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DEFERRED APPROACHES



Deferred Rendering - The Principle

• Deferred shading defers (postpones) most of the heavy 
rendering (like lighting) to a later stage 

• Deferred shading consists of two passes: 
– The geometry pass renders the scene once and retrieves all kinds of 

geometrical information from the objects that we store in a collection 
of textures called the G-buffer

– In the lighting pass, we render a screen-filling quad and calculate the 
scene's lighting for each fragment using the geometrical information 
stored in the G-buffer

Adapted from https://learnopengl.com/Advanced-Lighting/Deferred-Shading



Multiple Render Targets (1)

• It is often useful to be able to write many fragment operation 
results to multiple internal buffers, without re-rendering the 
geometry

• Examples:
– Cube map generation (6 buffers, 6 viewing transformations – also 

requires retargeting by a geometry shader)

– Deferred rendering (3+ buffers, one viewing transformation)

– Reflective shadow maps (ok, this is still deferred rendering!) 



Multiple Render Targets (2)

• This is enabled via the Multiple Render Targets (MRT) 
mechanism:

– The geometry is sent once for primitive generation

– The pixel (fragment) shader writes results at the same 
location on multiple buffers

– Different calculations and hence output values can be 
written to each buffer in the same pixel shader



Multiple Render Targets (3)
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Deferred Rendering - The Principle
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Deferred Rendering - The Principle

• Instead of shading the fragments of each individual triangle in 
isolation, compute the final color for the resolved, visible 
geometry only

Screen-space shading pass

Geometry pass → MRT

Source: AUEB Graphics Group XEngine



Deferred Rendering – Pros

• Geometry is rendered once, regardless of number of lights

• Shading rate is proportional to image size and NOT the 
amount of rendered geometry or depth complexity
– Predictable, controllable and stable 

• Capable of handling many more light sources

• Simplification of rendering pipeline



Deferred Rendering – Pros

• Lighting algorithms and other rendering passes have access to 
global image data, not only the current fragment (e.g. see GI)

Direct +Diffuse GI +Specular GI

Radiance caching Screen-space reflections

Source: AUEB Graphics Group XEngine



Deferred Rendering – Cons

• Cannot handle transparent geometry. Still need a separate 
(forward) pass fro such surfaces.

• Does not mix well with antialiasing

– MSAA pixel resolve requires a final color to be already 
available at the pixel samples. DR delays this computation

– No sense in having MSAA filtered geometry attributes (not 
even correct).

• Limits the amount of different materials that can be used 
(requiring additional buffers to write their properties and IDs)



Tiled Rendering

• One problem with both forward and deferred 
rendering is the presence of a large number of light 
sources:

– For each one, a lighting pass must be made OR

– A large number of sources must be iterated within a loop 
in the fragment shader



Tiled Rendering

• Solution: Divide visible domain into tiles and assign 
light sources only to affected regions

• Prerequisite: each light source has a bounded area of 
effect (not really physically correct, but ok).

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf


Clustered Rendering

• Tiling can also be done in the Z direction (clustered 
rendering):

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf


Clustered Rendering

• Clustered rendering also helps treat lights differently 
according to depth:

Image from: https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf

https://twvideo01.ubm-us.net/o1/vault/gdc2015/presentations/Thomas_Gareth_Advancements_in_Tile-Based.pdf


FAST APPROXIMATE LIGHTING



Light Maps

• Storage of pre-calculated (“baked”), view-independent 
illumination  

• Store incident direct and/or indirect diffuse illumination in the 
texels of the map

• When object is rendered, the pre-recorded information on 
the light map is used, provided that: 
– Geometry is part of a static environment 

– Moving objects' contribution to diffuse illumination is negligible

– Light-mapping is extensively used for the accelerated real-time 
rendering of realistic scenes 

• Resolution of the light map does not need to be very high 
since illumination varies more slowly on a surface than a color 
or bump pattern



Light Maps



Texture Atlases

• A texture atlas is a surface parameterization where connected
parts of the object's surface (charts), are each mapped onto
contiguous regions of the texture domain

• Atlas ensures the unique mapping between Cartesian
coordinates on the surface & locations on the bounded
texture domain of the image map

