures are images themselves or procedural patterns for modifying the appearance of geometry
- These are signals, too
- Sampling them at an inadequate rate in image space, produces significant aliasing
- Manifested as:
 - Noise
 - Irregular patterns
 - Both change erratically with motion



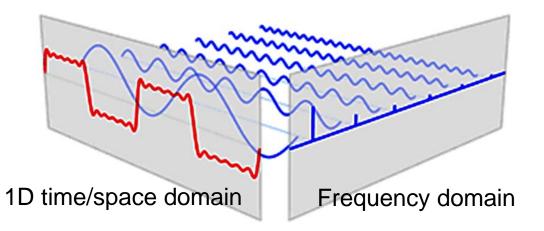
Temporal Aliasing

- Temporal aliasing occurs usually in fast motion
- Frame rate is inadequate to capture the motion frequency (happens to the HVS as well)
- We usually confuse the motion with another





Frequency Domain



- A periodic signal can be decomposed into a series of overlapping harmonic functions of increasing "frequency", i.e. shorter period
- The domain for the parameterization of these functions is the *frequency domain*

 In the Fourier series expansion of a signal, the signal is analyzed into sinusoids (i.e. projected onto a sinusoid function base):

 $y(t) = a \sin(2\pi\xi t + \varphi) = a \sin(\omega t + \varphi)$

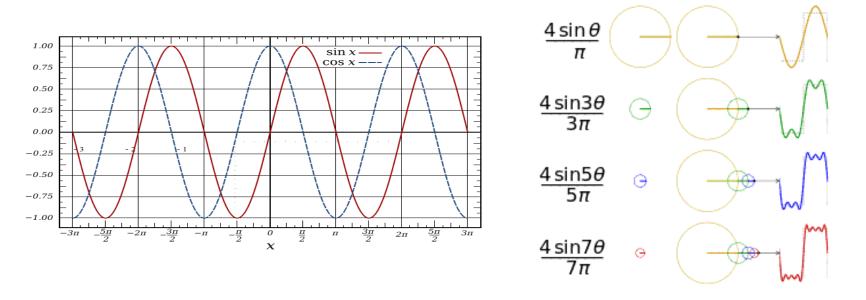


Image source: Wikipedia

• A general transformation to express an analog signal in the frequency domain and back (inverse FT)

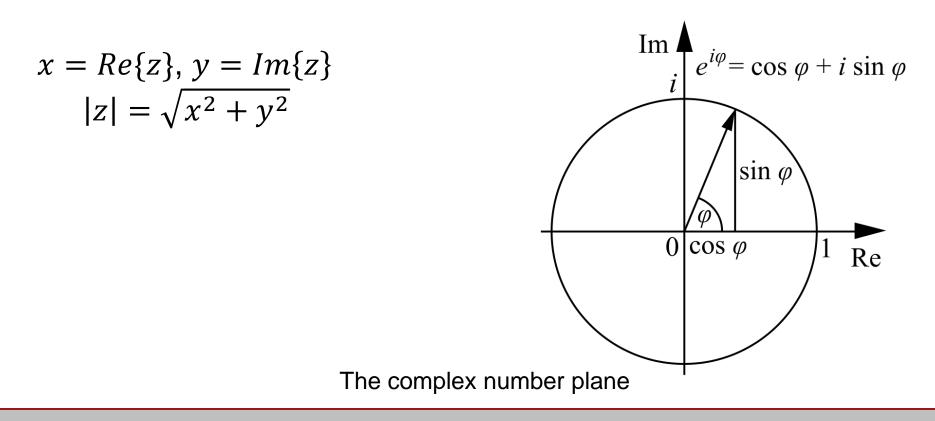
$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i x\xi} dx$$

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$

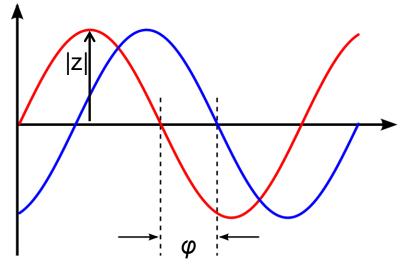
$$z = x + iy = |z|(\cos \varphi + \sin \varphi) = |z|e^{i\varphi}$$

