
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Viewing and Projections

VIEWING TRANSFORMATION

The Virtual Camera

Y
• All graphics pipelines perceive the virtual world

through a virtual observer (camera), also positioned
in the 3D environment

“eye” (virtual camera)

Eye Coordinate System (1)

• The virtual camera or “eye” also has its own
coordinate system, the eye coordinate system

Eye coordinate system (ECS)

(WCS)

eye

Global (world) coordinate system

X

Y

Z

X

Y

Y

Z

Eye Coordinate System (2)

• Expressing the scene’s geometry in the ECS is a
natural “egocentric” representation of the world:
– It is how we perceive the user’s relationship with the

environment
– It is usually a more convenient space to perform certain

rendering tasks, since it is related to the ordering of the
geometry in the final image

Eye Coordinate System (3)

• Coordinates as “seen” from the camera reference
frame Y

X

ECS

Eye Coordinate System (4)

• What “egocentric” means in the context of
transformations?
– Whatever transformation produced the camera system 

its inverse transformation expresses the world w.r.t. the
camera

• Example: If I move the camera “left”, objects appear
to move “right” in the camera frame:

WCS camera motion Eye-space object motion

Moving to Eye Coordinates

• Moving to ECS is a change of coordinates
transformation

• The WCSECS transformation expresses the 3D
environment in the camera coordinate system

• We can define the ECS transformation in two ways:
– A) Invert the transformations we applied to place the

camera in a particular pose
– B) Explicitly define the coordinate system by placing the

camera at a specific location and setting up the camera
vectors

WCSECS: Version A (1)

• Let us assume that we have an initial camera at the
origin of the WCS

• Then, we can move and rotate the “eye” to any pose
(rigid transformations only: No sense in scaling a
camera):

𝐨𝐨𝑐𝑐 ,𝐮𝐮, 𝐯𝐯,𝐰𝐰 = 𝐑𝐑1𝐑𝐑2𝐓𝐓1𝐑𝐑𝟐𝟐 … .𝐓𝐓𝑛𝑛𝐑𝐑𝑚𝑚 𝐨𝐨, 𝐞𝐞�1, 𝐞𝐞�2, 𝐞𝐞�3

• The eye space coordinates of shapes, given their
WCS coordinates can be simply obtained by:

 𝐯𝐯𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐌𝐌𝑐𝑐
−1𝐯𝐯𝑊𝑊𝑊𝑊𝑊𝑊

𝐌𝐌𝑐𝑐

WCSECS: Version A (2)

• This version of the WCSECS transformation
computation is useful in cases where:
– The camera system is dependent on (attached to) some

moving geometry (e.g. a driver inside a car)
– The camera motion is well-defined by a simple trajectory

(e.g. an orbit around an object being inspected)

WCSECS: Version B (“Look At”) (1)

• Let us directly define a camera system by specifying
where the camera is, where does it point to and
what is its roll (or usually, its “up” or “right” vector)

right

up

roll

front
look-at

camera position

WCSECS: Version B (“Look At”) (2)

• The camera coordinate system offset is the eye
(camera) position 𝐨𝐨𝑐𝑐

• Given the look-at position (the camera target) 𝐩𝐩𝑡𝑡𝑡𝑡𝑡𝑡
and 𝐨𝐨𝑐𝑐 , we can determine the “front” direction:

𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐩𝐩𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐨𝐨𝑐𝑐 (normalized)

𝐩𝐩𝑡𝑡𝑡𝑡𝑡𝑡

𝐨𝐨𝑐𝑐

WCSECS: Version B (“Look At”) (3)

• The “up” or “right” vector need not be given
precisely, as we can infer the coordinate system
indirectly

• Let us provide an “upright” up vector: 𝐝𝐝𝑢𝑢𝑢𝑢 =(0,1,0)

• Provided that 𝐝𝐝𝑢𝑢𝑢𝑢 is not parallel to 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:

𝐮𝐮 = 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 𝐝𝐝𝑢𝑢𝑢𝑢, 𝐮𝐮� = 𝐮𝐮/ 𝐮𝐮

𝐰𝐰� = −𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/ 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐯𝐯� = 𝐰𝐰� × 𝐮𝐮�

𝐝𝐝𝑢𝑢𝑢𝑢
𝐯𝐯�

𝐮𝐮�

𝐰𝐰� 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

WCSECS: Version B (“Look At”) (4)

• We can use the derived local camera coordinate
system to define the change of coordinates
transformation (see 3D Transformations):

𝐩𝐩𝐸𝐸𝐸𝐸𝐸𝐸 =

𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 0
𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧 0
𝑤𝑤𝑥𝑥 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧 0
0 0 0 1

∙ 𝐓𝐓−𝐎𝐎𝑐𝑐 ∙ 𝐩𝐩𝑊𝑊𝐶𝐶𝐶𝐶

WCSECS: Version B (“Look At”) (5)

• This version of the WCSECS transformation
computation is useful in cases where:
– There is a free roaming camera
– The camera follows (observes) a certain target in space
– The position (and target) are explicitly defined

PROJECTIONS

Projection

• Is the process of transforming 3D coordinates of
shapes to points on the viewing plane

• Viewing plane is the 2D flat surface that represents
an embedding of an image into the 3D space
– We can define viewing systems where the

“projection” surface is not planar (e.g. fish-eye
lenses etc.)

