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Light Transport 

• Light is emitted at the light sources and scattered around a 3D 
environment in a practically infinite number of directions and 
scattering events  

• This physical process, although it can be mathematically 
modelled, it cannot be practically solved analytically to yield 
the resulting illumination at each and every point in the scene 

… 



Light Transport – The Light Field 

• Given: 
– The additive nature of light 
– The optical independence of the light transport directions 

• We can consider the radiance at any point in space 
and any transport direction as a 5 DoF function, 
𝐿𝐿(𝐩𝐩,𝜔𝜔) representing a light field: 

    
𝜔𝜔𝑖𝑖 = (𝜃𝜃𝑖𝑖 ,𝜑𝜑𝑖𝑖) 

Incoming 
radiance from all 
directions 



Light Transport Events (1) 

• When light hits a surface, the following events occur: 
 

Absorption 

Reflection Transmission 

Scattering 

Depends on Fresnel term 

Depends on albedo and transparency 

𝐧𝐧 
𝐧𝐧 

𝐧𝐧 𝐧𝐧 



Light Transport Events (2) 

• We have seen that reflected light is given by the reflectance 
equation using a specular BRDF 

• Remember, the Fresnel term determines the splitting of 
energy between reflected / transmitted energy  
– Transmitted: 1-reflected  

• Reflection is a specular event* 
 

Reflection Transmission 

𝐧𝐧 

* Not to be confused with the events in path notation 



Light Transport Events (3) 

• Transmitted energy is scattered inside the body of the object 
• Energy immediately scattered back towards the surface is 

treated as a diffuse event  
– Typically considering a uniform scattering: Lambertian surface 

“reflection”  Lambertian BRDF 

Specular 
transmission 

Transmission 

Diffuse 
reflection 

𝐧𝐧 

Sub-surface 
scattering 



Light Transport Events (3) 

• Outgoing energy after a sub-surface scattering process is also 
a diffuse event , but not a local one 

• Highly directional transmission (e.g. in relatively clear media) 
is a specular event   
 

 

Specular 
transmission 

Transmission 

Sub-surface 
scattering 

𝐧𝐧 𝐧𝐧 
Diffuse 

reflection 



Modeling Light Transport with Paths 

• In graphics, we typically use the mechanisms of 
geometric optics to calculate the trajectory of 
transmitted light in space: 
– Radiance travels in straight paths 
– Light interacts with geometry and each event diverts its 

path into a new path segment 
 

𝐱𝐱𝑘𝑘−1 

𝐱𝐱𝑘𝑘 

𝐱𝐱𝑘𝑘+1 

𝐱𝐱𝑘𝑘+2 



Path Notation (1) 

• Heckbert introduced a regular expression path 
notation based on the events a renderer can 
reproduce 

• Nodes in a path represent one of the following: 
– L: light emission 
– E: “eye” sensor 
– D: diffuse scattering 
– S:  ideal reflection/refraction. Regards deterministic paths 
– G: glossy (or non-ideal) transmission or reflection 

 



Path Notation (2) 

• Nodes are combined in regular expressions 
such as: 
 
– LD+E: Precomputed diffuse inter-reflections 

(radiosity algorithm) 

 
– ES*(D|G)L: Whitted-style recursive ray tracing 

 
– E(D|G)L: Local-only shading (direct rendering 

or ray casting) 

 
– L(G|S)+DS*E: Caustics 



The Rendering Equation (1) 

• Expresses the equilibrium of light distribution at each point in 
a scene 

• It answers the question: “How much radiance leaves a 
location in a specific direction given a distribution of incident 
radiance values” 
– What is the total outgoing radiance (all directions)?  



