COMPUTER GRAPHICS COURSE

Volume Rendering

Georgios Papaioannou - 2010

Introduction — Data Visualization

* Visualization and computer graphics: Data Source
— Visualization is a procedure for mapping Jr
data and calculations to meaningful visual Vistallzatian
representations that are easy to grasp and !
interpret Graphics

— Visualization algorithms:
* Create a visualization object from the raw data

* Specify its display parameters

— Graphics algorithms implement these
specifications & produce images

AUEB

(2, Why visualize the data?

* The human visual system can rapidly make
meaningful associations of intensity and shape with
useful values and their relationship

 Example (raw data):

23

24

25

27

26

25

25

24

24

24

26

28

30

29

27

26

28

31

26

28

29

31

32

29

30

32

36

26

27

30

32

33

34

35

38

41

27

28

28

32

34

35

37

41

42

27

28

31

33

36

38

40

42

43

28

29

32

32

35

37

41

43

44

30

33

33

34

36

38

41

42

44

32

34

27

29

40

42

43

44

45

(5) Why visualize the data? (2)

 Example (intensity-coded data):

23

24

25

27

26

25

25

24

24

26

28

30

29

27

26

28

26

28

29

26

27

27

28

28

27

28

31

28

29

32

29 40 42

22-25

26-29

38-41

30-33

AUEB

@ Data Representation

* Data attributes:
— Dimensionality
— Scale
— Regions of Interest (ROI)
— Structure
— Critical points
— Type
— Sampling type and quantization

AUEB

(5, Going 3D: Scalar Data Visualization

e Two major methods:
— |Isosurface visualization
— Direct volume rendering

Experiment or Simulator

e.g. MRI
Surface list
. tri(v1,v2,v3)
Isosurface extraction o tri(vé.v1v2)
/ tri(v2,v4,v5)
A1 <
M Voxelization
A
M Rendering
/// = = va = Z = -
3D Scalar
Voxel Data

v

Volume visualization

2D image

COMPUTER
GRAPHICS

Vg
Q
O
(g0
G
S
-
Vg
O
g

is a hyperplane embedded in an N-

dimensional space that corresponds to a constant

Isosurface
scalar value

ATSTATAV LTV

TGS

AT
R0

"
s

.
ATATAN A
R (7]

AT

g
PAIICE
LAY
AVaraAVATaTLY,
A
s ATy,

Isosurfaces vs Direct Volume Rendering

* |sosurfaces:
— Create sharp renderings

— But: only part of the information present in the scalar field
is visible on the isosurfaces

* |sosurface rendering requires:
— Either surface extraction algorithms (and direct rendering)

— Or direct isosurface rendering (ray tracing, volume
splatting/slicing)

Isosurface Extraction Algorithms

 Often data contain clusters of values, which can be
separated by surfaces

e |sosurface algorithms determine these separating
surfaces

* |nput: surface density thresholds
e Once these isosurfaces are established:

— Easy to display via standard graphics techniques
(polygons)

Marching Cubes (MC) Algorithm

Input: Scalar volume data set and isosurface
threshold

Output: isosurface polygons
For every voxel (cube):
Compare the values at its 8 vertices to the threshold

Label the vertex as 1 (inside, smaller than isosurface
value) or O (outside, greater than isosurface value)

Concatenate all labels and use descriptor to index a
table of pre-computed surface-cube intersections

Marching Cubes (MC) Algorithm (2)

* Segmentation example:

Isosurface

9 value =4
///
1 5
@® Outside
: O Inside

1 6 \

Isosurface

| Te—
o '-
2 5

AUEB

(Z5 Marching Cubes (MC) Algorithm (3)

for (i,j,k voxels):
Ll=Segment (i, j,k);
L2=Segment (i+1,]j,k);

L8=Segment (i+l,j+1,k+1);
// string/binary concatenation operator
index=L1++L2++L3++L4++L5++L6++L7++18;
// locate corresponding normalized combination (rotated version)
bindex=MatchSurfaceForm(index) ;
// return relative rotation transformation to normalized form
transform=MatchSurfaceTransform(index) ;
// retrieve corresponding (rotated) polygons
polygons = PrecomputedSurfaces (bindex, transform) ;
// ... and adjust edge vertices to fall on isosurface
for (p=0; p<polygons.size(); p++)
ComputePreciseEdgePosition (p,voxel (i, j,k));
for (p=0; p<polygons.size(); p++)
ComputeNormal (p, voxel(i,j,k));

MC — Pre-computed Voxel Polygons

e 28 ways to label vertices of a cube:

