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The Digital Image 



The Image as a Digital Signal 

• Both computer graphics and photography create a 
discretized representation of a continuous light 
signal: 
– Photography: Continuous Incident light SensorRaster 
– CG: Mathematical geometry representation Raster 



The Image as a Digital Signal 

• The digital image signal generation suffers from all 
digitization problems: 
– Aliasing 
– Quantization errors 

• Both digital photography and photorealistic 
rendering can also suffer from noise 
– Different in nature: statistical vs thermal  



The Pixel 

• The pixel represents a single sample in the image, 
not a square! Clipping 

Precision/quantization error 



The Pixel (2) 

• The sampling rate in an image is determined by the 
image resolution vs (physical) image size 
– Denser sampling (higher resolution) can correctly capture 

higher image detail 
– There is always a limit of what a specific resolution can 

correctly represent  (see Nyquist criterion next) 
– E.g. doubling the resolution will only mitigate the problem 

to a higher image frequency  



The Pixel (3) 

• Roughly speaking, we can correctly reconstruct (see) 
a repeating variation in intensity with a (sine) period 
of 2 pixels or more 

• Faster intensity changes cannot be systematically and 
correctly sampled, leading to aliasing and noise 

• To alleviate this, we purposefully limit the frequency 
(detail) of the input signal to match our sampling 
capabilities  



The Pixels We See 

• In order to perceive the color of an image, we have 
to go through a reconstruction of an analog intensity 
from the samples. This involves: 
– A reconstruction filter  obtain a continuous signal 
– A tone mapping stage  adjust intensity to actual 

displayable range 
– The device’s response curve  translates nominal 

intensities to actual light 
– The device’s spatiotemporal impulse response  spreads 

intensity over screen surface and time  



The Pixels We See (2) 

in 

out 

signal 

device out 

Samples              Tone mapping     Reconstruction  Dev. Resp. curve  Device impulse resp.   



Reconstruction Filters 

• “Spread” isolated discrete samples to form an analog 
signal 

• Try to rectify the original signal 
 

   Nearest neighbor  
(piecewise constant)              

            Bilinear                          Bicubic              



Aliasing 

• Aliasing is the miss-interpretation of the samples as a 
different signal than the original during the 
reconstruction  



Major Aliasing Cases in Graphics 

• Image-space  
– Geometry aliasing 

• Erratic and discontinuous sampling of boundaries and thin 
structures (“juggies”, holes) 

– Texture aliasing 

• Temporal aliasing 
– Unutural apparent motion  



Geometric Aliasing 

• Erratic and discontinuous 
sampling of boundaries and thin 
structures (holes, noise) 

• Sampling of smooth structures 
at regular locations (“juggies”) 



Texture Aliasing 

• Textures are images themselves or procedural 
patterns for modifying the appearance of geometry 

• These are signals, too 
• Sampling them at an inadequate rate in image space, 

produces significant aliasing 
• Manifested as: 

– Noise 
– Irregular patterns  
– Both change erratically 
    with motion  



Temporal Aliasing 

Apparent motion Actual motion 

• Temporal aliasing 
occurs usually in fast 
motion 

• Frame rate is 
inadequate to capture 
the motion frequency 
(happens to the HVS as 
well) 

• We usually confuse the 
motion with another 

Image source: Wikipedia 



Frequency Domain 

• A periodic signal can be decomposed into a series of 
overlapping harmonic functions of increasing 
“frequency”, i.e. shorter period 

• The domain for the parameterization of these 
functions is the frequency domain 

1D time/space domain Frequency domain 

Image source: Wikipedia 



Frequency Domain (2) 

• In the Fourier series expansion of a signal, the signal 
is analyzed into sinusoids (i.e. projected onto a 
sinusoid function base):  

𝑦𝑦 𝑡𝑡 = 𝑎𝑎 sin 2𝜋𝜋𝜉𝜉𝑡𝑡 + 𝜑𝜑 = 𝑎𝑎 sin (𝜔𝜔𝑡𝑡 + 𝜑𝜑) 
Frequency                          Phase 

Image source: Wikipedia 



The Fourier Transform 

• A general transformation to express an analog signal 
in the frequency domain and back (inverse FT) 
 

𝑓𝑓 𝜉𝜉 = � 𝑓𝑓 𝑥𝑥 𝑒𝑒−2𝜋𝜋𝑖𝑖𝑖𝑖𝜉𝜉𝑑𝑑𝑑𝑑
∞

−∞

   

 

𝑓𝑓 𝑥𝑥 = � 𝑓𝑓 𝜉𝜉 𝑒𝑒2𝜋𝜋𝑖𝑖𝑖𝑖𝜉𝜉𝑑𝑑𝜉𝜉
∞

−∞

 