• Construction:
– Surface partitioning into charts

– Unfold chart on a 2-D domain to ensure unique mapping

– Pack chart parametric partitions into a single texture (NP-complete
problem)
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Texture Atlases

Criteria for chart partitioning and unfolding:

– Minimize texture distortion and artifacts

– Distribute the texels over the surface as evenly as possible

– Ensure continuity & conformity of mapping among the charts,
if possible

– Maximize the area coverage of the charts & minimize the # of
separate charts

20



• Common and simple 
approach: polypacks

• Cut surface into 
regions (polypacks) 
and map each one to 
a plane with as little 
distortion as possible

Texture Atlases - Polypacks



Atlas Generation Issues:

• As number of charts increases, so does the unused space:

– Charts are not tightly packed to ensure some “guard 
space” between them to allow texel interpolation and 
mipmaping to work correctly

• Texel area coverage must be as close to uniform as possible:

– Avoid stretching

– Ensure proper and proportional scale of charts in packed 
atlas



23

Atlas Packing: kd-tree approach



Atlas Packing: horizon approach

• Suitable for large polygon charts with low compactness 

• Operates in the discrete texture space

• Construction:
– Rotate the charts so that their longest diameter is vertically aligned 

– Sort charts according to height and insert into the atlas 

– Incoming charts are stacked on top of the existing clusters in the atlas

– Topmost texels occupied by the charts already in the atlas form a 
“horizon”, which the new chart's underside texels (“bottom horizon”) 
cannot penetrate 



Lightmap Computation

• Lightmap texels are uniquely mapped to triangle 
locations and their attributes

• Iterate over valid lightmap texels

– Compute lighting in texture space

• At runtime, transfer lighting onto shaded triangle 
fragments via texture mapping



Practical Lightmaps in Games

• Complex geometry limits the efficiency of lightmap
packing

• Use simpler “proxy” geometry for lightmap
calculation

• Map proxies to corresponding polygon groups 

• Transfer proxy lighting onto detailed geometry



Practical Lightmaps in Games

Source: https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf


Complex Light Sources

• Large and complex-shaped emitters are challenging 
in real time:

– Cannot use MC integration effectively in the time 
constraints of a real-time engine

• Typical useful emitters: spheres, quads, tubes

• Resolve to:

– Analytical approximations for diffuse BRDFs

– Image-based solutions for glossy/specular BRDFs and ray 
tracing



Area Lights – Diffuse BRDFs

• For a convex light source and a diffuse surface, the 
contribution of a light source boils down to computing 
irradiance from the projected visible surface (e.g. disk for a 
sphere):

= 𝐿𝑖𝑛 න

𝐴

𝐧 ∙ 𝐥 𝐧a ∙ −𝐥

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2
𝑑a



Area Lights – Diffuse BRDFs

• The Form Factor integral can be approximated using MC 
samples or analytically estimated. However:

• The drop of the source below the horizon of the surface must 
be carefully handled!

• Sample representative points on emitter to compute FF.



Area Lights – Glossy BRDFs

• Necessary but crude approximation

• Treat all light coming from the emitter as coming from a single 
representative point on its surface

• A reasonable choice is the point with the largest contribution

• For a Phong distribution, this is the point on the light source 
with the smallest angle to the reflection ray

• Only reasonably good for emitters above the horizon
– Apply some form of attenuation to handle horizon



Area Lights – Glossy BRDFs

• Example: Spherical sources

𝐜′ = 𝐫 𝐥 ∙ 𝐫 − 𝐥

𝐜 = 𝐞 +
𝐜′

𝐜′
𝑟𝑎𝑑𝑖𝑢𝑠

𝐫: ideal reflection vector

𝐥: 𝐞 − 𝐩

𝐫′ =
𝐜 − 𝐩

𝐜 − 𝐩

Use this vector to light for shading



Area Lights – Glossy BRDFs

• Modified NDF requires normalization (too bright here)

Reference



Area Lights – Glossy BRDFs

Image source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf


IMAGE-BASED LIGHTING



Why image-based lighting?