$$\bar{z} = x - iy = |z|(\cos \varphi - \sin \varphi) = |z|e^{-i\varphi}$$

"conjugate" of z

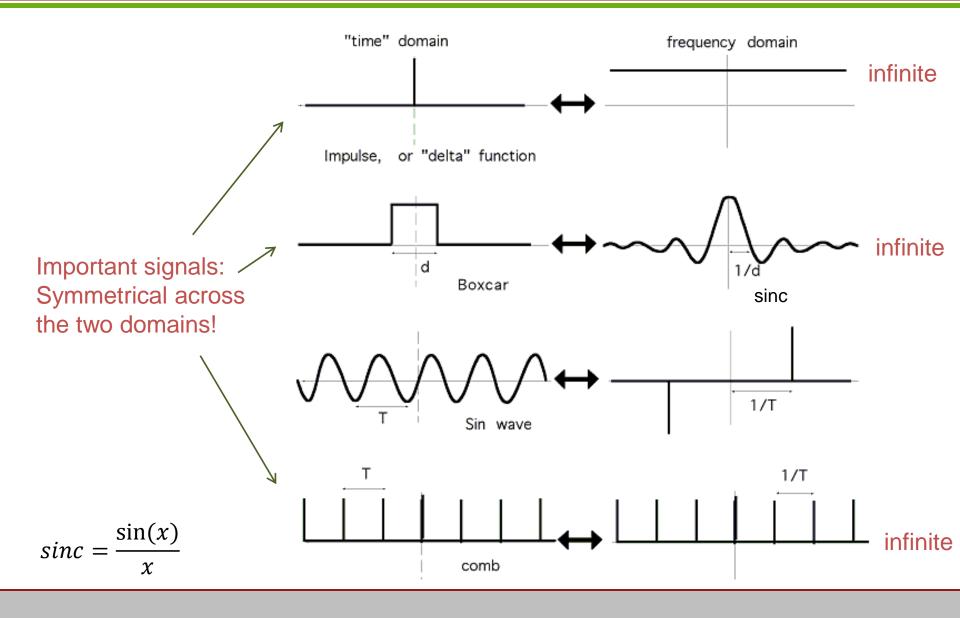


- The Fourier transformation results in an imaginary function
 - Magnitude: the amplitude (or presence) of each frequency
 - Angle: the "phase" (or shift) of each frequency
- They both comprise the *spectrum* of the signal

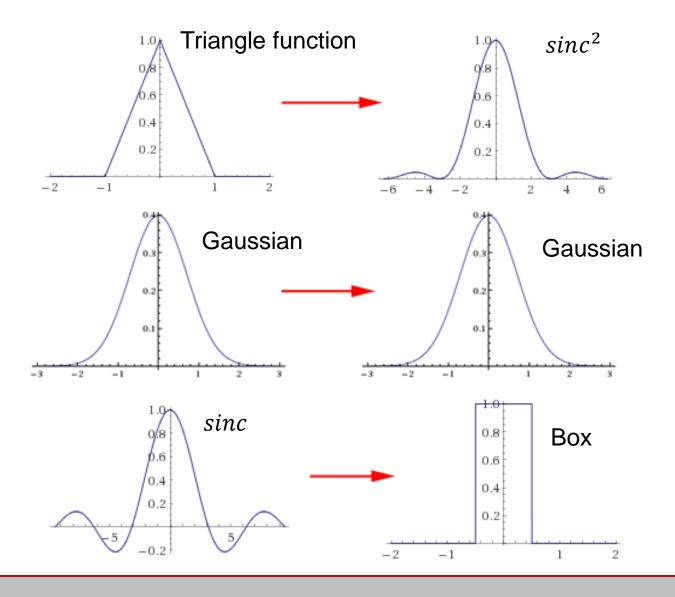


- A signal has an unbounded or infinite spectrum if in order to be completely represented it requires non-zero Fourier coefficients of $\xi \to \infty$
- All discontinuous signals have an infinite spectrum
 - In reality, there is no ideally abrupt signal, but for all practical purposes, very sharp transitions have a very spread spectrum
 - In graphics we do have discontinuous (mathematical) signals!
- A band-limited signal is one with a finite spectrum (non-zero frequency-domain coefficients)

