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LIGHT PERCEPTION 



The Human Visual System 

• We perceive light intensity and chromaticity via our 
photoreceptors: cones and rods 



The Human Visual System – Cones (1) 

• Cones primarily responsible for our photopic vision 
• They are tuned to specific light wavelengths  

responsible for color sensing  

Incoming light 
Cones 

Rods 



The Human Visual System – Cones (2) 

• Cone wavelength response centered at: blue, green 
and red 



The Human Visual System – Cones (3) 

• Cones are tightly packed and dominant near the 
fovea (center of visual field) 

• They better discriminate detail (high frequencies) 
and temporal changes due to single connectivity to 
the optic nerve via the retinal ganglion cells   



The Human Visual System – Rods (1) 

• Rods can function in lower intensity 
•  responsible for our scotopic (night) vision  
• More concentrated to the outer regions of our field 

of vision (dominant in peripheral vision) 
• Lower visual acuity (detail) due to averaging effect of 

bunching their signals together  
      low detail in dim light 



The Human Visual System – Rods (2) 

• Rod frequency response is centered at bluish-green 

Rod photoreceptor 



HVS – Total Color Response  

• The cumulative effect of all receptors combined is a 
frequency response mainly centered at green hues 

  We can better 
discriminate shades and 
intensity values of green  

 
• Why? 
 



Perceived Brightness (1) 

• Perceived light ≠ actual incident light 

Diagram refers to steady background illumination 

http://www.telescope-optics.net/eye_intensity_response.htm 



Perceived Brightness (2) 

• Perceived brightness is affected by background level 
• Brighter background  Darker hotspot brightness  

http://www.telescope-optics.net/eye_intensity_response.htm 



Perception of Contrast 

• HVS is not good at interpreting absolute color values 
• It is driven by contrast differences 
• Color and shape discrimination relies on contrast  
• Many visual illusions are based on the above 

Color A = Color B 



• The area of sensation is less 
than the area of receptor 
activation, due to the areas of 
inhibition that flank the center 
of stimulus 

• Activation of the central 
neuron negatively affects the 
action potential frequency of 
the flanking neurons  locally 
increasing stimulation contrast  
 
 

Why do we Accentuate Contrast?  

http://www.d.umn.edu/~jfitzake/Lectures/DMED/SensoryPhysiology/GeneralPrinciples/LateralInhibition.html 



Dynamic Range 

• Dynamic range: the minimum to maximum 
luminance level achieved by a system 
– Dynamic  adaptive 

• The human visual system adapts to the level of 
illumination incident to the photoreceptors 
– Rods (scotoptic light): 10-6cd/m2 – 10cd/m2 
– Cones (photoptic light): 10-2cd/m2 – 108 cd/m2 

• Total luminance range: 108:10-6 
• Cannot achieve these levels simultaneously! 
   

 



Dynamic Range Example 

Cannot correctly visualize the entire linear luminance scale simultaneously  



COLOR REPRESENTATION 



Color Representation (1) 

• Color is represented via a color model 
• A color model is a mathematical mapping of the 

spectrum of visible light (by the HVS) to a set of 
components 

• Color models can represent either the perceived 
color or the stimulus (produced light) 

• Remember: Perceived light ≠ actual incident light 



Color Representation (2) 

• We need color models to: 
– Describe 
– Compare 
– Order 
– Classify  

      colors 



Color Representation (3) 

• Each color model defines a color space, i.e. the range 
of valid values for each component 

• Some color spaces are bounded, others allow only 
positive values etc. 

• The coverage of a particular color space by a certain 
device or sensor (generally, a system) is its color 
gamut  



Color Model Classification (1) 

• Device-independent  
– The coordinates (components) of a color will represent a 

unique color value, according to human perception 
– Useful, among other things, for the consistent conversion 

between device-dependent color models 

• Device-dependent  
– The same color coordinates will produce a slightly different 

visible color value on different display devices or media 



Color Model Classification (2) 

• Additive models encapsulate the way 
color is produced on a computer 
display by adding the contributions of 
the primaries  

• Subtractive models resemble the 
working of a painter or a printer, 
where color mixing is achieved 
through a subtractive (filtering / 
painting) process. 



Color Spaces 

• Color models define the primary components 
(primaries) that form a basis for representing all 
other colors 

• Primaries are a basis for this space:  
– No primary can be produced as a linear combination of the 

other 
– Addition and linear mixing are always well-defined in a 

color space 
– Linear operations in a color space are not necessarily 

perceptually linear!  