• (Planar) projections are define by a projection
(viewing) plane and a center of projection (eye)

Taxonomy

• Two main categories:
– Parallel projections:

infinite distance between
CoP and viewing plane

– Perspective projections:
Finite distance between
CoP and viewing plane

Where do We Perform the Projections?

• Since in projections we “collapse” a 3D shape onto a
2D surface, we essentially want to loose one
coordinate (say the depth z)

• Therefore, it is convenient to perform the projection
when shapes are expressed in the ECS

Orthographic Projection (1)

• The simplest projection:
• Collapse the coordinates on plane parallel to xy at

z=d (usually 0)

𝑦𝑦′ = 𝑦𝑦

𝑥𝑥′ = 𝑥𝑥

ECS y

x

z

𝐩𝐩 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝐩𝐩𝐩 = (𝑥𝑥′,𝑦𝑦′,𝑑𝑑)

𝑑𝑑 𝑧𝑧′ = 𝑑𝑑

𝑧𝑧 = 𝑑𝑑 (view plane)

Orthographic Projection (2)

• Very simple matrix representation
• Note that the rank of the matrix is less than its

dimension: This not a reversible transformation!
– This is also intuitively justified since we “loose” all

information about depth

𝐏𝐏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =

1 0 0 0
0 1 0 0
0 0 0 𝑑𝑑
0 0 0 1

The Pinhole Camera Model

• It is an ideal camera (i.e. cannot exist in practice)
• It is the simplest modeling of a camera:

 photographic
Image sensor

For simplicity, graphics use a “front”
symmetrical projection plane

The Perspective Projection

• From similar triangles, we have:

𝑦𝑦′ =
𝑑𝑑 ∙ 𝑦𝑦
𝑧𝑧

𝑥𝑥′ =
𝑑𝑑 ∙ 𝑥𝑥
𝑧𝑧

ECS y

x

z

𝐩𝐩 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝐩𝐩𝐩 = (𝑥𝑥′,𝑦𝑦′,𝑑𝑑)

𝑦𝑦𝑦
𝑦𝑦

𝑑𝑑
𝑧𝑧

𝑧𝑧′ = 𝑑𝑑

𝑧𝑧 = 𝑑𝑑 (view plane)

Matrix Form of Perspective Projection

• The perspective projection is not a linear operation
(division by z) 

• It cannot be completely represented by a linear
operator such as a matrix multiplication

𝐏𝐏𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑑𝑑 0 0 0
0 𝑑𝑑 0 0
0 0 𝑑𝑑 0
0 0 1 0

𝐏𝐏𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝐩𝐩𝑊𝑊𝐶𝐶𝐶𝐶 =

𝑥𝑥 ∙ 𝑑𝑑
𝑦𝑦 ∙ 𝑑𝑑
𝑧𝑧 ∙ 𝑑𝑑
𝑧𝑧

𝑥𝑥 ∙ 𝑑𝑑
𝑦𝑦 ∙ 𝑑𝑑
𝑧𝑧 ∙ 𝑑𝑑
𝑧𝑧

/𝑧𝑧 =

𝑥𝑥 ∙ 𝑑𝑑/𝑧𝑧
𝑦𝑦 ∙ 𝑑𝑑/𝑧𝑧
𝑑𝑑
1

Requires a division by the w coordinate
to rectify the homogeneous coordinates

Properties of the Perspective Projection

• Lines are projected to lines
• Distances are not preserved
• Angles between lines are not preserved unless lines

are parallel to the view plane
• Perspective foreshortening: The size of the

projected shape is inversely proportional to the
distance to the plane

The Impact of Focal Distance d

What Happens After Projection? (1)

• Coordinates are transformed to a “post-projective”
space

Y

X
ECS

Y

X
Post-projective
space

What Happens After Projection? (2)

• Remember also that “depth” is for now collapsed to
the focal distance

• How then are we going to use the projected
coordinates to perform “depth” sorting in order to
remove hidden surfaces?

• Also, how do we define the extents of what we can
see?