— Requires 256 pre-computed surface-cube
Intersection patterns

— Reduced to just 15 by taking advantage of:
s Mirror symmetry
s*Rotational symmetry
***Inside/outside symmetry

MC — Pre-computed Voxel Polygons (2)

* 15 intersection patterns provide the topology of the polygonal
intersection surface wrt the cube edges

MC — Edge Vertex Adjustment

* The exact points of intersection along each cube edge are
determined by interpolation:

— If the edge vertices v;,v, have associated field values
val(v,), val(v,) and the isosurface threshold thres -
intersection point p can be expressed as:

_ thres—val(v,)
~val(v,)-val(v,)’

p=Vv,1-t)+Vv,t

MC — Normal Vectors

* Normal vectors can be calculated at voxel vertices by
the volume density gradient (first order derivatives):

v(i+1, J,k)—v(i—-1, J, k)

9,(1, J,k) = A
X
(i, LK) —v(i, j-1,K)
9,(, j.k) = o ,
o (i ok +D) =i, j k-1
gz(l,J,k)— AZ

 They are interpolated to obtain the isosurface
polygon vertex normals

MC - Comments

* Major disadvantages of MC algorithm:
— Large number of polygons created for the isosurface

— This number is not proportional to the isosurface
complexity:

**Depends primarily on the density of the grid

e MC can be fully accelerated by the GPU (see
example)

Direct Volume Visualization

e Can be used to render isosurface data but also
e Display transparency-weighted density clouds

e Can use complex shading (shadows, absorption,
forward scattering etc)

* Central Techniques to this genre are:
— Ray marching
— Volume slicing

Direct Volume Rendering Operations

 Sampling

— Establishes the sampling pattern and evaluates volume
values at sample locations

* Classification
— Classifies and maps volume data to density and color
e Shading

— llluminates the samples. For isosurfaces, the normal
vectors are also extracted and used.

e Combination

— Combines the samples with other samples in the line of
sight

Volume Sampling

Samples are projected on the view plane

Commonly samples are drawn on the line of sight
through each pixel (ray marching)

The location of the samples is determined by the
rendering algorithm

Data samples are interpolated at sample locations
from the initial volume data structure.

Usually, tri-linear interpolation is used, although
cubic interpolation is also common

Classification

Converts scalar values to density and color
— Density is used to define the transparency of a point.

More complex classifiers do not just use the local
scalar value, but also other features

Classification can be performed before or after
sample interpolation (pre-/post-classification)

Transfer Functions

Volume data express measured quantities or
normalized intensity

Not always adjusted to the visible color range

We need to highlight and visualize only certain
intensity ranges (as in isosurface rendering)

We need to enhance contrast for clarity

Transfer functions map the scalar data values to
volume density and color, in order to enhance the
useful information

Transfer Functions (2)

* Density and color are usually separately mapped and
encoded as RGBA values

* Any function or user-defined curve can be used

e Common functions:
— Step functions

— Sigmoid functions

Density H]

(5, Pre-classification vs Post-classification

Continuous data Discrete data

=

Classified data

|

A
A

Analytical Solution Pre-interpolative TF Post-interpolative TF

Light Propagation Equations

* 4 phenomena affect light traveling through a
medium:

_ Atftenuation
— Absorption

— QOut-scattering

— Emission /
— In-scattering
vAdl>
In-scattering A/‘/ﬂp(‘%

Absorption

Out-sgattering

Attenuation

Ldaa»—ummw=duﬂmwr:d“ﬂiwﬁrfﬂawﬂxn—w>

o(p,w)=o0o,(p,»)+o,(p,)
dt

K_H

Transmiftance:

< Fraction of light fransmitted from
d I—o{ \ p fop’

\\?\Q_\Q : —}G(pﬂa),a))dt
° T.(p—>p)=e’

Beer’s Law

* For constant o (homogeneous medium),
transmittance becomes:

T.(p—>p)=e"

* |If absorption is constant along small ray segments:
Jfrom Beer’s law and the definition of transmittance
we get:

Tr (pl N pN) _ e—(01d1+0'2d2+...+0N_1dN_1) P

N -1
T.(0,—py)=][TP; > Pp.s)
=1

In-scattering — Phase Functions

* The directional distribution of scattered light at a
point is called a phase function.