Hue  

• Hue defines which color in the range of available 
tones a signal represents 

• It is typically represented in a circular arrangement, 
not as wavelength but rather as the color mixing 
result  



Warm and Cool Colors 

• The categorization of hues to warm and cold (cool) 
colors is a psychological mapping of hue to certain 
events and emotional states 
– This can be useful in visualization, to convey the 

appropriate meaning for visualized information 



Color Models – RGB (1) 

• Device-dependent 
• Color images are typically stored as RGB (red, green, 

blue) triplets per pixel 
• RGB values match our tri-stimulus vision 
• Displays emit light in 3 separate RGB components 
• The RGB model represents the generated flux and is 

therefore linear with regard to the emitted light at 
the source 

• RGB is not perceptually linear  



Color Models – RGB (2) 

• Typical model for: 
– Storing color information in images 
– Keeping color information in memory buffers 
– Display systems (active) 

 
• Usually, a bounded (normalized maximum) range of 

values is represented and stored 
• Floating-point arithmetic representation allows also 

to store virtually any value for RGB components 
 
 



RGB Model – RGB Color Cube 

• The 3 primary colors (RGB) form a basis for the RGB 
color space 

• Unit values form the RGB color cube 



RGB Model – RGB Triangle 

• Joining the 3 primaries we obtain the RGB triangle 
• Hue (different color) is represented at the 

perimeter of the triangle 
• Saturation is increased off center (towards the 

edges) and neutralized (gray) towards the center 



Color Models – RGB (3) 

 
 

The mixing curves to produce a particular single wavelength in the HVS sensors. 
The RGB model is not linear.  



Gamma Correction (1) 

• As explained, eye response to light intensity 
(brightness) is not linear. Rather, it is well 
approximated by a power function of light intensity, 
and in many cases it can be also described as 
logarithmic  



Gamma Correction (2) 

• i.e.: Brightness is determined by the change of 
incident flux relative to an initial flux and not the 
nominal change  
 

http://www.telescope-optics.net/eye_intensity_response.htm 



Gamma Correction (3) 

• Photography and computer-generated images 
capture light in linear luminance space (i.e. as 
received by the “sensor”)  

• But: we perceive these values non-linearly 



Gamma Correction (4) 

• If we convert the linear range to a fixed-quantization 
representation (e.g. 24bit integer RGB representation): 
– We discriminate dim color transitions (images appear 

quantized) 
– We fail to differentiate bright differences (waste of bits) 



Gamma Correction (5) 

• Gamma correction transforms the linear luminance 
according to a power law (our perception response) 

• And then stores the encoded results 
– This results in sufficient quantized values being allocated for 

all brightness levels 

• The reverse process is performed during the display of 
the image 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑖𝑖𝑖𝑖𝛾𝛾 



Gamma Correction (6) 

• Gamma correction transforms the linear luminance 
according to a power law (our perception response) 

• And then stores the encoded results 
– This results in sufficient quantized values being allocated for 

all brightness levels 

• The reverse process is performed during the display of 
the image 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑖𝑖𝑖𝑖𝛾𝛾 



Gamma Correction (7) 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑖𝑖𝑖𝑖𝛾𝛾 

Original signal 

Gamma compression (γ<1) 

Gamma expansion (γ>1) 

Source: Wikipedia 



The XYZ Model (1) 

• Device-independent 
• Not perceptually linear 
• Quantifies luminance (Y) and chromaticity (X and Z 

coordinates) 
• XYZ coordinates are not primary colors, rather 

computational quantities 



The XYZ Model (2) 

• Mixing XYZ values produces visible colors: 



Conversion to/from RGB 

• XYZ model can be used to convert an RGB color 
between two devices 

• Each device specifies an invertible conversion matrix 
𝐌𝐌 from RGB to XYZ 

• Then, given 𝑟𝑟1,𝑔𝑔1, 𝑏𝑏1  of device with 𝐌𝐌1, we 
convert to RGB of a device with 𝐌𝐌2 with: 
 

• 𝑟𝑟2,𝑔𝑔2, 𝑏𝑏2 = 𝐌𝐌2
−1𝐌𝐌1 𝑟𝑟1,𝑔𝑔1, 𝑏𝑏1   



The CIE L*a*b* Model (1) 