Complex Numbers – Euler Formula 

𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 = 𝑧𝑧 (cos𝜑𝜑 + sin𝜑𝜑) = 𝑧𝑧 𝑒𝑒𝑖𝑖𝜑𝜑   
𝑧𝑧̅ = 𝑥𝑥 − 𝑖𝑖𝑖𝑖 = 𝑧𝑧 (cos𝜑𝜑 − sin𝜑𝜑) = 𝑧𝑧 𝑒𝑒−𝑖𝑖𝜑𝜑   
 

𝑥𝑥 = 𝑅𝑅𝑅𝑅{𝑧𝑧}, 𝑦𝑦 = 𝐼𝐼𝐼𝐼 𝑧𝑧  
𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2 

The complex number plane 

“conjugate” of z 



The Spectrum 

• The Fourier transformation results in an imaginary 
function 
– Magnitude: the amplitude (or presence) of each frequency 
– Angle: the “phase” (or shift) of each frequency 

• They both comprise the spectrum of the signal    

φ 

|z| 



Types of Spectra 

• A signal has an unbounded or infinite spectrum if in 
order to be completely represented it requires non-
zero Fourier coefficients of 𝜉𝜉 → ∞ 

• All discontinuous signals have an infinite spectrum 
– In reality, there is no ideally abrupt signal, but for all 

practical purposes, very sharp transitions have a very 
spread spectrum 

– In graphics we do have discontinuous (mathematical) 
signals! 

• A band-limited signal is one with a finite spectrum 
(non-zero frequency-domain coefficients)  



Typical Spectra 

infinite 

infinite 

infinite 

Important signals: 
Symmetrical across  
the two domains! 

sinc 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
sin (𝑥𝑥)
𝑥𝑥  



Other Common Functions 

Triangle function 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐2 

Gaussian Gaussian 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Box 



Fourier Transform in Higher Dimensions 

• The FT can be generalized for higher dimensions, 
even for aperiodic signals: 
 



Examples in the Image Domain 



Convolution 

• The convolution operation * blends two functions by 
shifting one over the other and modulating their 
overlapping values 
– It is like “pushing one function through the other”  

𝑦𝑦 𝑥𝑥 = ℎ ∗ 𝑠𝑠 𝑥𝑥 = � ℎ 𝑥𝑥 − 𝑡𝑡 𝑠𝑠 𝑡𝑡 𝑑𝑑𝑑𝑑
+∞

−∞

= � 𝑠𝑠 𝑥𝑥 − 𝑡𝑡 ℎ 𝑡𝑡 𝑑𝑑𝑑𝑑
+∞

−∞

 



Convolution Examples 

𝑦𝑦 𝑥𝑥 = ℎ ∗ 𝑠𝑠 𝑥𝑥 = � ℎ 𝑥𝑥 − 𝑡𝑡 𝑠𝑠 𝑡𝑡 𝑑𝑑𝑑𝑑
+∞

−∞

 

Image source: Wikipedia 



Impulse Response 

• A system is characterized by an impulse response, i.e. 
a function h(x) that is the output of the system given 
a single pulse (impulse) as input 

• The impulse in continuous signals is the Dirac 
function δ(x), a single pulse at 0 with an integral 
equal to 1 

• The impulse in discrete-time systems is the 
Kronecker delta function: 

  



Impulse Response (2) 

• The impulse response is the result of the convolution 
of the system with the input singular pulse 

• It completely characterizes a time-invariant linear 
system: it is the (fixed) function that is applied to any 
input signal: 
 

ℎ 𝑥𝑥 = � ℎ 𝑥𝑥 − 𝑡𝑡 𝛿𝛿 𝑡𝑡 𝑑𝑑𝑑𝑑
+∞

−∞

 

Unknown LTI system 



Filters 

• Linear systems are very typically used in image 
operations to apply filters (i.e. systems) on 2D signals 

• Filters are generally characterized as IIR or FIR: 
– Infinite Impulse Response: The domain of support of the 

impulse response is infinite. Ideal filters are typical IIR ones 
(more later) 

– Finite Impulse Response: The non-zero values of the 
impulse response are limited to a finite range 

• Filters have their own spectrum, which emphasizes 
or suppresses certain frequencies 

 
 



Convolution and Frequency Domain 

• Important and useful property: 
• If 𝛨𝛨(𝜉𝜉) and 𝑆𝑆(𝜉𝜉) are the Fourier transforms of two 

functions ℎ 𝑥𝑥  and 𝑠𝑠(𝑥𝑥), then: 
 
     𝐹𝐹𝐹𝐹 ℎ ∗ 𝑠𝑠 𝑥𝑥 = 𝛨𝛨(𝜉𝜉) 𝑆𝑆(𝜉𝜉)  
 
• I.e: Convolution in the time/space domain becomes 

multiplication of spectra in the frequency domain 
– Side-effect: Sometimes it is easier to design filters in 

frequncy domain and find their IFT to obtain their impulse 
response! 