Taking into account the irradiance from all incident directions over 
the hemisphere above the surface point, the reflected radiance is: 

 

 

 

 

 

The Rendering Equation (2) 

Reflectance equation 

𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 = � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟 𝐱𝐱,𝜑𝜑𝑜𝑜,𝜃𝜃𝑜𝑜, 𝜑𝜑𝑖𝑖 ,𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖)
Ω𝑖𝑖

 

𝑓𝑓𝑟𝑟  𝐱𝐱,𝜑𝜑𝑜𝑜,𝜃𝜃𝑜𝑜, 𝜑𝜑𝑖𝑖 ,𝜃𝜃𝑖𝑖 =𝑓𝑓𝑟𝑟  𝐱𝐱,𝜔𝜔𝑜𝑜,𝜔𝜔𝑖𝑖 : BRDF 

𝑑𝑑𝜎𝜎 𝜔𝜔𝑖𝑖 :   Differential solid angle centered at direction 𝜔𝜔𝑖𝑖 



𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝐱𝐱,𝜔𝜔𝑜𝑜 + � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟 𝐱𝐱,𝜑𝜑𝑜𝑜, 𝜃𝜃𝑜𝑜, 𝜑𝜑𝑖𝑖 ,𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑖𝑖 𝑑𝑑𝜎𝜎(𝜔𝜔𝑖𝑖)
Ω𝑖𝑖

 

The Rendering Equation (3) 

• To also account for the self-emitting surfaces (incandescence), 
an emission term (for most surfaces zero) is added: 

 
 
 
 

• This form of the Rendering Equation is not 
convenient 
– Uses only quantities local to a surface 

Rendering equation 



The Rendering Equation (4) 

• We can replace the solid angle of incidence by the 
corresponding surface patch the light comes from 

• If x is the current location, let y be the first visible point along 
the direction             :    

 
 
 𝑑𝑑𝜎𝜎 𝜔𝜔𝑖𝑖 =

cos 𝜃𝜃𝑦𝑦 𝑑𝑑𝑑𝑑(𝐲𝐲)
𝐱𝐱 − 𝐲𝐲 2  

𝑑𝑑𝜎𝜎 𝜔𝜔𝑖𝑖  

𝑑𝑑𝑑𝑑(𝐲𝐲) 

𝐲𝐲 

𝐱𝐱 



The Rendering Equation (5) 

• Replacing the incident solid angles we get: 

 
 
 

• Now as there is no attenuation (in this simple form – no 
participating media) as light travels on a straight line, we can 
assume: 

 

x 

y 

𝐿𝐿 𝐱𝐱,𝜔𝜔𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝐱𝐱,𝜔𝜔𝑜𝑜 + � 𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 𝑓𝑓𝑟𝑟  𝐱𝐱,𝜑𝜑𝑜𝑜,𝜃𝜃𝑜𝑜, 𝜑𝜑𝑖𝑖 ,𝜃𝜃𝑖𝑖 
cos𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑦𝑦
𝐱𝐱 − 𝐲𝐲 2 𝑑𝑑𝑑𝑑(𝐲𝐲)

ℳ𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝐿𝐿 𝐱𝐱,𝜔𝜔𝑖𝑖 = 𝐿𝐿 𝐲𝐲,𝜔𝜔𝑦𝑦  



The Rendering Equation (6) 

• In the previous equation, we introduced a pure geometric 
term (call it G(x,y)) 

• To move from the domain of visible surfaces to an integration 
domain of all surfaces in the scene, we introduce a visibility 
functionV(x,y): 

𝐿𝐿 𝐱𝐱,𝜔𝜔𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝐱𝐱,𝜔𝜔𝑜𝑜 + � 𝐿𝐿 𝐲𝐲,𝜔𝜔𝑦𝑦 𝑓𝑓𝑟𝑟 𝐱𝐱,𝜔𝜔𝑜𝑜,𝜔𝜔𝑦𝑦 𝐺𝐺 𝐱𝐱, 𝐲𝐲 𝑉𝑉 𝐱𝐱, 𝐲𝐲 𝑑𝑑𝑑𝑑(𝐲𝐲)
ℳ

 



The Rendering Equation (7) 