Preserving the Depth

• Regardless of what the projection is, we also retain
the transformed z values

• For numerical stability, representation accuracy and
plausibility of displayed image, we limit the z-range

• 𝑛𝑛 ≤ 𝑧𝑧 ≤ 𝑓𝑓,
– 𝑛𝑛=near clipping value,
– 𝑓𝑓=far clipping value,

• The boundaries (line segments) of the image, form
planes in space:

• The intersection of the visible subspaces, defines
what we can see inside a view frustum

The View Frustum

Z

X

Y

The Clipping Volume (1)

• The viewing frustum, forms a clipping volume
• It defines which parts of the 3D world are discarded, i.e. do

not contribute to the final rendering of the image
• For many rendering architectures, this is a closed volume

(capped by the far plane)

Right cli

The Clipping Volume (2)

• After projection, the contents of the clipping volume
are warped to match a rectangular paralepiped

• This post-projective volume is usually considered
normalized and its local coordinate system is called
Canonical Screen Space (CSS)

• The respective device coordinates are also called
Normalized Device Coordinates (NDC)

Orthographic Projection Revisited (1)

• Let us now create an orthographic projection that
transforms a specific clipping box volume (left, right,
bottom, top, near, far) to CSS:

Z

X

Y

Orthographic Projection Revisited (2)

• A simple translation  scaling transformation can
warp the clipping volume into NDC

Z

X

Y

(-1,-1,-1)

(1, 1, 1)

Notice the change of handedness here:
(-1 corresponds to “near”, while “far” is 1)

Orthographic Projection Revisited (3)

Perspective Projection Revisited (1)

• We want a similar transformation to warp the
contents of the perspective frustum into a
normalized cube space (CSS)

• Let us now see what happens to geometry when the
Cartesian coordinates are perspectively projected
(warped) after the transformation:

Perspective Projection Revisited (2)

• In perspective projection, the clipping space is a
capped pyramid (frustum)

Perspective Projection Revisited (3)

• We still need to perform the perspective division
• We also need to retain the depth information
• Depth must obey the same transformation (division

by z)  retain straight lines
• So it must be of the general form: zs=A+B/ze
• Solving A and B for the boundary conditions:

 f=A+B/f and n=A+B/n:
• A=n+f
• B=-nf 
• zs=n+f-nf/ze

Perspective Projection Revisited (4)

• zs=n+f-nf/ze

Perspective Projection Revisited (5)

Viewing frustum Post-projective (NDC) space

Perspective Projection Revisited (6)

• Next, we must normalize the result to bring it to the
CSS coordinates:

Perspective Projection Revisited (7)

• Of course, we still need to divide with the w
coordinate after the matrix multiplication

Extended Perspective Projection (1)

• In general, the frustum
axis is not aligned with
the viewing direction

• To bring this frustum to
the CSS normalized
volume, we must first
skew it

Extended Perspective Projection (2)

• Why do we need an off-axis projection?
Stereo

Multi-view rendering

Planar reflections

Extended Perspective Projection (3)

• The center of the near and
far cap must coincide with
the z axis

• Therefore, using the z-based
shear transformation:

• We require: 𝑏𝑏0 + 𝑡𝑡𝑡𝑡
2

+ 𝐵𝐵𝑛𝑛𝑜𝑜 = 0
𝑙𝑙0 + 𝑟𝑟𝑟𝑟

2
+ 𝐴𝐴𝑛𝑛𝑜𝑜 = 0

Perspective: Putting Everything Together (1)

• The final extended perspective transformation matrix:

Contributors

• Georgios Papaioannou

• Sources:
– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis,

Graphics & Visualization: Principles and Algorithms, CRC
Press

	Slide Number 1
	VIEWING TRANSFORMATION
	The Virtual Camera
	Eye Coordinate System (1)
	Eye Coordinate System (2)
	Eye Coordinate System (3)
	Eye Coordinate System (4)
	Moving to Eye Coordinates
	WCSECS: Version A (1)
	WCSECS: Version A (2)
	WCSECS: Version B (“Look At”) (1)
	WCSECS: Version B (“Look At”) (2)
	WCSECS: Version B (“Look At”) (3)
	WCSECS: Version B (“Look At”) (4)
	WCSECS: Version B (“Look At”) (5)
	PROJECTIONS
	Projection
	Taxonomy
	Where do We Perform the Projections?
	Orthographic Projection (1)
	Orthographic Projection (2)
	The Pinhole Camera Model
	The Perspective Projection
	Matrix Form of Perspective Projection
	Properties of the Perspective Projection
	The Impact of Focal Distance d
	What Happens After Projection? (1)
	What Happens After Projection? (2)
	Preserving the Depth
	The View Frustum
	The Clipping Volume (1)
	The Clipping Volume (2)
	Orthographic Projection Revisited (1)
	Orthographic Projection Revisited (2)
	Orthographic Projection Revisited (3)
	Perspective Projection Revisited (1)
	Perspective Projection Revisited (2)
	Perspective Projection Revisited (3)
	Perspective Projection Revisited (4)
	Perspective Projection Revisited (5)
	Perspective Projection Revisited (6)
	Perspective Projection Revisited (7)
	Extended Perspective Projection (1)
	Extended Perspective Projection (2)
	Extended Perspective Projection (3)
	Perspective: Putting Everything Together (1)
	Contributors