• Very important in CG

• Helps transfer complex distant lighting to surfaces 
very fast 

• Helps a rendered image blend with a real 
surrounding

– Mix synthesized and real imagery (films, games, AR)



Environment Maps

• An environment map is a representation of distant radiance 
parameterized w.r.t. an incoming direction 𝜔𝑖

• Usually this information is discretely encoded on a set of 
images

• Other typical representations include spherical function 
coefficients



Environment Maps

• Environment maps typically encode incoming illumination 
from the entire sphere around a point

• But can also be:
– Hemispherical (e.g. sky lighting)

– Cylindrical 



Environment Maps

• Mostly in real time graphics, it is convenient to store the 
spherical environment in cube maps:



Light Probes

• Environment lighting images can be captured using physical 
light probes:

• Highly polished metallic spheres photographed to capture the 
real environment
– Multiple exposures are typically taken to capture an HDR environment 

map



Light Probes

• To properly map the environment: 
– with low distortion and 

– Elimination of the photographic equipment from the image

• Multiple photos of the probe are captured 

• The results are merged into an (inverse) panorama



Using an Environment Map

• The basic assumption about environment maps is that the 
environment is distant

• If assumed distant, incoming light is parameterized only by 
direction, as different points on the geometry will still index 
the same location on the environment map



Using an Environment Map

• Using as lighting the environment map on each point instead 
of using light sources:
– Can provide a very natural look to artificial objects

– Can blend the synthetic geometry with the captured environment

• This has been extensively used in movies and AR 

http://www.fxguide.com/featured/vfx-roll-call-for-the-avengers/



Using an Environment Map

• When environment distances are 
comparable to the size of the synthetic 
objects, a single environment map 
cannot do the trick 

• Env. maps are also only valid for a 
particular region near the capture point



Virtual Light Probes 

• In the previous example, the environment map was not 
captured from a real scene, but rather from a synthetic 
environment

Why do this?

• To significantly speed up indirect lighting calculations

• To apply indirect lighting to real-time rendering!
– “Bake” incident light from a rendered environment

– This lighting is the contribution of the env. Lighting to a surface

– Can be combined with local shading from light sources 



Virtual Light Probes

• Generation:

– Via cube maps: setup 6 views and render the scene 



Virtual Light Probes

• Generation:

– Directly sample the geometry and store a compressed 
spherical representation (see RT GI slides) 



Environment Mapping in RT Applications

• Used for baking both rough indirect lighting and sky / ambient 
lighting 

Call of Duty: Ghosts



Multiple Light Probes

• To alleviate the invalidation of environment maps in different 
scene positions, multiple (virtual or physical) light maps can 
be generated from different locations

• At runtime, their contribution is interpolated 

http://www.fxguide.com/featured/game-environments-parta-remember-me-rendering/



Irradiance Maps

• Environment maps encode the incoming light from a single 
direction 𝜔𝑖

• So, in order to compute the reflected light on a surface, the 
contribution of all directions in the normal-aligned  
hemisphere must be accounted for, according to the 
reflectance equation:

• This is obviously computationally impractical in real time.

𝐿𝑜 𝐱, 𝜔𝑜 = න

Ω𝑖

𝐿 𝐱, 𝜔𝑖 𝑓𝑟 𝐱, 𝜑𝑜, 𝜃𝑜, 𝜑𝑖 , 𝜃𝑖 cos 𝜃𝑖 𝑑𝜎(𝜔𝑖)



Irradiance Maps

• However, for the diffuse part of the BRDF, the 
integral can be greatly simplified:

• The integral has no dependence on 𝜔𝑜 and can be 
therefore pre-computed via MC integration with 
cosine-weighted IS for every possible hemisphere 
direction

𝐿𝑜 𝐱, 𝜔𝑜 =
𝜌

𝜋
න

Ω𝑖

𝐿 𝐱, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜎(𝜔𝑖)



Irradiance Maps

• Dropping the dependence on location (as in 
reflection maps), from the surface normal n:

𝐿𝑜 𝜔𝑜 =
𝜌

𝜋
𝐼𝑀(𝐧)

Image source: https://learnopengl.com/PBR/IBL/Diffuse-irradiance

https://learnopengl.com/PBR/IBL/Diffuse-irradiance


What about Glossy BRDFs?