• Similar to XYZ, separates 
luminance (L* here) from 
chromaticity (a*,b*), but 

• It is perceptually linear 
• It is defined w.r.t. the white 

point of a given device 
• a* axis: green-magenta 
• b* axis: blue-yellow 

 



White Point 

• The color that is displayed when all color 
components take their max value 

• Usually when r = g = b = 1 (normalized max) 
• Is expressed in CIE XYZ as (𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖,𝑍𝑍𝑖𝑖) 



The CIE L*a*b* Model (2) 

• The coefficients of the L*a*b* color model are 
defined w.r.t. the XYZ coordinates and the white 
point as (reversible transformation): 
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The HSV Model (1) 

• RGB, XYZ and L*a*b* color models are not intuitive 
to work with (i.e. to specify a desired color) 

• The HSV model attempts a more human-centric color 
definition approach: 
– (H)ue specifies what the color is 
– (S)aturation specifies how intense the coloration is (as 

opposed to muted / gray) 
– (V)alue specifies the color’s produced intensity 

• Alternatively: HSB, (B)rightness being the respective 
perceived light intensity  



The HSV Model (2) 

• It is common to specify a color based on the above 
characteristics 

• Colors are geometrically represented on a cone 
 



The HSV Model - Hue 

• Colors arranged on a circle 
(like a color wheel)  

• Hue is the angle with respect 
to an initial position on the 
circle 
– E.g. red is at 0°, green is at 

120°, blue is at 240° 

• The hue circle corresponds to 
a cross section of the cone 



The HSV Model - Saturation 

• Is max on the surface of the 
cone (minus the base)  
represents pure colors with 
maximum “colorfulness” 

• The axis of the cone 
represents the min saturation 
(shades of gray) 



The HSV Model - Value 

• Corresponds to intensity 
• Min value (0) : absence of light (black) 
• Max value:  the color has its peak intensity 
• Is represented along the axis of the cone: 

– 0 : the cone’s apex 
– Max value : the center of the cone’s base 

 



HSV to RGB 



The YCbCr Model (1) 

• Heavily used  in video and digital photography.  
• Y′ is the luma component and CB and CR are the blue-

difference and red-difference chroma components.  

Note: 
Y′ (with prime) is distinguished from Y (luminance), 
as light intensity is encoded using gamma 
corrected RGB primaries 
 

Chroma plane 



The YCbCr Model (2) 

• Conversion from RGB: 

Y’ 

Cb 

Cr 

Composite 

where: 
• 𝑃𝑃𝐵𝐵 and 𝑃𝑃𝑅𝑅 are the “analog” color offsets before adjustment 

for integer representation) 
• 𝐾𝐾𝑅𝑅 and 𝐾𝐾𝐵𝐵 are determined by the color matrix for a 

particular device or format 



The YCbCr Model (3) 

• Example - YCbCr in the JPEG format: 



Color-space Compression 

• Why use a luma-chroma model? 
– It allows the efficient compression of image information in 

a perceptually optimal manner 

• The HVS luminance visual acuity is greater than the 
discrimination of chrominance variations (why?) 

•  We can subsample the  



Chroma Subsampling Example (1) 

Original image: luma/chroma subsampling ratio = 1:1 



Compressed image: luma/chroma subsampling ratio = 1:16 

Chroma Subsampling Example (2) 



Chroma Subsampling – Example 2 

Subsampling causes color bleeding and 
desaturation in high chroma contrast areas 

Original Subsampled chroma 



Digital Photography Sensors 

• Digital camera sensors produce a voltage for each 
“sensed” pixel cell on their sensor array 
– This signal is further digitized 

• Technologies: CCD and CMOS devices 
– They provide more or less the same quality 
– Relatively linear response to incident light 



Digital Photography and Color 

• Sensors cannot inherently separate color! 
• Strategies: 

– Color filter arrays  Typical camera 
– X3 sensor arrays + prism  Bulky construction: high-end 

video cameras 

Image source: Wikipedia 



Color Filter Arrays 

• In order to capture color information on a single 
sensor array: 
– Single sensors are grouped into clusters (e.g. quads) 
– A color filter is applied to each cell  

• This way, color information is subsampled! 