Typical Spectra



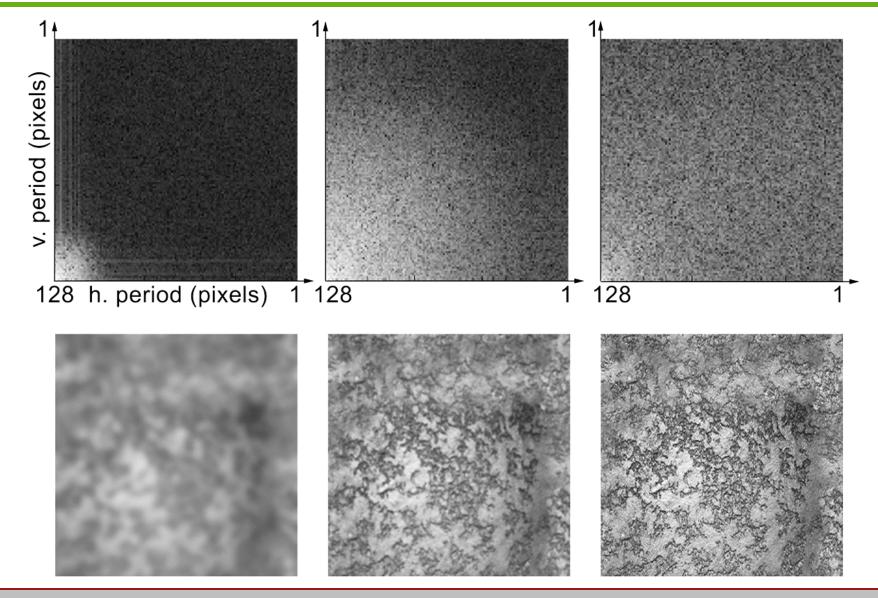
Other Common Functions



• The FT can be generalized for higher dimensions, even for aperiodic signals:

$$f(\mathbf{x}) = \int_{-\infty}^{+\infty} F(\mathbf{u}) e^{j2\pi\mathbf{x}\cdot\mathbf{u}} du_1 du_2 \dots du_N$$
$$F(\mathbf{u}) = \int_{-\infty}^{+\infty} f(\mathbf{x}) e^{-j2\pi\mathbf{x}\cdot\mathbf{u}} dx_1 dx_2 \dots dx_N$$

Examples in the Image Domain



Convolution

$$y(x) = (h * s)(x) = \int_{-\infty}^{+\infty} h(x - t)s(t)dt = \int_{-\infty}^{+\infty} s(x - t)h(t)dt$$

- The convolution operation * blends two functions by shifting one over the other and modulating their overlapping values
 - It is like "pushing one function through the other"

Convolution Examples

$$y(x) = (h * s)(x) = \int_{-\infty}^{+\infty} h(x - t)s(t)dt$$

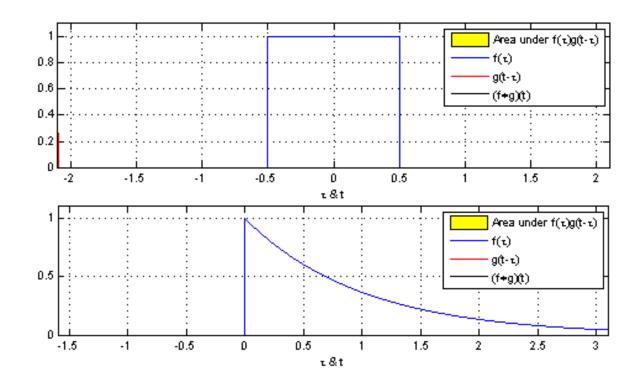
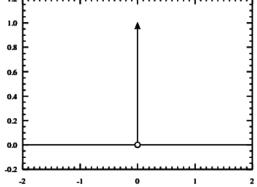


Image source: Wikipedia

- A system is characterized by an *impulse response*, i.e. a function h(x) that is the output of the system given a single pulse (impulse) as input
- The impulse in continuous signals is the Dirac function δ(x), a single pulse at 0 with an integral equal to 1
- The impulse in discrete-time systems is the Kronecker delta function:

$$\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j, \end{cases}$$



- The impulse response is the result of the convolution of the system with the input singular pulse
- It completely characterizes a time-invariant linear system: it is the (fixed) function that is applied to any input signal:

$$h(x) = \int_{-\infty}^{+\infty} h(x-t)\delta(t)dt$$

Unknown LTI system

- Linear systems are very typically used in image operations to apply filters (i.e. systems) on 2D signals
- Filters are generally characterized as IIR or FIR:
 - Infinite Impulse Response: The domain of support of the impulse response is infinite. Ideal filters are typical IIR ones (more later)
 - Finite Impulse Response: The non-zero values of the impulse response are limited to a finite range
- Filters have their own spectrum, which emphasizes or suppresses certain frequencies

- Important and useful property:
- If H(ξ) and S(ξ) are the Fourier transforms of two functions h(x) and s(x), then:

$$FT((h * s)(x)) = H(\xi) S(\xi)$$

- I.e: Convolution in the time/space domain becomes multiplication of spectra in the frequency domain
 - Side-effect: Sometimes it is easier to design filters in frequncy domain and find their IFT to obtain their impulse response!

