
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Rendering Pipelines

A Rendering Pipeline

• Rendering or Graphics Pipeline is the sequence of
steps that we use to create the final image

• Many graphics/rendering pipelines have been
proposed although the most historically/practically
dominant ones are:

– The Rasterization Pipeline

– The Micropolygon (Reyes) Architecture

– Ray Tracing (Path Tracing and other image driven methods
can be also classified here)

General Principles

• All systems share some broad common stages and
features

Geometry setup

Shading

Compositing

Token generation

The geometric data are

“arranged” in space,

replicated and cleaned up

The system issues the basic tokens

for the image generation (fragments,

paths, micropolygons)

Shading and other data are estimated for each token

Results are composited / distributed in image space to form

the rendered image

Possibly re-entrant

Common Features

• It is easy to see, even with no knowledge of a
particular rendering pipeline or system that
rendering architectures are:

– Inherently parallelizable

– Easy to model and implement as highly-efficient pipelines

• These features are extensively exploited both in
software renderers and hardware implementations

Reference Frames (1)

• All rendering architectures treat geometric primitives
and other mathematical functions and constructs
relative to a reference coordinate system, which
usually changes among the various stages

• We typically encounter the following reference
frames:

– Local- “Object”-Space Coordinate System (LCS)

– World-Space Coordinate System (WCS)

– Eye-Space Coordinate System (ECS)

– Normalized Device Coordinates (NDC)

– Image Space Coordinates (IS)

Reference Frames (2)

ECS

NDCICS

WCS

LCS

Camera (“eye”)

Object

Image plane

Global reference system

Y

Z

X
Y

Z

X

Y

Y

Y

Z

X

X

X

Z

Coordinate Systems – Windows

Document reference

system and units

(e.g. cm)

Screen coordinates (pixels)

Window coordinate system (pixels)

Drawing canvas coordinate system (pixels)

and clipping rectangle

Hidden Surface Elimination (Sorting)

• A common task to all pipelines is the proper ordering
of the parts of surfaces to correctly display the visible
ones in front of the hidden parts

• The implementation mechanism for HSE varies
significantly from one architecture to another

Hidden surfaces

Rasterization-based Architectures

• The heart of most software-based primitive drawing
algorithms

• The architecture of all real-time hardware graphics
pipelines (Graphics Processing Units - GPUs)

• They implement strategies for sampling screen-space
primitives on a regular grid (raster) at a pixel or sub-
pixel level

• Shading occurs after the primitive samples have been
determined (often called fragments)

A High Level Rasterization Pipeline

• This is a general 2D/3D overview of the task a
rasterization pipeline involves

• The GPU graphics pipeline is discussed separately

Geometry
Setup

Fragment
Generation

Fragment
Shading

Fragment
Merging

Primitives Updated

pixels

Transformed/clipped

primitives

Fragments Shaded pixel

samples

• Transformation

• Culling

• Primitive

assembly

• Clipping

• Primitive

sampling

• Attribute

interpolation

• Pixel coverage

estimation

• Pixel color

determination

• Transparency

• …

• Visibility

determination

• Blending

• Reconstruction

filtering

Ray Tracing Pipelines

• In RT, instead of the primitives, the path space is
sampled:

– Rays are generated and “traced” through the 3D
environment

– Intersection of rays with the nearest geometric primitives
(implicit HSE) triggers shading and spawning of new rays

• HSE:

– The Reyes and rasterization pipelines perform HSE in
image space

– Ray tracing methods do the sorting 3D space (ray space)

Simple Ray Casting

• In its most simple form RT:

– Generates a number of rays from the “eye” through the pixel
locations on the image plane

– Computes the nearest intersection of rays with the primitives

– Shades the closest points

• This simple process is
called ray casting
– Shading also typically involves

sending rays towards the light
source(s) to check for shadowing

Ray Tracing Algorithms

• There are many interesting photorealistic image
generation algorithms that are based on this simple
ray tracing idea (see Path Tracing etc.)

• The power and elegance of ray tracing comes from:

– The fact that rays can be recursively traced though the
environment (Whitted-style ray tracing)

– The ability of rays to interact with many mathematical
constructs, beyond simple primitives or even surfaces!
(see volume rendering)

Recursive Ray Tracing Example

Ray casting Recursive ray tracing

(stochastic path tracing)

Pixel Coverage

• The impact a primitive has to a single pixel it
occupies is generally proportional to the pixel
coverage

• In the worst case, the coverage is binary, determined
by the generation or not of a fragment for this pixel

Why Pixel Coverage is Useful?

• Can help blend fragments more accurately

• Can be used in antialiasing filters to “smooth” out
and properly render the contribution of

– thin structures

– sharp transitions

Determining Pixel Coverage

• Pixel area covered by a polygon can be computed
analytically if we assume a rectangular pixel (which is
not), or better:

• If we sample the coverage with an arbitrary pattern
of coverage taps:

Pixel center Fixed pattern Random / rotating pattern

Half-toning

• The pixel coverage idea was also used in the printing
industry (and old display systems) to effectively
approximate a wide range of intensity variations with
only a few (usually 2) available tones:

0% 25% 50% 75% 100%

Printed “dot”

Image “dot”

(pixel)

Half-toning in Print

Other Graphical Output Systems

• Conventional printing also involves a raster
generation phase, so we treat it accordingly

• Vectorized output: Plotters

– Use shape outlines to control the trajectory of a plotting
head

• 3D printing

– Build surfaces in space layer by layer

– Extract contours (outlines) to express layer slice
boundaries

– Use contours to drive a material-depositing head

Contributors

• Georgios Papaioannou

• Sources:

– [REYES]: R. L. Cook, L. Carpenter, E. Catmull, The Reyes
image rendering architecture. SIGGRAPH Comput.
Graph. 21, 4 (August 1987), pp. 95-102, 1987.

– [RTR]: T. Akenine-Möller, E. Haines, N. Hoffman, Read-time
Rendering (3rd Ed.), AK Peters, 2008

– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis,
Graphics & Visualization: Principles and Algorithms, CRC
Press

