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VIEWING TRANSFORMATION 



The Virtual Camera 

Y 
• All graphics pipelines perceive the virtual world 

through a virtual observer (camera), also positioned 
in the 3D environment 

“eye” (virtual camera)  



Eye Coordinate System (1) 

• The virtual camera or “eye” also has its own 
coordinate system, the eye coordinate system 

Eye coordinate system (ECS) 

(WCS) 

eye 

Global (world) coordinate system 
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Eye Coordinate System (2) 

• Expressing the scene’s geometry in the ECS is a 
natural “egocentric” representation of the world: 
– It is how we perceive the user’s relationship with the 

environment 
– It is usually a more convenient space to perform certain 

rendering tasks, since it is related to the ordering of the 
geometry in the final image  

 



Eye Coordinate System (3) 

• Coordinates as “seen” from the camera reference 
frame Y 

X 

ECS 



Eye Coordinate System (4) 

• What “egocentric” means in the context of 
transformations? 
– Whatever transformation produced the camera system  

its inverse transformation expresses the world w.r.t. the 
camera 

• Example: If I move the camera “left”, objects appear 
to move “right” in the camera frame: 

WCS camera motion Eye-space object motion 



Moving to Eye Coordinates 

• Moving to ECS is a change of coordinates 
transformation 

• The WCSECS transformation expresses the 3D 
environment in the camera coordinate system  

• We can define the ECS transformation in two ways: 
– A) Invert the transformations we applied to place the 

camera in a particular pose 
– B) Explicitly define the coordinate system by placing the 

camera at a specific location and setting up the camera 
vectors 



WCSECS: Version A (1) 

• Let us assume that we have an initial camera at the 
origin of the WCS 

• Then, we can move and rotate the “eye” to any pose 
(rigid transformations only: No sense in scaling a 
camera): 
 
𝐨𝐨𝑐𝑐 ,𝐮𝐮, 𝐯𝐯,𝐰𝐰 = 𝐑𝐑1𝐑𝐑2𝐓𝐓1𝐑𝐑𝟐𝟐 … .𝐓𝐓𝑛𝑛𝐑𝐑𝑚𝑚 𝐨𝐨, 𝐞𝐞�1, 𝐞𝐞�2, 𝐞𝐞�3  

• The eye space coordinates of shapes, given their 
WCS coordinates can be simply obtained by: 

     𝐯𝐯𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐌𝐌𝑐𝑐
−1𝐯𝐯𝑊𝑊𝑊𝑊𝑊𝑊 

 

𝐌𝐌𝑐𝑐 



WCSECS: Version A (2) 

• This version of the WCSECS transformation 
computation is useful in cases where: 
– The camera system is dependent on (attached to) some 

moving geometry (e.g. a driver inside a car) 
– The camera motion is well-defined by a simple trajectory 

(e.g. an orbit around an object being inspected) 



WCSECS: Version B (“Look At”)  (1) 

• Let us directly define a camera system by specifying 
where the camera is, where does it point to and 
what is its roll (or usually, its “up” or “right” vector)  

right 

up 

roll  

front 
look-at 

camera position 



WCSECS: Version B (“Look At”)  (2) 

• The camera coordinate system offset is the eye 
(camera) position 𝐨𝐨𝑐𝑐  

• Given the look-at position (the camera target) 𝐩𝐩𝑡𝑡𝑡𝑡𝑡𝑡 
and 𝐨𝐨𝑐𝑐 , we can determine the “front” direction: 
 
 

𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐩𝐩𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐨𝐨𝑐𝑐 (normalized) 

𝐩𝐩𝑡𝑡𝑡𝑡𝑡𝑡 

𝐨𝐨𝑐𝑐 



WCSECS: Version B (“Look At”)  (3) 

• The “up” or “right” vector need not be given 
precisely, as we can infer the coordinate system 
indirectly 

• Let us provide an “upright” up vector: 𝐝𝐝𝑢𝑢𝑢𝑢 =(0,1,0) 

• Provided that 𝐝𝐝𝑢𝑢𝑢𝑢 is not parallel to 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: 

𝐮𝐮 = 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 𝐝𝐝𝑢𝑢𝑢𝑢,      𝐮𝐮� = 𝐮𝐮/ 𝐮𝐮  

𝐰𝐰� = −𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/ 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

𝐯𝐯� = 𝐰𝐰� × 𝐮𝐮� 

𝐝𝐝𝑢𝑢𝑢𝑢 
𝐯𝐯� 

𝐮𝐮� 

𝐰𝐰� 𝐝𝐝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 



WCSECS: Version B (“Look At”)  (4) 