• The same cannot be done in the general case of 
glossy BRDFs, due to their dependence on 𝜔𝜊

• However, if we consider that contributing directions 
are centered around the ideal reflection direction of 
𝜔𝑖 , an approximate solution is possible:

• For different roughness values:

– Precompute the irradiance inside a constricted solid angle 
centered at each 𝜔𝑟 direction, according to the spread of 
the BRDF

– Store the versions as mipmaps of the same env. Map.



Pre-Convolved Environment Maps

https://learnopengl.com/PBR/IBL/Specular-IBL

𝐿𝑜 𝜔𝑜 = න

Ω

𝐿 𝜔𝑖 𝑓𝑟 𝜔𝑜,𝜔𝑖 cos 𝜃𝑖 𝑑𝜎(𝜔𝑖) ≅

න

Ω𝑙𝑜𝑏𝑒

𝐿 𝜔𝑖 𝑑𝜎(𝜔𝑖) න

Ωhemi

𝑓𝑟 𝜔𝑜,𝜔𝑖 cos 𝜃𝑖 𝑑𝜎(𝜔𝑖) ≅

𝐸𝑀𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠(𝜔𝑟) ∙ 𝑀(𝛚𝑜 ∙ 𝐧, 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠)

https://learnopengl.com/PBR/IBL/Specular-IBL


Pre-Convolved Environment Maps

Image source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf


VISIBILITY DETERMINATION



Shadows and Perception (1)

• Wherever there is light, there are shadows

• Presence of shadows:
– Not only for aesthetic purposes

– Provides clues for the shape of the geometry in the image

• Helps place the objects in the environment. Gives clues about relative 
distances 

• Enhances depth perception: In monocular vision the HVS relies on clues 
and recognizable configurations to discern the ordering and distances of 
objects

• Indicates the direction of incident light or light sources

• Enhances the visual detail of the displayed surfaces by enhancing 
local contrast



Shadows and Perception (2)



Shadows and Perception (3)

• (a) No shadow: We cannot possibly know the relative position 
or size of the ball w.r.t. the steps

• (b) Possible position/ball size configurations that lead to the 
same image (a)

• (c,d,e) The resulting images of the configurations in (b) when 
shadows are enabled



Shadows and Visual Detail

(no shadows)

Coarse, uninteresting surfaces

(with shadows)

Same geometry, higher visual detail 



How are Shadows Generated?

• Partial or full obstruction of a source’s light by geometry

• Indirect illumination reaching a surface is in general of lower 
luminance compared to the direct, unshadowed light →

• Illuminance of points in shadows is significantly lower than 
that of the lit points



Shadow Types

• The size and type of shadows depend on the size and 
distance of the light emitting surfaces:

– Infinitely distant light (directional) sources cause parallel 
shafts o shadows

– Non-directional light sources cause radially projected 
shadow profiles



Umbra and Penumbra

• Umbra is part of the shadow due to complete light 
obstruction

• Penumbra is the shadow part where partial occlusion occurs 
and creates a soft transition to the lit surface (soft shadows)

• A punctual (point) light source creates hard shadows with no 
penumbra

• A light source with a non-negligible size and comparable 
distance to the occluding geometry causes shadows with 
penumbrae (soft shadows)
– Larger emitters and smaller distances to occluders→ larger 

penumbrae



Shadow Examples



Shadow Maps

• Basic principle:

– The occlusion of light on a surface due to a given (point) 
light source is a similar problem to the visibility 
determination from the user’s view point

– A point is lit if the point is the closest one to the light 
source in this direction, i.e. if it is “visible” from the light 
source

• We can use the depth buffer mechanism to perform 
HSE and determine the nearest visible points from 
the light source’s view point

• We call the depth buffer generated from the light 
source view point a shadow map



Shadow Map - Setup

• A projection is set up 
from the light source’s 
point of view (a) and the 
shadow map is captured 
(b)

• The scene is rendered 
normally form the 
camera view point and 
fragments are tested 
against the shadow map 
(c)