Properties of the Fourier Transform 

• Linearity:            𝑎𝑎𝑓𝑓1 𝑡𝑡 + 𝑏𝑏𝑓𝑓2 𝑡𝑡 → 𝑎𝑎𝐹𝐹1 𝜔𝜔 + 𝑏𝑏𝐹𝐹2 𝜔𝜔  
• Input shift:          𝑓𝑓 𝑡𝑡 − 𝑡𝑡0 → 𝐹𝐹 𝜔𝜔 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡0  

• Input scaling:     𝑓𝑓 𝑎𝑎𝑎𝑎 → 1
𝑎𝑎

F 𝜔𝜔
𝑎𝑎

 

• Frequency shift: 𝐹𝐹 𝜔𝜔 − 𝜔𝜔0 → 𝑓𝑓 𝑡𝑡 𝑒𝑒𝑗𝑗𝜔𝜔0𝑡𝑡 
• Convolution: 
                                  𝑓𝑓1 𝑡𝑡 ∗ 𝑓𝑓2 𝑡𝑡 → 𝐹𝐹1 𝜔𝜔 𝐹𝐹2 𝜔𝜔  

                                  𝑓𝑓1 𝑡𝑡 𝑓𝑓2 𝑡𝑡 → 1
2𝜋𝜋
𝐹𝐹1 𝜔𝜔 ∗ 𝐹𝐹2 𝜔𝜔  

      
 



The Sampling Theorem 

• In order to ensure that the reconstructed signal is 
identical to the original, the Nyquist-Shannon 
sampling theorem states that the original signal has 
to be band-limited and the sampling rate 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
must be at least twice the highest frequency of the 
original signal: 
 
 

• Let’s see why next: 



Sampling and Frequency Domain 

• What happens to a signal when it gets sampled?  
• The samples we take in time or space comprise an 

(infinite) impulse train: 
 
 

• Remember the spectrum (transfer function) of such a 
signal? It is also a train of spikes: 

…    -T      0      T     2T   3T    4T  … 

T 

frequency 

1/T …                                                           … 
1 



Sampling and Frequency Domain (2) 

• Sampling a signal 𝑥𝑥 𝑡𝑡  is equal to multiplying it with 
an impulse train 𝑠𝑠(𝑡𝑡) of sampling period 𝑇𝑇𝑠𝑠 
– We zero out all non-sample positions and keep the 

samples 

• Now remember the convolution property: 

𝑠𝑠 𝑡𝑡 𝑥𝑥 𝑡𝑡 →
1
2𝜋𝜋

𝑆𝑆 𝜔𝜔 ∗ 𝑋𝑋 𝜔𝜔  

• Given the spectrum of 𝑋𝑋 𝜔𝜔  of the signal, the 
spectrum of the sampled signal is an infinitely shifted 
and scaled version of 𝑋𝑋 𝜔𝜔  repeated every 1/𝑇𝑇𝑠𝑠  
 



Sampling and Frequency Domain (3) 

… … 

Note that the spectrum is “folded” 
(mirrored) in the “negative” 
frequency domain  

Sampling with 𝑓𝑓𝑠𝑠 = 1/𝑇𝑇𝑠𝑠 



Signal Reconstruction 

• To reconstruct the original signal, we need to 
convolve the sampled one with an appropriate 
reconstruction filter to isolate the original spectrum 



Inseparable Spectra - Aliasing 

• If the “ghost” spectra of the original signal overlap 
with the central spectrum then there is no way to 
reconstruct it properly! 
– The new (overlapping) spectrum represents now a 

different signal 
– We call this “aliasing” because the reconstructed signal is 

the same for many different input ones (aliases) 



Inseparable Spectra - Aliasing 

 

This is the spectrum 
of a different signal! 



The Nyquist Criterion 

• According to the above, if Β is the maximum 
frequency of a (band-limited) signal, the frequency 
𝑓𝑓𝑠𝑠 of the samples taken must by at least 2XB to avoid 
overlap of spectrum replicas and therefore, aliasing  

𝑓𝑓𝑠𝑠 
𝐵𝐵 𝐵𝐵 



Antialiasing 

• Ok, what about: 
– A fixed sampling rate, that cannot be adjusted according to 

maximum signal frequency (image case)? 
– Signals with an infinite spectrum (again graphics…)? 