• We can use the derived local camera coordinate 
system to define the change of coordinates 
transformation (see 3D Transformations): 

𝐩𝐩𝐸𝐸𝐸𝐸𝐸𝐸 =

𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 0
𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧 0
𝑤𝑤𝑥𝑥 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧 0
0 0 0 1 

∙ 𝐓𝐓−𝐎𝐎𝑐𝑐 ∙ 𝐩𝐩𝑊𝑊𝐶𝐶𝐶𝐶 



WCSECS: Version B (“Look At”)  (5) 

• This version of the WCSECS transformation 
computation is useful in cases where: 
– There is a free roaming camera 
– The camera follows (observes) a certain target in space 
– The position (and target) are explicitly defined 



PROJECTIONS 



Projection 

• Is the process of transforming 3D coordinates of 
shapes to points on the viewing plane 

• Viewing plane is the 2D flat surface that represents 
an embedding of an image into the 3D space 
– We can define viewing systems where the 

“projection” surface is not planar (e.g. fish-eye 
lenses etc.) 

• (Planar) projections are define by a projection 
(viewing) plane and a center of projection (eye)  



Taxonomy 

• Two main categories: 
– Parallel projections: 

infinite distance between 
CoP and viewing plane  
 
 

– Perspective projections: 
Finite distance between 
CoP and viewing plane 



Where do We Perform the Projections? 

• Since in projections we “collapse” a 3D shape onto a 
2D surface, we essentially want to loose one 
coordinate (say the depth z) 

• Therefore, it is convenient to perform the projection 
when shapes are expressed in the ECS  



Orthographic Projection (1) 

• The simplest projection: 
• Collapse the coordinates on plane parallel to xy at 

z=d (usually 0)  

𝑦𝑦′ = 𝑦𝑦 

𝑥𝑥′ = 𝑥𝑥 

ECS y 

x 

z 

𝐩𝐩 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝐩𝐩𝐩 = (𝑥𝑥′,𝑦𝑦′,𝑑𝑑) 

𝑑𝑑 𝑧𝑧′ = 𝑑𝑑 

𝑧𝑧 = 𝑑𝑑 (view plane) 



Orthographic Projection (2) 

• Very simple matrix representation 
• Note that the rank of the matrix is less than its 

dimension: This not a reversible transformation! 
– This is also intuitively justified since we “loose” all 

information about depth 

𝐏𝐏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =

1 0 0 0
0 1 0 0
0 0 0 𝑑𝑑
0 0 0 1 

 



The Pinhole Camera Model 

• It is an ideal camera (i.e. cannot exist in practice) 
• It is the simplest modeling of a camera: 
 

 photographic 
Image sensor 

For simplicity, graphics use a “front” 
symmetrical projection plane 



The Perspective Projection 

• From similar triangles, we have: 

𝑦𝑦′ =  
𝑑𝑑 ∙ 𝑦𝑦
𝑧𝑧

 

𝑥𝑥′ =  
𝑑𝑑 ∙ 𝑥𝑥
𝑧𝑧

 
ECS y 

x 

z 

𝐩𝐩 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

𝐩𝐩𝐩 = (𝑥𝑥′,𝑦𝑦′,𝑑𝑑) 

𝑦𝑦𝑦 
𝑦𝑦 

𝑑𝑑 
𝑧𝑧 

𝑧𝑧′ = 𝑑𝑑 

𝑧𝑧 = 𝑑𝑑 (view plane) 



Matrix Form of Perspective Projection 

• The perspective projection is not a linear operation 
(division by z)  

• It cannot be completely represented by a linear 
operator such as a matrix multiplication 

𝐏𝐏𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑑𝑑 0 0 0
0 𝑑𝑑 0 0
0 0 𝑑𝑑 0
0 0 1 0 

 

𝐏𝐏𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝐩𝐩𝑊𝑊𝐶𝐶𝐶𝐶 =

𝑥𝑥 ∙ 𝑑𝑑
𝑦𝑦 ∙ 𝑑𝑑
𝑧𝑧 ∙ 𝑑𝑑
𝑧𝑧

 
𝑥𝑥 ∙ 𝑑𝑑
𝑦𝑦 ∙ 𝑑𝑑
𝑧𝑧 ∙ 𝑑𝑑
𝑧𝑧

/𝑧𝑧  =

𝑥𝑥 ∙ 𝑑𝑑/𝑧𝑧
𝑦𝑦 ∙ 𝑑𝑑/𝑧𝑧
𝑑𝑑
1

 

Requires a division by the w coordinate 
to rectify the homogeneous coordinates 



Properties of the Perspective Projection 

• Lines are projected to lines 
• Distances are not preserved 
• Angles between lines are not preserved unless lines 

are parallel to the view plane 
• Perspective foreshortening: The size of the 

projected shape is inversely proportional to the 
distance to the plane 
 



The Impact of Focal Distance d 



What Happens After Projection? (1) 

• Coordinates are transformed to a “post-projective” 
space 

Y 

X 
ECS 

Y 

X 
Post-projective 
space 



What Happens After Projection? (2) 

• Remember also that “depth” is for now collapsed to 
the focal distance 

• How then are we going to use the projected 
coordinates to perform “depth” sorting in order to 
remove hidden surfaces? 