Transforming Fragments to S.M. Space



Shadow Calculations

• Render the scene from the light source view point
– Transform geometry by

– Record the depth (shadow) map

• Render the scene normally, from the camera view point
– Transform each fragment from the camera CSS to the light source’s 

CSS: 

– Compare the fragment’s light space 𝑧𝑓𝑟𝑎𝑔
′ value with the 

corresponding depth in the shadow map 𝑍𝐿(𝑥𝑓𝑟𝑎𝑔
′ , 𝑦𝑓𝑟𝑎𝑔

′ )

– If 𝑧𝑓𝑟𝑎𝑔
′ ≤ 𝑍𝐿(𝑥𝑓𝑟𝑎𝑔

′ , 𝑦𝑓𝑟𝑎𝑔
′ ) the fragment is lit, otherwise it lies in 

shadow
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Shadow Maps – Remarks (1)

• The shadow map needs to be updated only if:

– The light source is moving

– Geometry within the light’s field of view changes

• The shadow map rendering time is significantly lower 
than the normal rendering time: 

– Only fragment depth is captured

– No pixel shading occurs (pass through shader), no color 
attachment



Shadow Maps – Remarks (2)

• WYSIWYG: Whatever geometric entity can be rasterized or 
otherwise drawn in a depth map, can be used as an occluder:
– E.g. foliage modelled as polygons with transparent textures



Advantages of Shadow Maps

• A simple and intuitive 2-pass algorithm

• Any renderable entity can generate shadow

• Easily combined with other effects, such as 
volumetric lighting

• Low complexity, takes advantage of GPU’s early 
culling mechanisms

• Linear dependence on scene complexity

• Adjustable SM size → performance/quality trade off

• Can generate soft shadows (via extra samples)



Shadow Map Problems (1)

• Only works for conical/directional light sources

– For omnidirectional lights, we need a cube map 
configuration of shadow maps

http://devmaster.net/p/3002/shader-effects-shadow-mapping



Shadow Map Problems (2)

• Accuracy depends on relative light-camera position and orientation

• Strong aliasing artifacts due to undersampling and arithmetic precision



Typical Shadow Map Artifacts

Shadow “acne” “Peter Panning”

http://devmaster.net/p/3002/shader-effects-shadow-mapping



Shadow Map Antialiasing

• Typical bilinear filtering on the shadow map does not 
work

• If we pre-filter (mipmap) the shadow maps:

– We filter depths!→ Erroneous depth comparisons and we 
do not get rid of artifacts

• We need to change the order of filtering and 
comparisons: post-filtering



Percentage Closer Filtering

• Draw samples from the shadow map in the 
neighborhood of the query shadow map coordinate

• Individually test each shadow map tap with the 
fragment z

• Average the shadow test results to get the fraction of 
occlusion



PCF Shadow Maps Example



Cascaded Shadow Maps

• Cascaded shadow maps (CSMs) are the best way to 
combat one of the most prevalent errors with 
shadowing: perspective aliasing

– Different areas of the camera frustum require shadow 
maps with different resolutions 

– Objects nearest the eye require a higher resolution than 
do more distant objects



Cascaded Shadow Maps

• Basic idea: 

– Partition the frustum into multiple segments

– A shadow map is rendered for each sub-frustum

– The pixel shader samples from the map that most closely 
matches the required resolution

Image source: https://doc.babylonjs.com/babylon101/shadows_csm#references

https://doc.babylonjs.com/babylon101/shadows_csm#references


Cascaded Shadow Maps

• Typical setup:

• Multiple, same resolution 
cascades, but

• Covering an increasingly 
wider area
– Decreasing fidelity away from 

user

– Countered by perspective 
foreshortening

• Switch according to distance 
from user

Image source: https://devansh.space/cascaded-shadow-maps

https://devansh.space/cascaded-shadow-maps


Cascaded Shadow Maps

• Construction:

– Partition the frustum into sub-frusta.

– Compute an orthographic projection for each sub-frustum.

– Render a shadow map for each sub-frustum.

– Render the scene.