• Some times, when referring to path nodes, it is more 
convenient to express the rendering equation wrt a point’s 
neighbors in a path:  

𝐱𝐱𝑘𝑘+1 

𝐱𝐱𝑘𝑘 

𝐱𝐱𝑘𝑘−1 

𝐿𝐿 𝐱𝐱𝑘𝑘 ,𝜔𝜔𝑖𝑖 , = 𝐿𝐿(𝐱𝐱𝑘𝑘+1 → 𝐱𝐱𝑘𝑘) 

𝐿𝐿 𝐱𝐱𝑘𝑘 ,𝜔𝜔𝑜𝑜, = 𝐿𝐿(𝐱𝐱𝑘𝑘 → 𝐱𝐱𝑘𝑘−1) 

𝑓𝑓 𝐱𝐱𝑘𝑘 ,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 = 𝑓𝑓 (𝐱𝐱𝑘𝑘+1 → 𝐱𝐱𝑘𝑘 → 𝐱𝐱𝑘𝑘−1) 𝜔𝜔𝑖𝑖 
𝜔𝜔𝑜𝑜 



The Rendering Equation (7) 

𝐿𝐿 𝐱𝐱𝑘𝑘 → 𝐱𝐱𝑘𝑘−1 =

𝐿𝐿𝑒𝑒 𝐱𝐱𝑘𝑘 → 𝐱𝐱𝑘𝑘−1 + � 𝐿𝐿 𝐱𝐱 → 𝐱𝐱𝑘𝑘 𝑓𝑓𝑟𝑟  𝐱𝐱 → 𝐱𝐱𝑘𝑘→ 𝐱𝐱𝑘𝑘−1 𝐺𝐺 𝐱𝐱, 𝐱𝐱𝑘𝑘 𝑉𝑉 𝐱𝐱, 𝐱𝐱𝑘𝑘 𝑑𝑑𝑑𝑑(𝐱𝐱)
ℳ

 

𝐱𝐱 
𝑆𝑆 

𝑆𝑆 

𝑆𝑆 

𝑆𝑆 

𝐱𝐱𝑘𝑘 

𝐱𝐱𝑘𝑘−1 

𝐱𝐱 𝑑𝑑𝑑𝑑(𝐱𝐱) 

𝑉𝑉 𝐱𝐱, 𝐱𝐱𝑘𝑘 = 0 𝑉𝑉 𝐱𝐱, 𝐱𝐱𝑘𝑘 = 1 



Generalizing to All Scattering Events (1) 

• Up to this point, our rendering equation only 
considered reflected light and light scattered back to 
the medium of incidence: 
 
 
𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝐱𝐱,𝜔𝜔𝑜𝑜 + � 𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔 𝑓𝑓𝑟𝑟 𝐱𝐱,𝜔𝜔𝑜𝑜,𝜔𝜔 𝑑𝑑𝜎𝜎⊥(𝜔𝜔)

𝛺𝛺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

 

𝑑𝑑𝜎𝜎⊥(𝜔𝜔) = |cos𝜃𝜃𝑖𝑖|𝑑𝑑𝜎𝜎(𝜔𝜔) : “Projected” solid angle (on the surface) 



Generalizing to All Scattering Events (2) 

• We can extend this formulation to also include 
transmission of energy across an interface surface: 

𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜 = 𝐿𝐿𝑒𝑒 𝐱𝐱,𝜔𝜔𝑜𝑜 + � 𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔 𝑓𝑓𝑠𝑠 𝐱𝐱,𝜔𝜔𝑜𝑜,𝜔𝜔 𝑑𝑑𝜎𝜎⊥(𝜔𝜔)
𝛺𝛺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑓𝑓𝑠𝑠 𝐱𝐱,𝜔𝜔𝑜𝑜,𝜔𝜔 : BSDF 
 