- Linearity: $af_1(t) + bf_2(t) \rightarrow aF_1(\omega) + bF_2(\omega)$
- Input shift: $f(t t_0) \rightarrow F(\omega)e^{-j\omega t_0}$
- Input scaling: $f(at) \rightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$
- Frequency shift: $F(\omega \omega_0) \rightarrow f(t)e^{j\omega_0 t}$
- Convolution:

$$\begin{split} f_1(t) * f_2(t) &\to F_1(\omega) F_2(\omega) \\ f_1(t) f_2(t) &\to \frac{1}{2\pi} F_1(\omega) * F_2(\omega) \end{split}$$

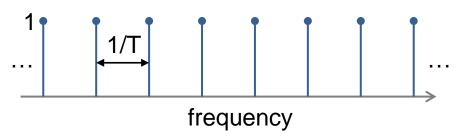
 In order to ensure that the reconstructed signal is identical to the original, the Nyquist-Shannon sampling theorem states that the original signal has to be *band-limited* and the sampling rate *f_{sampling}* must be at least twice the highest frequency of the original signal:

$$2|f_{\max}| \leqslant f_{sampling}$$

• Let's see why next:

- What happens to a signal when it gets sampled?
- The samples we take in time or space comprise an (infinite) impulse train:

• Remember the spectrum (*transfer function*) of such a signal? It is also a train of spikes:



- Sampling a signal x(t) is equal to multiplying it with an impulse train s(t) of sampling period T_s
 - We zero out all non-sample positions and keep the samples
- Now remember the convolution property:

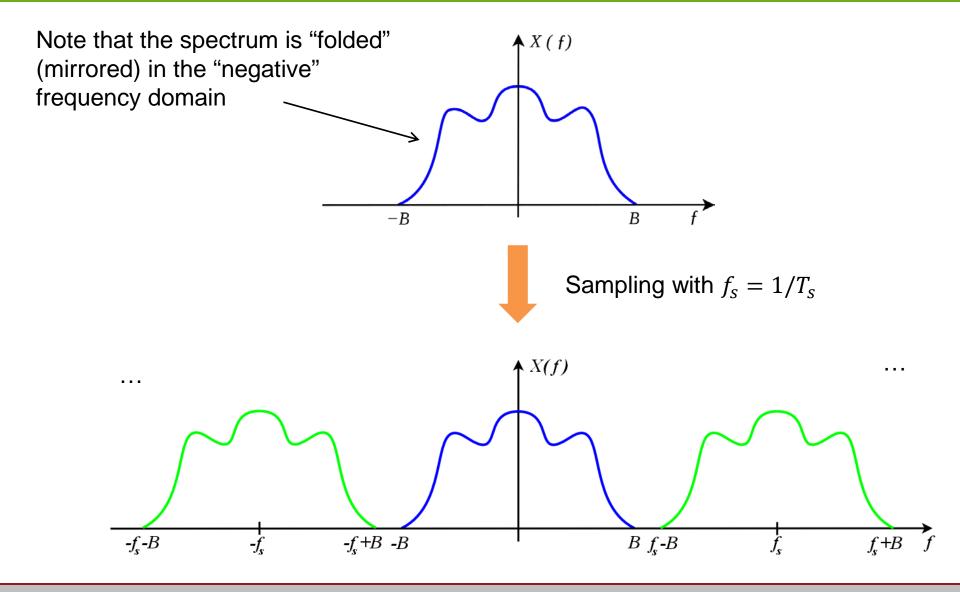
$$s(t)x(t) \rightarrow \frac{1}{2\pi}S(\omega) * X(\omega)$$

• Given the spectrum of $X(\omega)$ of the signal, the spectrum of the sampled signal is an infinitely shifted and scaled version of $X(\omega)$ repeated every $1/T_s$