Image source: https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/

https://johanmedestrom.wordpress.com/2016/03/18/opengl-cascaded-shadow-maps/


Shadows from Area Lights

• Typically soft shadows are approximated by dynamically 
changing the PCF kernel size according to distance of occluded 
point from occluded geometry:

• 𝑟𝑃𝐶𝑀(𝐩) = 𝑟𝑃𝐶𝑀(1 + 𝐩. z𝐿𝐶𝑆 − 𝑠ℎ𝑎𝑑𝑜𝑤𝑚𝑎𝑝. 𝑧𝐿𝐶𝑆)



Per-object Shadow Maps

• Shadow maps can be focused also on certain high impact (e.g. 
close to the user) objects

• Dedicated SMs that are used for specific objects, instead of 
the global SMs or CSMs

Image source: https://www.cryengine.com/features/view/visuals

https://www.cryengine.com/features/view/visuals


Screen-space Self-shadowing

• Screen-space shadowing is introduced to alleviate 
problems of shadow maps due to: 

– distance bias used for correcting shadow acne problem

– Low resolution of SMs at close object inspection

• Idea:

– March a ray (take samples on a short distance on the 
direction) from the shaded point towards the light source

– Check for occlusion with depth buffer

– Requires deferred shading



Screen-space Self-shadowing

Radius usually compatible with depth bias

Z buffer



Shadows

• Raytraced shadows

• Shadows from area lights

• Contact shadows

• Ambient occlusion

• Transparency



Ambient Occlusion

• A cheap way to simulate contribution of ambient (global) 
lighting
– Though only convincing for outdoor scenes mostly

• Accentuates crevices → increases image contrast

• Estimates the overall drop of irradiance on the shaded point 
from occlusion due to near-field geometry



Ambient Occlusion Estimation

• Local or global illumination model?

• Hybrid!

– Does not exchange light with other 
locations

– Potentially search for occlusion up to a 
distance

– Still requires visibility checks →
intersections with other geometry



Ambient Occlusion Estimation (2)

• The value of occlusion shading can be easily determined if we 
set 𝐿𝑖 in the reflectance equation to 1 and replace visibility 
with an attenuation score:

• Where 𝑑 𝐩,𝜔𝑖 is the distance to the closest hit point within 
a radius 𝑑𝑚𝑎𝑥 (or +∞ if no hit occurred)
– 𝑑𝑚𝑎𝑥 can be set to ∞

𝑤 𝐩 =
1

𝜋
න

Ω

𝜇 𝑑 𝐩,𝜔𝑖 𝑑𝜎⊥(𝜔𝑖)



Ambient Occlusion – Attenuation Function

• 𝜇 𝑑 𝐩,𝜔𝑖 can be any intuitive function 

• Simplest case:

• But other forms can be used to limit the impact of distant 
occluders

𝜇 𝑑 𝐩,𝜔𝑖 = ቊ
1, 𝑛𝑜 ℎ𝑖𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



A.O. : How is it Applied?

• We usually apply AO as a visibility function to attenuate 
ambient / sky color

• Some implementations also blend AO with diffuse or even 
specular lighting (not really correct…)



A.O. Example



A.O. Example



A.O. - Effect of maximum distance



Ambient Occlusion vs Uniform Light

Hemispherical light                                    Ambient occlusion



Ambient Occlusion Calculation

• For every visible point x:

– Compute AO as Monte Carlo hemispherical integral. Sample the 

hemisphere with N rays:

• Find closest intersection y with occluding geometry (the most 
expensive calculation)

• Compute distance d(x,y)

• Compute attenuation ρ(d)



Screen-space Ambient Occlusion

• The most widely used technique for AO in real-time graphics

• Uses the Z buffer as source of occluder geometry information

• Idea:
– Generate a number of samples up to 𝑟𝑚𝑎𝑥 distance away from the 

shaded point (typically in hemisphere)

– Test if sample is “above” (in front of) the corresponding z value at that 
z buffer location

• Many variations

Z buffer



Screen-space Ambient Occlusion

• View-dependent behaviour:
– Can only use available geometry in view

– Hidden layers of geometry do not correctly contribute to the result 
(either over- or under-estimation)



Contact Shadows

• A form of directional ambient occlusion

• Used for attenuating light on surfaces only in directions 
obscured by nearby geometry