Bidirectional Scattering  
Distribution Function 

𝐱𝐱  

𝑑𝑑𝜔𝜔 
𝐿𝐿𝑜𝑜 𝐱𝐱,𝜔𝜔𝑜𝑜  

𝑑𝑑𝜔𝜔 

Scattering equation 



• Light values are perceived through radiance measurements 𝛪𝛪𝜅𝜅 
at locations on a sensor surface 

• 𝛪𝛪𝜅𝜅 is affected by incident light in 
its neighborhood 

• 𝛪𝛪𝜅𝜅 is typically affected by many 
incident directions (pinhole 
cameras don’t) 
 
 
 

 
• 𝑊𝑊𝑒𝑒: “Emitted importance” 

The Measurement Equation 

𝛪𝛪𝜅𝜅 = � 𝑊𝑊𝑒𝑒 𝐱𝐱,𝜔𝜔 𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔
ℳ×𝑆𝑆2

𝑑𝑑𝑑𝑑 𝐱𝐱 𝑑𝑑𝜎𝜎⊥(𝜔𝜔) 

ℳ 
𝛪𝛪𝜅𝜅 

𝑆𝑆2 

Measurement equation 

Source: [Vea97] 



The Measurement Equation - Example 

v 

v 

θ 

θ 
𝐱𝐱1 

𝐱𝐱2 

𝑊𝑊𝑒𝑒
(𝐼𝐼1)(𝐱𝐱1,𝜑𝜑, 𝜃𝜃) �𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑊𝑊𝑒𝑒
(𝐼𝐼2)(𝐱𝐱2,𝜑𝜑,𝜃𝜃) �𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑊𝑊𝑒𝑒
(𝐼𝐼1)(𝐱𝐱,𝜑𝜑,𝜃𝜃) � 𝐱𝐱 = (𝑢𝑢, 𝑣𝑣)

𝜑𝜑,𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  



Exploring the Path Space 

• The scattering equation provides the means to locally 
evaluate outgoing radiance at a node 𝐱𝐱𝑘𝑘 . 

• How can we obtain the contribution of illumination at a global 
level? 

• Two strategies: 
– Recursive evaluation  
– Path integral formulation 

• Rendering algorithms are based on a mixture of the above 2 
strategies  



Recursive Path Evaluation (1) 

• The outgoing radiance from a node 𝐱𝐱1 towards a 
reception point 𝐱𝐱0 (e.g. on the camera plane) is: 
 
 
 

• Or more simply: 
 

𝐿𝐿 𝐱𝐱1 → 𝐱𝐱0 =

𝐿𝐿𝑒𝑒 𝐱𝐱1 → 𝐱𝐱0 + � 𝐿𝐿 𝐱𝐱2 → 𝐱𝐱1 𝑓𝑓𝑠𝑠 𝐱𝐱2 → 𝐱𝐱1→ 𝐱𝐱0 𝐺𝐺 𝐱𝐱2, 𝐱𝐱1 𝑉𝑉 𝐱𝐱2, 𝐱𝐱1 𝑑𝑑𝑑𝑑(𝐱𝐱2)
ℳ

 

𝐿𝐿(1) = 𝐿𝐿𝑒𝑒
(1) + � 𝐿𝐿(2)𝐾𝐾(1) 𝑑𝑑𝑑𝑑(𝐱𝐱(2)) ⇔

ℳ

𝐿𝐿(1) = 𝐿𝐿𝑒𝑒
(1) + 𝑻𝑻𝐿𝐿(2) 

Light transport operator 

Source: [Vea97] 



Recursive Path Evaluation (2) 

• Applying this equation recursively: 
 
 
 

𝐿𝐿(1) = 𝐿𝐿𝑒𝑒
(1) + 𝑻𝑻𝐿𝐿(2) 

W𝑒𝑒(𝜔𝜔𝜉𝜉)𝐿𝐿 1 (𝜔𝜔𝜉𝜉) 
W𝑒𝑒(𝜔𝜔𝜓𝜓)𝐿𝐿 1 (𝜔𝜔𝜓𝜓) 



Recursive Path Evaluation (2) 