• Also, how do we define the extents of what we can 
see? 



Preserving the Depth 

• Regardless of what the projection is, we also retain 
the transformed z values 

• For numerical stability, representation accuracy and 
plausibility of displayed image, we limit the z-range   

• 𝑛𝑛 ≤ 𝑧𝑧 ≤ 𝑓𝑓,  
– 𝑛𝑛=near clipping value,  
– 𝑓𝑓=far clipping value,  

 



• The boundaries (line segments) of the image, form 
planes in space: 
 
 
 
 
 

• The intersection of the visible subspaces, defines 
what we can see inside a view frustum 

The View Frustum 



Z 

X 

Y 

The Clipping Volume (1) 

• The viewing frustum, forms a clipping volume 
• It defines which parts of the 3D world are discarded, i.e. do 

not contribute to the final rendering of the image 
• For many rendering architectures, this is a closed volume 

(capped by the far plane)  

Right cli 



The Clipping Volume (2) 

• After projection, the contents of the clipping volume 
are warped to match a rectangular paralepiped  

• This post-projective volume is usually considered 
normalized and its local coordinate system is called 
Canonical Screen Space (CSS) 

• The respective device coordinates are also called 
Normalized Device Coordinates (NDC)  



Orthographic Projection Revisited (1) 

• Let us now create an orthographic projection that 
transforms a specific clipping box volume  (left, right, 
bottom, top, near, far) to CSS: 

Z 

X 

Y 



Orthographic Projection Revisited (2) 

• A simple translation  scaling transformation can 
warp the clipping volume into NDC 

Z 

X 

Y 

(-1,-1,-1) 

(1, 1, 1) 

Notice the change of handedness here: 
(-1 corresponds to “near”, while “far” is 1) 



Orthographic Projection Revisited (3) 



Perspective Projection Revisited (1) 

• We want a similar transformation to warp the 
contents of the perspective frustum into a 
normalized cube space (CSS) 

• Let us now see what happens to geometry when the 
Cartesian coordinates are perspectively projected 
(warped) after the transformation: 



Perspective Projection Revisited (2) 

• In perspective projection, the clipping space is a 
capped pyramid (frustum) 



Perspective Projection Revisited (3) 

• We still need to perform the perspective division 
• We also need to retain the depth information 
• Depth must obey the same transformation (division 

by z)  retain straight lines 
• So it must be of the general form: zs=A+B/ze 
• Solving A and B for the boundary conditions: 

 f=A+B/f  and n=A+B/n: 
• A=n+f 
• B=-nf    
• zs=n+f-nf/ze 



Perspective Projection Revisited (4) 

• zs=n+f-nf/ze 



Perspective Projection Revisited (5) 

Viewing frustum                                      Post-projective (NDC) space 



Perspective Projection Revisited (6) 

• Next, we must normalize the result to bring it to the 
CSS coordinates: 



Perspective Projection Revisited (7) 

• Of course, we still need to divide with the w 
coordinate after the matrix multiplication 



Extended Perspective Projection (1) 

• In general, the frustum 
axis is not aligned with 
the viewing direction 

• To bring this frustum to 
the CSS normalized 
volume, we must first 
skew it 



Extended Perspective Projection (2) 

• Why do we need an off-axis projection? 
Stereo 

Multi-view rendering 

Planar reflections 



Extended Perspective Projection (3) 

• The center of the near and 
far cap must coincide with 
the z axis 

• Therefore, using the z-based 
shear transformation: 
 
 
 
 

• We require:  𝑏𝑏0 + 𝑡𝑡𝑡𝑡 
2

+ 𝐵𝐵𝑛𝑛𝑜𝑜 = 0 
𝑙𝑙0 + 𝑟𝑟𝑟𝑟 

2
+ 𝐴𝐴𝑛𝑛𝑜𝑜 = 0 



Perspective: Putting Everything Together (1) 

• The final extended perspective transformation matrix: 



Contributors 

• Georgios Papaioannou 
 

• Sources: 
– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, 

Graphics & Visualization: Principles and Algorithms, CRC 
Press 
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