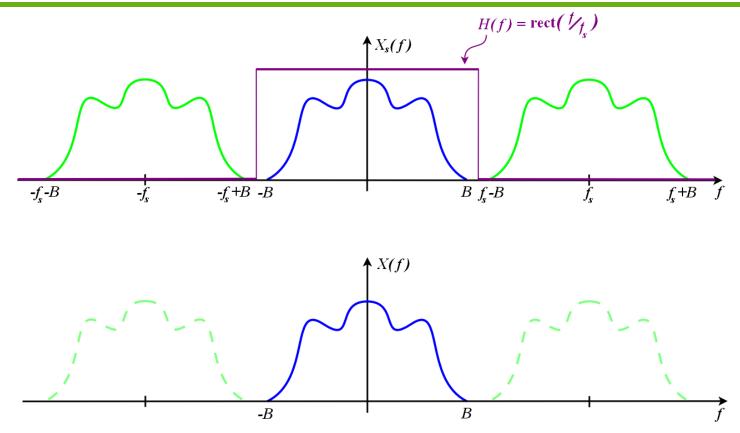
Sampling and Frequency Domain (3)

COMPUTER

GROUF

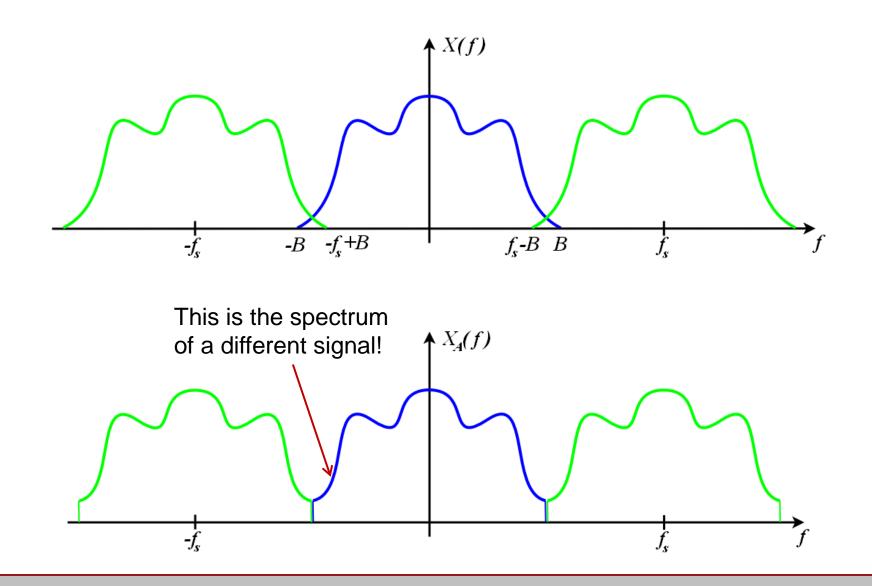


Signal Reconstruction

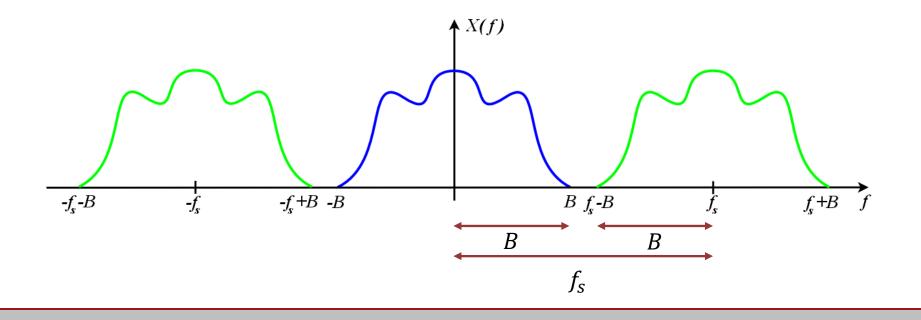


 To reconstruct the original signal, we need to convolve the sampled one with an appropriate reconstruction filter to isolate the original spectrum

- If the "ghost" spectra of the original signal overlap with the central spectrum then there is no way to reconstruct it properly!
 - The new (overlapping) spectrum represents now a different signal
 - We call this "aliasing" because the reconstructed signal is the same for many different input ones (aliases)

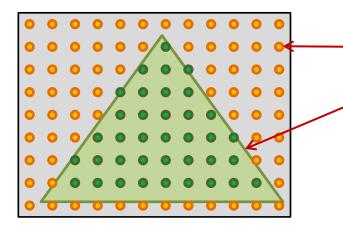


 According to the above, if B is the maximum frequency of a (band-limited) signal, the frequency f_s of the samples taken must by at least 2XB to avoid overlap of spectrum replicas and therefore, aliasing



Antialiasing

- Ok, what about:
 - A fixed sampling rate, that cannot be adjusted according to maximum signal frequency (image case)?
 - Signals with an infinite spectrum (again graphics...)?