• Applying this equation recursively: 
 
 
 

𝐿𝐿(1) = 𝐿𝐿𝑒𝑒
(1) + 𝑻𝑻𝐿𝐿(2) = 𝐿𝐿𝑒𝑒

(1) + 𝑻𝑻 𝐿𝐿𝑒𝑒
(2) + 𝑻𝑻𝐿𝐿(3)  

W𝑒𝑒(𝜔𝜔𝜉𝜉)𝐿𝐿 1 (𝜔𝜔𝜉𝜉) 
W𝑒𝑒(𝜔𝜔𝜓𝜓)𝐿𝐿 1 (𝜔𝜔𝜓𝜓) 



Recursive Path Evaluation (2) 

• Applying this equation recursively: 
 
 
 

𝐿𝐿(1) = 𝐿𝐿𝑒𝑒
(1) + 𝑻𝑻𝐿𝐿(2) = 𝐿𝐿𝑒𝑒

(1) + 𝑻𝑻 𝐿𝐿𝑒𝑒
(2) + 𝑻𝑻𝐿𝐿(3) = 

𝐿𝐿𝑒𝑒
(1) + 𝑻𝑻𝐿𝐿𝑒𝑒

(2) + 𝑻𝑻𝑻𝑻𝐿𝐿𝑒𝑒
(3) + ⋯+ ∏ 𝑻𝑻𝐿𝐿𝑒𝑒

(𝑘𝑘+1)𝑘𝑘 , 𝑘𝑘 → ∞ 

W𝑒𝑒(𝜔𝜔𝜉𝜉)𝐿𝐿 1 (𝜔𝜔𝜉𝜉) 
W𝑒𝑒(𝜔𝜔𝜓𝜓)𝐿𝐿 1 (𝜔𝜔𝜓𝜓) 



Recursive Path Evaluation (2) 

Notes: 
• Each time the transport operator is applied, the 

entire surface domain is considered 
• This solution explores the entire path space: 

– Takes into account the contribution of all light emitters 
from all possible paths  unbiased 

– Is the basis for the path tracing algorithm 

 



The Path Integral (1) 

• The path integral formulates light transport as a 
simple, single integral 

• Non-recursive evaluation 
• In its general form it represents the aggregate light 

measurements from all paths of all lengths recorded 
on a single measurement point:   

𝐼𝐼𝑗𝑗 = � 𝑓𝑓𝑗𝑗 𝑥̅𝑥 𝑑𝑑𝜇𝜇(𝑥̅𝑥)
Ω

 
Ω : Set of paths of all lengths 
 
𝜇𝜇 : A measure on this space 
 
𝑓𝑓𝑗𝑗 : Measurement contribution 
      function 

Source: [Vea97] 



The Path Integral (2) 

Why use this formulation? 
• Transforms the entire light transport into an 

integration problem  Can be addressed with 
general-purpose methods (e.g. MIS) 

• Allows new techniques for sampling space:  
– The integral rendering equation represents a localized 

view of the light transport  only incremental path 
generation 

– We can now choose path nodes with other global sampling 
strategies  New algorithms: Bidirectional path tracing, 
Metropolis light transport 

Source: [Vea97] 



The Path Space (1) 

• Let Ω𝑘𝑘 represent the set of all paths 𝑥̅𝑥 of length 𝑘𝑘: 
𝑥̅𝑥 = 𝐱𝐱0𝐱𝐱1 … 𝐱𝐱𝑘𝑘, 1 < 𝑘𝑘 < ∞ 

• Points 𝐱𝐱𝑖𝑖  are taken in the domain ℳ of all surfaces of 
the scene  

Some paths of 
length k=3 

All paths of 
length k=3 

Ω3 



The Path Space (2) 

• We can now define a product measure on this space 
defined over a set of paths 𝐷𝐷 ⊂ Ω𝑘𝑘: 
 
 
 

• From which we can derive: 
 