• From the AO samples, compute the average open direction or 
“bent normal”

Z buffer

𝐧 𝐧AO

𝐿𝑜𝑢𝑡
′ = 𝐿𝑜𝐧AO ∙ 𝐥

Attenuate local illumination by the 

divergence of the bent normal from the 

light direction



Visibility and Ray Tracing

• Shadows (direct light source visibility) can be also 
evaluated in real time using ray tracing, on high-end 
graphics hardware

– Removes all problematic artifacts of shadow mapping

– Generally slower 



HIGH-DYNAMIC-RANGE RENDERING



Dynamic Range

• Dynamic range: the minimum to maximum luminance level
achieved by a system

• The human visual system adapts to the level of illumination
incident to the photoreceptors
– Rods (scotoptic light): 10-6cd/m2 – 10cd/m2

– Cones (photoptic light): 10-2cd/m2 – 108 cd/m2

• Total luminance range: 108:10-6

• Cannot achieve these levels simultaneously!



High Dynamic Range



High Dynamic Range Images - Why

• Physically measured or simulated radiance (therefore
luminance) in a natural environment matches the HVS levels

• Typical displays can achieve a dynamic contrast ratio of
6000:1 and an actual luminance level of 1-120cd/m2

• Screens are far from capable to display physically correct 
images!
– Even if they were, the HVS field of view is different from a screen’s →

our eyes will not adapt to bright/dark regions appropriately

• We need methods to adapt the computed radiance to the 
output intensity of a graphics system



High Dynamic Range Images - Storage

• To be able to adjust the tonal range of the image output we 
need:
– High precision (float/double) imaging algorithms

– More than 8bits/color for storage (>255 levels)

– Floating point precision buffers

• Common settings:
– RGB16F (48bpp) RGBA16F (64bpp) R11G11B10F - half

– RGBA12 (48bpp) RGBA16 (64bpp) - int

– RGB32F (96bpp) RGBA32F (128bpp) - float



Tone Mapping

• Is the process of fitting a potentially huge luminance level to 
the tonal range of graphics display hardware

• Can be
– Static

– Adaptive

– Delayed adaptive (to simulate the time required for the eyes to adjust 
to sudden change of illumination levels)

• According to image coverage, it can be
– Global (same equation and params for all pixels)

– Local (different adaptation for each pixel)



Tone Mapping - Goals

• De-saturate useful range of information

• Enhance contrast of useful ranges

• Human visual system discriminates changes, not absolute 
values→

• Local contrast enhancement:
– Separates tone levels of adjacent pixels →

– accentuates details

• Simulate the retinal response to physical luminance levels 
(see blurring and bloom)



Tone Mapping – Maximum to white

• Global operator

• Simple to implement (offline/real-time)

• Assuming normalized output: Lo = Li /Lmax

• Ensures mapping of entire range to visible scale

• Reduces contrast for Lmax>1

• Increases contrast for Lmax<1

• Prone to significantly reduce levels if isolated high values are 
present



Tone Mapping – Max to white Implementation

• To measure Lmax:

• Set Blending mode to MAX

• Prepare a 1X1 buffer (single pixel image!)

• Draw the frame

• Read the pixel’s value



Tone Mapping – Average Luminance

• In more sophisticated global tone mapping approaches, we 
evaluate the “general appearance” of an image instead of strict 
ranges

• We need to evaluate average luminance

• It is preferable to find the log-average of luminance and not the 
linear one:

• Because:
– Perceived intensity on photoreceptors follows the power law

– So does the working luminance Lw (isolated pixel luminance against a 
uniform – average – background)

,

1
exp log( ( , )) , small floatw w

x y

L L x y
N

 
 

= + = 
 




Tone Mapping – Ave. Luminance Implementation 

• Goal: measure      :

• Set Blending mode to ADD (normal blending)

• Prepare a small floating point texture as a frame buffer (e.g. 
16X16)

• Enable mip-mapping for this texture

• Create a pixel shader to store the log of color as the fragment’s 
resulting color