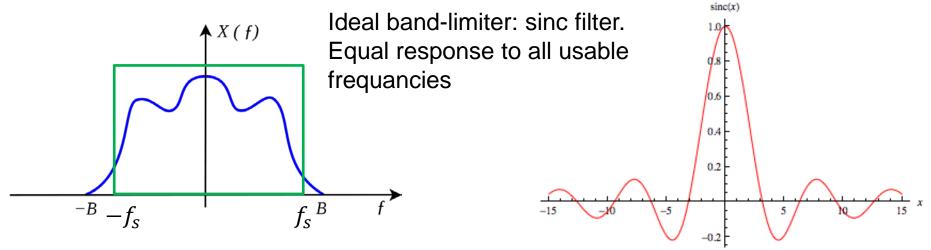


Fixed sampling rate (pixels)

Infinite bandwidth signal (discontinuity)

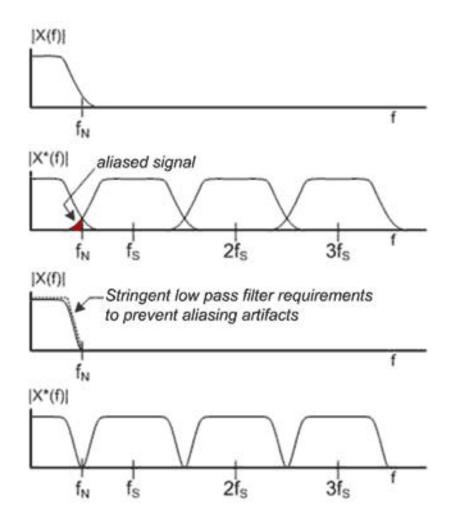
- We must "band-limit" the signal by force to contain its spectrum within the sampling window we have
- So we cut off high frequencies → we smooth out the original signal!
- The original signal cannot ever be correctly reconstructed!
- But we can at least produce a signal free of aliasing, noise and temporal artifacts

- An antialiasing filter clamps or limits the spectrum of the original signal to the $\left[-\frac{f_s}{2}, \frac{f_s}{2}\right]$ frequency range in order to be able to correctly sample it with an f_s rate
- Ideal filters do not emphasize or suppress frequencies

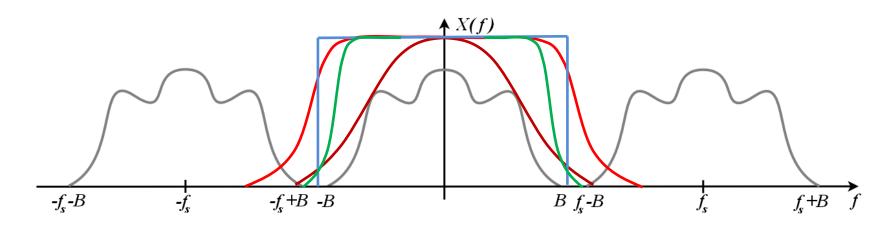


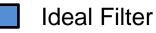
Antialiasing Filters (2)

- Can I have an ideal filter?
 - No... Ideal filters are IIR filters so they cannot be practically constructed
- We use "good" FIR filters, usually approximating truncated or dampened IIR ones



- Now that we have limited our (image) signal and sampled the analog domain, we need to create proper reconstruction filters to output the digital signal
- Remember:
 - We have (forcefully) abided the Nyquist criterion:
 - Either by increasing the sampling rate, or by limiting the signal spectrum
 - Side bands are "clearly" (sufficiently) separated
- Now we need a filter that does not overlap the side bands





Too wide frequency response

Too de-emphasizing (suppresses higher frequencies)

Good filter

- The Fourier Transform and the convolution have their own versions in the discrete domain
- What about aperiodic discrete signals?
 - The same theory still applies but with some modifications both to what the input domain represents and how the frequency domain is interpreted

• Applies to discrete, even samples of a function (discrete signal):