* |tis similar to the BSDF but expresses the probability
that light from w is deflected towards w " :

Plo— o): Ip(a)—>a)’)da)’=l
A e
N

w

In-scattering — Phase Functions (2)

* Popular phase functions:

IsotrO()
plsotroplc w— 0) - 4_
T
— Henyey-Greenstein 1 1— gz

' —
pHenyey—Greenstein (C() —) T

47 (1+9° - 2g cos 6’)3/2

— Mie (atmosphere)

— Rayleigh (droplets, steam etc)

In-scattering Equation

dL,"™ (p, w)
dt

=L, (p.)+ p(p,~0 > o)L (p, @)d o

AUEB

@ In-scattering Equation (2)

* |In-scattering equation is actually computed
recursively, although usually 1-2 levels are used:

1

Zero contribution |
~a!
1

/ 1t order 2ond péer

Combining Out/In-scattering

L(p, @) = L\ (p,) + L7 (p, @)

LYY (p, @) =T, (p > q) L (0,)

t
L "™ (p,w) = j(Le (p + ot, ®) +I p(p + wt, -0’ = w)L(p + wt, ®)d a)’JTr (p — p + wt)dt
0 S

Direct Volume Illlumination

* We can simplify the equation by omitting all indirect
(in-scattering) paths:

Direct Volume Illlumination (2)

* This is the first order light bounce

* Includes shadow calculation
* |tis very common to use uniform phase function

L(p’ a)) — Tr (p — q + a)t) I—background +

j(Le (P + at, a));mp + o, —a)’ia))l_‘(p +ot,®")d a)'JTr (b - p+ot)dt =

0

t
T,(0 = 0)Lansorns + | (Le P+ot,0)+ ZEED oo wL)jTr (p— p+at)dt
0

T

Direct Volume Illumination (3)

* In discrete sampling form:
L(p’ C()) — Tr (Xl — XN)Lbackground +

N-1 i—1
L(x,)+ Z L(X,)H o~ X
i=2 k=1

M -1
L(XI) = Le (XI) + COIZr (X|) . L|_ H e_o-(qm)quJrl_qu
T m=1

Direct Volume Illumination (4)

* No Shadow, just the illuminated samples (L,):

N-1 i-1
L(P, @) =T, (% = X) Lpnagrouns + Lo (%) + 2 L () [TP
i=2 k=1

AUEB

(2, 1sosurface Rendering

* After classification, local sample density determines
the “presence” of the sample in the integral

* If the transfer function has sharp transitions, then
isosurfaces at various density values are formed

Isosurface Shading

* To shade the isosurface samples, a local illumination
mode can be used =2

* Requires normal vectors

* Normals are directly computed from the density
gradient

— Pro-processed: After precomputing the transfer function
and its effect. Can be restrictive

— On the fly: Best quality and versatility, but requires six
texture fetches for gradient computation

Rendering

e Texture-based:
— Volume slicing using 2D axis-aligned slice texures
— Volume slicing using 3D textures

* Direct volume ray marching

— CPU
— GPU

Volume Rendering — Axes-Aligned Slicing

A number of slice textures is generated from the
volume along the 3 axes

* For GPU rendering: Post-classification is possible

* The axis that is most perpendicular to the view plane
is chosen for slice proiection

A A A A A A 4 A

XY plane

A4 A
! ‘

|
|
|

XZ plane

\
|

l
| | |
* l i l

] |
I ||

4444
1
i
N\

bd

popping

AA Slicing - Comments

Popping effects when changing axis

Can perform full illumination only if the volume is
also accessible to a fragment shader as a 3D texture

Blending is performed via standard direct rendering
modes 2>

Slice alpha values are mapped to transmittance =

Transmittance is precalculated for specific slice
thickness

Volume Rendering — View-Aligned

Slicing

* View-aligned cross sections of the volume space are
created and textured using the volume data as 3D
texture

* Slice distance determines transmittance = alpha
* Slices must be conventionally blended

Proxy Geometry 3D Texture Final Rendition

View-Aligned Slicing - Comments

* Very efficient GPU implementation

* Full shading possible via fragment shaders and
volume (3D texture) access

Volume Rendering — Volume Ray Marching

 Most generic technique
e CPU and GPU implementation
e (Cast rays from view plane towards the volume

AUEB

(2, Ray Marching — Sampling Intervals

* Constant sampling intervals create visible banding

» Stratified stochastic jittering produces smoother

results and avoids banding

GPU Volume Visualization - Ray Marching

Requires a surface to draw fragments as initial ray
points:

View-aligned plane (e.g. screen-filling quad)
Volume-aligned closed surface such as box, sphere
Easy to combine with cutting planes

Iterate for a number of samples along each ray
Add jittering

Perform arbitrarily complex lighting computations
and post-classification

Contributors

* Georgios Papaioannou