“Area” measure 𝜇𝜇𝑘𝑘 𝐷𝐷 = � 𝑑𝑑𝑑𝑑 𝐱𝐱0 …𝑑𝑑𝑑𝑑(𝐱𝐱𝑘𝑘)
𝐷𝐷

 

𝑑𝑑𝜇𝜇𝑘𝑘 𝑥̅𝑥 = 𝑑𝑑𝜇𝜇𝑘𝑘(𝐱𝐱0𝐱𝐱1 … 𝐱𝐱𝑘𝑘 ) = 𝑑𝑑𝑑𝑑 𝐱𝐱0 …𝑑𝑑𝑑𝑑(𝐱𝐱𝑘𝑘) 

Source: [Vea97] 



The Path Space (3) 

• Now we can define the path space of all path 
lengths: 
 
 

• Similarly, we can extend the area measure to this 
space: 
 
 

• The measure of a set of paths is the sum of the 
measures of the paths of each length 

Ω = �Ω𝑘𝑘

∞

𝑘𝑘=1

 

𝜇𝜇 𝐷𝐷 = �𝜇𝜇𝑘𝑘(𝐷𝐷 ∩ Ω𝑘𝑘)
∞

𝑘𝑘=1

 

Source: [Vea97] 



Rethinking the Measurement Equation (1) 

• The original measurement equation regarded all 
incident directions and all locations around the 
measurement point: 
 
 
 
 

• But: 

𝛪𝛪𝜅𝜅 = � 𝑊𝑊𝑒𝑒 𝐱𝐱,𝜔𝜔 𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔
ℳ×𝑆𝑆2

𝑑𝑑𝑑𝑑 𝐱𝐱 𝑑𝑑𝜎𝜎⊥(𝜔𝜔) ℳ 
𝛪𝛪𝜅𝜅 

𝑆𝑆2 

𝑑𝑑𝜎𝜎⊥ 𝜔𝜔 = 𝐺𝐺 𝐱𝐱, 𝐲𝐲 𝑑𝑑𝑑𝑑 𝐲𝐲 =
cos𝜃𝜃𝜊𝜊 cos𝜃𝜃𝑖𝑖
𝐱𝐱 − 𝐲𝐲 2 𝑉𝑉 𝐱𝐱, 𝐲𝐲 𝑑𝑑𝑑𝑑(𝐲𝐲) 

Source: [Vea97] 



Rethinking the Measurement Equation (2) 

• So the measurement equation can be mapped to an 
entirely surface-based domain: 
 
 
 

 

𝛪𝛪𝑗𝑗 = � 𝑊𝑊𝑒𝑒
(𝑗𝑗) 𝐱𝐱,𝜔𝜔 𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔

ℳ×𝑆𝑆2

𝑑𝑑𝑑𝑑 𝐱𝐱 𝑑𝑑𝜎𝜎⊥ 𝜔𝜔 = 

� 𝑊𝑊𝑒𝑒
𝑗𝑗 𝐲𝐲 → 𝐱𝐱 𝐿𝐿𝑖𝑖 𝐲𝐲 → 𝐱𝐱

ℳ×ℳ

𝐺𝐺(𝐱𝐱, 𝐲𝐲)𝑑𝑑𝑑𝑑 𝐱𝐱 𝑑𝑑𝑑𝑑 𝐲𝐲  

 

ℳ 𝑆𝑆2 

𝛪𝛪𝑗𝑗 

ℳ 

𝛪𝛪𝑗𝑗 

ℳ 

Source: [Vea97] 



Rethinking the Measurement Equation (3) 

• Expanding recursively the transport equation to 
replace 𝐿𝐿𝑖𝑖 , we obtain: 
 
 
 

 