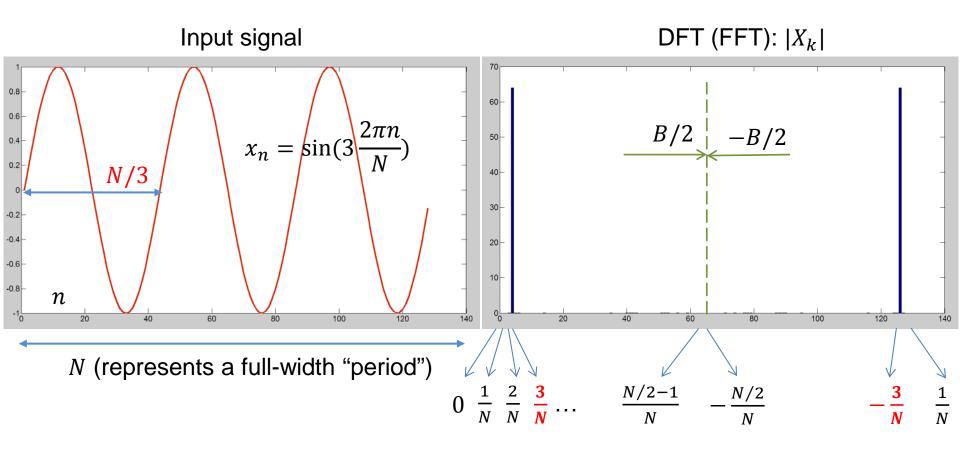
$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-i2\pi k n/N}, k \in \mathbb{Z}$$

- It is typically computed via the Fast Fourier Transform (FFT) algorithm
 - Fast, highly parallel algorithm (CPU, GPU, ASIC, FPGA implementations exist)

$$x_k = \frac{1}{N} \sum_{n=0}^{N-1} X_n e^{i2\pi k n/N}, k \in \mathbb{Z}$$

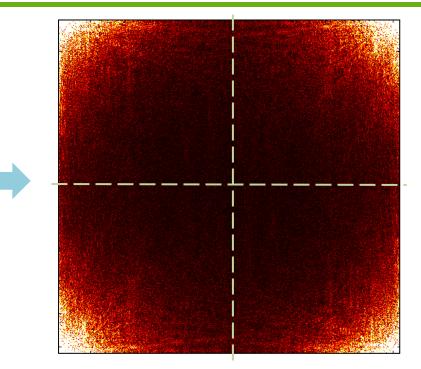
• It is typically computed via the Fast Fourier Transform (FFT) algorithm