Bayer filter 



Pixel Color Reconstruction 

• To estimate the color information at each pixel, a 
reconstruction filter is used 
– Missing colors are weighted and interpolated from 

neighboring cells 

Input Sensor output Color-coded output Reconstructed image 



High Dynamic Range Images - Why 

• Physically measured or simulated radiance (therefore 
luminance) in a natural environment matches the 
HVS levels 

• Typical displays can achieve a dynamic contrast ratio 
of 6000:1 and an actual luminance level of 1-
150cd/m2  

 Screens are far from capable to display physically 
correct images! 

• We need methods to adapt the computed radiance 
to the output intensity of a graphics system 



High Dynamic Range Images - Storage 

• To be able to adjust the tonal range of the image 
output we need: 
– High precision (float/double) imaging algorithms 
– More than 8bits/color for storage (>255 levels) 
– Floating point precision buffers 

• Either physical or canonical scale is assumed 
• Frame buffers store values higher than [0-1] or 
• Compressed ranges 0-1 



Tone Mapping 

• Is the process of fitting a potentially huge luminance 
level to the tonal range of graphics display hardware 

• Can be 
– Static 
– Adaptive 
– Delayed adaptive (to simulate the time required for the 

eyes to adjust to sudden change of illumination levels) 

• According to image coverage, it can be 
– Global (same equation and params for all pixels) 
– Local (different adaptation for each pixel) 



Tone Mapping - Goals 

• De-saturate useful range of information 
• Enhance contrast of useful ranges 
• Human visual system discriminates changes, not 

absolute values 
• Local contrast enhancement: 

– Separates tone levels of adjacent pixels  
– accentuates details 

• Simulate the retinal response to physical luminance 
levels (see blurring and bloom) 



Tone Mapping – Maximum to white 

• Global operator 
• Simple to implement (offline/real-time) 

• Assuming normalized output: Lo = Li /Lmax 
• Ensures mapping of entire range to visible scale 

• Reduces contrast for Lmax>1 
• Increases contrast for Lmax<1 
• Prone to significantly reduce levels if isolated high 

values are present 



• In more sophisticated global tone mapping approaches, we 
evaluate the “general appearance” of an image instead of strict 
ranges 

• We need to evaluate average luminance 
• It is preferable to find the log-average of luminance and not the 

linear one: 
 
 

• Because: 
– Perceived intensity on photoreceptors follows the power law 

– So does the working luminance Lw (isolated pixel luminance against a 
uniform – average – background) 

,
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Tone Mapping – Average Luminance 



Tone Mapping – Linear Mapping (1) 
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Tone Mapping – Linear Mapping (1) 

• a is the tonal “key” 
• Clipping 
• Global technique 
• Easy to implement (off-line/real-time) 
 



Tone Mapping – Non-linear Compression (1) 
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Tone Mapping – Non-linear Compression (2) 

• Enhances low-key tonal range 
• No clipping 
• Better used with a white point reference value 

(expected RGB luminance of “white” – background 
luminance): 
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Tone Mapping – Non-linear Compression (3) 
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Post-processing Enhancements 

• “Visual tricks” can enhance the tonal discrimination 
and interpretation of an image 

• Two dominant techniques: 
– Bloom 
– Unsharp mask filtering 



Bloom (1) 

• When very bright light is perceived by the human 
eye, a noticeable glow or intensity “spill” is spread 
towards the darker regions 

• This effect is called bloom and when artificially 
reproduced in synthetic images, can fool the HVS 
that an image region is brighter than it really is 

  



Bloom (2) 

• To simulate bloom: 
– Subtract a high threshold from the image 
– Blur the result to spread the intensity 
– Modulate the blurred image to achieve the desired effect 

presence 
– Add to original image 

  

  Original                             Blurred original + threshold                      Original + blurred 



Real-time Bloom (1) 

• For real-time rendering bloom is performed similar to 
off-line rendering 

• Blurring (convolution) is an expensive operation 
• Requires look-ups and updates over the image  

better separate read/store images use a “blur 
buffer” 

• Steps: 
– Use a low-resolution frame buffer to store the clipped image 
– Perform upscaling (via bilinear interpolation or/and 

multisampling) of the low-res buffer  
– Add the result to the image 



Real-time Bloom (2) 

https://udn.epicgames.com/Three/ContentBlogArchive.html 

Alan Wake 



Local Contrast Enhancement 

• Local sharpening of the image features gives the illusion of greater 
dynamic range: 
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Local Contrast Enhancement Example 



Contributors 

• Georgios Papaioannou 
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