𝛪𝛪𝑗𝑗 = � � 𝑊𝑊𝑒𝑒
𝑗𝑗 𝐱𝐱𝑘𝑘−1 → 𝐱𝐱𝑘𝑘

ℳ𝑘𝑘+1

�[𝑓𝑓𝑠𝑠(𝐱𝐱𝑖𝑖−1 → 𝐱𝐱𝑘𝑘 → 𝐱𝐱𝑖𝑖+1)𝐺𝐺(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑖𝑖+1)] 
𝑘𝑘−1

𝑖𝑖=1

∞

𝑘𝑘=1

 

∙ 𝐺𝐺 𝐱𝐱0, 𝐱𝐱1 𝐿𝐿𝑒𝑒(𝐱𝐱0 → 𝐱𝐱1)𝑑𝑑𝑑𝑑 𝐱𝐱0 …𝑑𝑑𝑑𝑑 𝐱𝐱𝑘𝑘  

Example: 

Source: [Vea97] 



Rethinking the Measurement Equation (4) 

• So we sum the contribution of all paths of all path 
lengths: 
 
 
 

 

𝛪𝛪𝑗𝑗 = � 𝑊𝑊𝑒𝑒
𝑗𝑗 𝐱𝐱0 → 𝐱𝐱1 𝐺𝐺 𝐱𝐱0, 𝐱𝐱1 𝐿𝐿𝑒𝑒 𝐱𝐱0 → 𝐱𝐱1 𝑑𝑑𝑑𝑑 𝐱𝐱0 𝑑𝑑𝑑𝑑 𝐱𝐱1 +

ℳ×ℳ

 

� 𝑊𝑊𝑒𝑒
𝑗𝑗 𝐱𝐱1 → 𝐱𝐱2 𝐺𝐺 𝐱𝐱1, 𝐱𝐱2 𝐺𝐺 𝐱𝐱0, 𝐱𝐱1 𝑓𝑓𝑠𝑠(𝐱𝐱0 → 𝐱𝐱1 → 𝐱𝐱2) 

ℳ×ℳ×ℳ

 

𝐿𝐿𝑒𝑒 𝐱𝐱0 → 𝐱𝐱1 𝑑𝑑𝑑𝑑 𝐱𝐱0 𝑑𝑑𝑑𝑑 𝐱𝐱1 𝑑𝑑𝑑𝑑 𝐱𝐱2 + 

… 

Source: [Vea97] 



Rethinking the Measurement Equation (5) 

• Example: 
 
 
 

 

ℳ × ℳ 



Rethinking the Measurement Equation (5) 

• Example: 
 
 
 

 

ℳ × ℳ × ℳ 



Rethinking the Measurement Equation (5) 

• Example: 
 
 
 

 

ℳ × ℳ × ℳ × ℳ 



Rethinking the Measurement Equation (5) 

• Example: 
 
 
 

 

ℳ × ℳ + 
ℳ × ℳ × ℳ+ 
ℳ × ℳ × ℳ × ℳ 



The Measurement Contribution Function (1) 

• The integrant is defined for each path length 
separately. This is the measurement contribution 
function 

• For example, for 𝑘𝑘 = 3, i.e. 𝑥̅𝑥 = 𝐱𝐱0𝐱𝐱1𝐱𝐱2𝐱𝐱3 we have: 

𝑓𝑓𝑗𝑗 𝑥𝑥� = 𝐿𝐿𝑒𝑒 𝐱𝐱0 → 𝐱𝐱1 ∙ 𝐺𝐺 𝐱𝐱0, 𝐱𝐱1 𝑓𝑓𝑠𝑠(𝐱𝐱0 → 𝐱𝐱1 → 𝐱𝐱2) ∙ 
𝐺𝐺 𝐱𝐱1, 𝐱𝐱2 𝑓𝑓𝑠𝑠(𝐱𝐱1 → 𝐱𝐱2 → 𝐱𝐱3) ∙ 

𝐺𝐺 𝐱𝐱2, 𝐱𝐱3 𝑊𝑊𝑒𝑒
𝑗𝑗 𝐱𝐱2 → 𝐱𝐱3  

Source: [Vea97] 
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