• Draw the frame

• Read the maximum mip-map level (1X1 texels) and take its 
exponent. This is the average (estimate over the samples of the 
low-res buffer)

wL



Tone Mapping – Linear Mapping (1)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4 4,8 5,2 5,6 6 6,4 6,8 7,2 7,6 8 8,4

a=0,2

a=0,7

,max( , ) min ( , ),o w o

w

a
L x y L x y L

L

 
=  

 



Tone Mapping – Linear Mapping (2)

• a is the tonal “key”

• Clipping

• Global technique

• Easy to implement (off-line/real-time)



Tone Mapping – Non-linear Compression (1)
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Tone Mapping – Non-linear Compression (2)

• Enhances low-key tonal range

• No clipping

• Better used with a white point reference value 
(expected RGB luminance of “white” – background 
luminance):
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Tone Mapping – Non-linear Compression (3)
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Local Contrast Enhancement

• Local sharpening of the image features gives the illusion of greater 
dynamic range:
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Local Contrast Enhancement Example



SPECIAL EFFECTS



Common In-game Effects

• Bloom

• Motion blurring

• Defocus blurring

• Lens flare



Bloom (1)

• When very bright light is perceived by the human 
eye, a noticeable glow or intensity “spill” is spread 
towards the darker regions

• This effect is called bloom and when artificially 
reproduced in synthetic images, can fool the HVS 
that an image region is brighter than it really is



Bloom (2)

• To simulate bloom:

– Subtract a high threshold from the image

– Blur the result to spread the intensity

– Modulate the blurred image to achieve the desired effect 
presence

– Add to original image

Original                      Blurred original-thres          Original+blurred



Real-time Bloom

• For real-time rendering bloom is performed similar 
to off-line rendering

• Blurring (convolution) is an expensive operation

• Requires look-ups and updates over the image →
better separate read/store images→ use a “blur 
buffer”

• Steps:

– Use a low-resolution frame buffer to store the clipped 
image

– Perform upscaling (via bilinear interpolation or/and 
multisampling) of the low-res buffer 

– Add the result to the image



Real-time Bloom Example

+                                       =

512X512                             upscaled 64X64                   bloom



Motion Blurring

• Given a virtual “shutter”, for a fixed exposure time, speed 
affects the intensity of the resulting image, as energy is 
“spread” to larger distances: 



Shutter Profiles (1)



Shutter Profiles (2)



Shutter Profiles (3)



Real-time (RT) Motion Post-filtering

• Re-use samples from previous frames

– Camera jitter + exponential averaging

– Motion vectors help recovering fragment position in the 
past

[Kari14]

“Infiltrator” Unreal Engine 4 demo © Epic Games



Motion-blur as Post-process Effect

• Typical solution for video games and real-time 
applications



Temporal Pixel Reprojection and Velocity

• Locate the transformed position of the current pixel 
in the previous frame

– Retain transformation(s) from the previous frame(s)

– Transform and interpolate vertices

– For each pixel obtain transformed positions

– (optional) store pixel trajectories in velocity buffers 

131
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Temporal Pixel Reprojection and Velocity

Depth buffer

Velocity buffer 

2 float channels: dx, dy

http://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/



RT Post-filtering: Re-using Samples

• I found a sample from the previous frame! can I re-
use it? 

– Does it come from the right surface? 
• Sample could be from a different object or a mix of objects (e.g. 

edge → background + foreground)

• Sample comes from the right object but it has drastically different 
properties

– e.g. don’t want to re-use samples across the faces of a cube

– Did the current fragment even exist in the previous frame?
• Was partially or completely occluded?

• POV change?

• Were we even rendering it? (i.e. popped into existence in the 
current frame)

– …
133[Salv15]



RT Post-filtering: Artifacts

134

“A boy and his kite” Unreal Engine 4 demo © Epic Games

Pros:
- Very fast run-time
- Easy to integrate in existing applications
Cons:
- Visibility/occlusion is not properly resolved (can result in artifacts, 
“incorrect” image)



Additional Reading

• Moving Frostbite to Physically Based Rendering 3.0 
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v3
2.pdf

• Real Shading in Unreal Engine 4 https://blog.selfshadow.com/publications/s2013-shading-
course/karis/s2013_pbs_epic_notes_v2.pdf

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
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