Reading the FFT



DFT in Image Space





Interpreting the DFT in Image Space

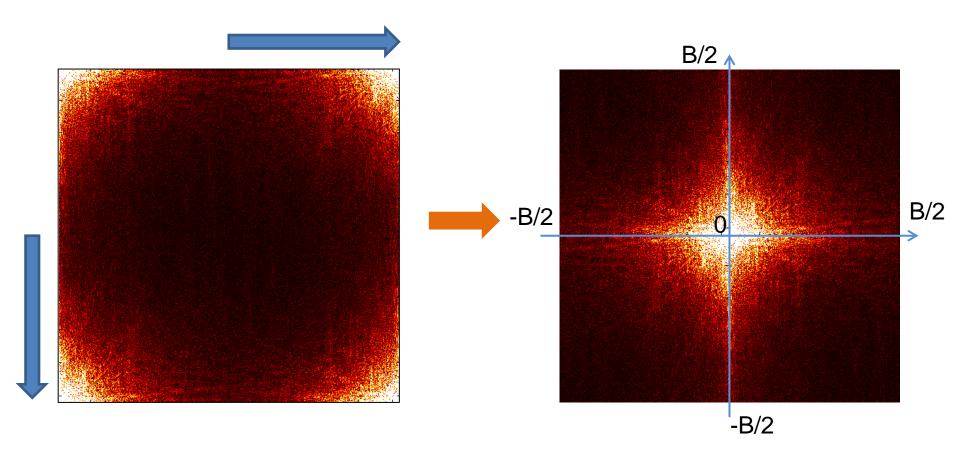
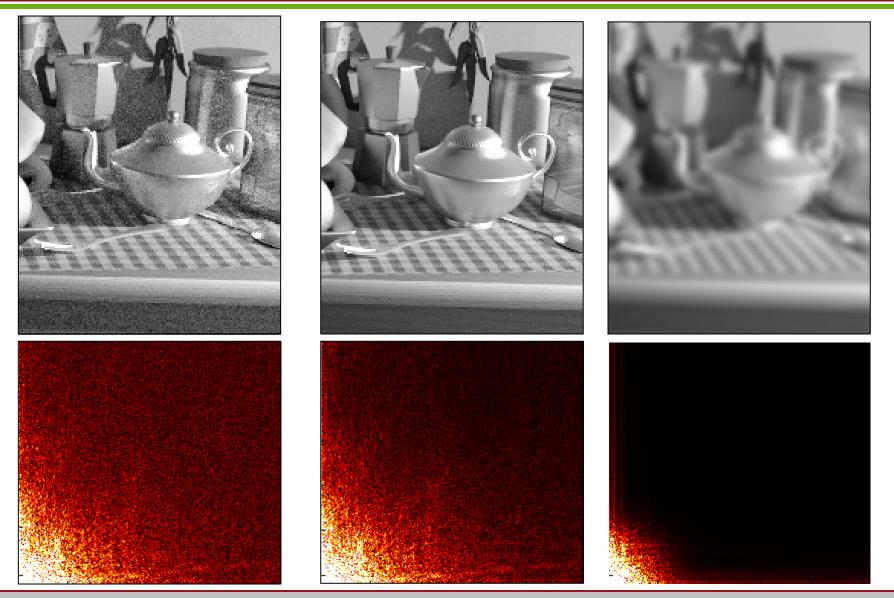
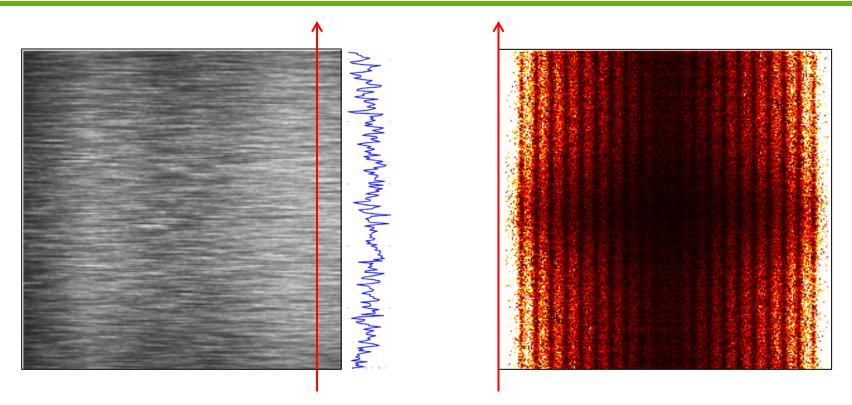


Image Bandwidth Examples

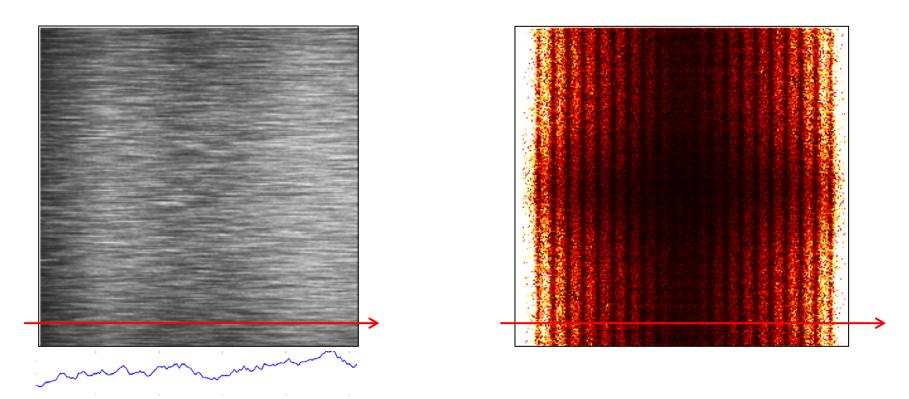


Interpretation of 2D DFT



- The vertical intensity variations in the above image look like noise
- The blue graph shows the intensity along the red section of the image
- The vertical frequency distribution is widely spread, typical of noisy input

Interpretation of 2D DFT (2)



- The horizontal intensity varies more slowly and sinusoids can be detected (brush strokes)
- Brush strokes appear as high concentration of frequencies around certain "prominent" ones

- Georgios Papaioannou
- Sources:
 - Wikipedia
 - T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, Graphics & Visualization: Principles and Algorithms, CRC Press