 

Fixed sampling rate (pixels) 

Infinite bandwidth signal (discontinuity) 



Antialiazing (2) 

• We must “band-limit” the signal by force to contain 
its spectrum within the sampling window we have 

• So we cut off high frequencies  we smooth out the 
original signal! 

• The original signal cannot ever be correctly 
reconstructed! 

• But we can at least produce a signal free of aliasing, 
noise and temporal artifacts  



Antialiasing Filters 

• An antialiasing filter clamps or limits the spectrum of 
the original signal to the [−𝑓𝑓𝑠𝑠

2
, 𝑓𝑓𝑠𝑠
2

] frequency range in 
order to be able to correctly sample it with an 𝑓𝑓𝑠𝑠 rate 

• Ideal filters do not emphasize or suppress 
frequencies 

Ideal band-limiter: sinc filter. 
Equal response to all usable 
frequancies 

−𝑓𝑓𝑠𝑠 𝑓𝑓𝑠𝑠 



Antialiasing Filters (2) 

• Can I have an ideal filter?  
– No… Ideal filters are IIR 

filters so they cannot be 
practically constructed 

• We use “good” FIR filters, 
usually approximating 
truncated or dampened 
IIR ones 
   

Image source: Triad Semiconductors 



Reconstruction Filters Revisited 

• Now that we have limited our (image) signal and 
sampled the analog domain, we need to create 
proper reconstruction filters to output the digital 
signal 

• Remember: 
– We have (forcefully) abided the Nyquist criterion: 

• Either by increasing the sampling rate, or by limiting the signal 
spectrum 

• Side bands are “clearly” (sufficiently) separated  

• Now we need a filter that does not overlap the side 
bands  

 



Reconstruction Filters Revisited (2) 

Ideal Filter 

Too wide frequency response  

Too de-emphasizing (suppresses higher frequencies) 

Good filter 



Moving to the Discrete Input Domain 

• The Fourier Transform and the convolution have their 
own versions in the discrete domain 

• What about aperiodic discrete signals? 
– The same theory still applies but with some modifications 

both to what the input domain represents and how the 
frequency domain is interpreted 



The Discrete Fourier Transform (DFT) 

• Applies to discrete, even samples of a function 
(discrete signal): 

𝑋𝑋𝑘𝑘 = �𝑥𝑥𝑛𝑛𝑒𝑒−𝑖𝑖𝑖𝜋𝜋𝑘𝑘𝑘𝑘/𝑁𝑁 , 𝑘𝑘 ∈ Z
𝑁𝑁−1

𝑛𝑛=0

 

 
• It is typically computed via the Fast Fourier 

Transform (FFT) algorithm 
– Fast, highly parallel algorithm (CPU, GPU, ASIC, FPGA 

implementations exist) 



The Inverse Discrete Fourier Transform 

𝑥𝑥𝑘𝑘 =
1
𝑁𝑁
� 𝑋𝑋𝑛𝑛𝑒𝑒𝑖𝑖𝑖𝜋𝜋𝑘𝑘𝑘𝑘/𝑁𝑁 , 𝑘𝑘 ∈ Z
𝑁𝑁−1

𝑛𝑛=0

 

 
• It is typically computed via the Fast Fourier 

Transform (FFT) algorithm 



Reading the FFT 

𝑁𝑁 (represents a full-width “period”) 
1
𝑁𝑁

  

𝑛𝑛 

𝑁𝑁/3 
𝑥𝑥𝑛𝑛 = sin (3

2𝜋𝜋𝑛𝑛
𝑁𝑁

) 

Input signal DFT (FFT): |𝑋𝑋𝑘𝑘| 

2
𝑁𝑁

  𝟑𝟑
𝑵𝑵
 …  𝑁𝑁 2⁄ −1

𝑁𝑁
  −𝑁𝑁 2⁄

𝑁𝑁
  0  1

𝑁𝑁
  − 𝟑𝟑

𝑵𝑵
  

𝐵𝐵/2 −𝐵𝐵/2 



DFT in Image Space 



Interpreting the DFT in Image Space 

0 B/2 

B/2 

-B/2 

-B/2 



Image Bandwidth Examples 



Interpretation of 2D DFT 

• The vertical intensity variations in the above image look like noise 
• The blue graph shows the intensity along the red section of the image 
• The vertical frequency distribution is widely spread, typical of noisy 

input 



Interpretation of 2D DFT (2) 

• The horizontal intensity varies more slowly and sinusoids can be 
detected (brush strokes) 

• Brush strokes appear as high concentration of frequencies around 
certain “prominent” ones 



Contributors 

• Georgios Papaioannou 
 

• Sources: 
– Wikipedia 
– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, 

Graphics & Visualization: Principles and Algorithms, CRC 
Press 
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