
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Scene Organization

Screenshot from WALL-E

Scene organization

• Primitives (building blocks) of a scene are gathered in
spatially coherent clusters

• The clusters can be grouped in larger spatial
aggregations based on:
– Function
– Relational clustering
– Spatial coherence

• Why is this useful?
– All primitives can be efficiently accessed, removed early

from operations such as viewport frustum culling, and
easily managed as memory objects (dynamic loading,
caching, etc.)

Types of Arrangement: Relational (1)

• When designing a virtual world we think in
ontological terms and group entities according to
logical relationships

Types of Arrangement: Relational (2)

• This type of arrangement is a user-centric approach
to scene management
– Useful for modelling a virtual environment (scene)
– Helps as synthesize larger constructions from small parts
– Promotes reusability of the building blocks

• The same environment can be modelled with
different approaches (see example in previous page)

• This object hierarchy is the basis for the scene graph

Types of Arrangement: Spatial

• We can organize data in spatially coherent manner
instead (spatial partitioning)

• Provides a significant performance improvement 
invisible geometry can be culled early in the process
at a high hierarchy level
– Ontological hierarchies are not necessarily optimized for

spatial partitioning
– Static geometry is represented ontologically and

subsequently organized in spatial hierarchies for speed

Transformation Hierarchies (1)

• Consider this simple example:

– Uses appropriately transformed
objects

– The camera and light are also
transformed, following the user’s
movement

Xform Xform Xform Xform

Xform

Scene

Xform

Transformation Hierarchies (2)

Some observations:

Xform Xform Xform Xform

Xform

Scene

Xform

Single geometry nodes
may be instanced under
different transformations

Transformations can be
group (aggregate) nodes

This group represents
an entire room, i.e. a
different ontological

level than its children

Traversing the Hierarchy (1)

• We express one node (target) relative to another
(reference) by a change of reference frame according
to the intermediate transformations:
– Perform an upward traversal of the tree from the target to

the common parent node of the target and reference
nodes

– Descend to the reference node by inversely applying all
transformations of this path

Traversing the Hierarchy (2)

1
1

1

r k

A B
j

Bj A
m i r

i

+

→
=

−

= +

=∏ ∏MMM

1Ak−M

AkM

2Ak−M
1Bm−M

BmM

Α

Β

r
Express A w.r.t B coordinates

• Expressing all nodes w.r.t the WCS
• r = Scene root = Β
• A: every other node

Traversing the Hierarchy: Example 1

1

k

A WCS
i

Ai→
=

=∏MM

S

Traversing the Hierarchy: Example 2

i WCS→M

S WCS

ECS Camera

Object i

ViewingM
S

WCS

ECS Camera
1

Viewing
−M

Invert dependency
(and transformation)

Change of
tree root

The Scene Graph

• A DAG representing the scene entities and their
relationships

• Entities:
– Geometry instances
– Groups
– Transformations
– Virtual cameras and Lights
– Dynamic nodes (triggers, iterators, etc)
– Other “renderable” entities, such as sounds

• Content of the scene graph may be indirectly indexed
in other data structures (e.g. spatial hierarchies)

Scene Graphs: Functionality

• Usually scene graphs perform the following tasks:
– Maintain and manage the relationships between the scene

entities
– Perform all per-frame state calculations, i.e. advance the

current values of all node variables
– Perform any culling operations (prune invisible node sub-

trees)
– Trigger events and dispatch messages for node interaction
– Provide a traversal mechanism for drawing the entire

scene

Scene Graphs: Basic Node Examples (1)

class Node
{
protected:
 bool active;
 bool culled;
public:
 Node();
 virtual void init();
 virtual void simulate();
 virtual void cull();
 virtual void draw();
 virtual void reset();
};

class Group : Node
{
protected:
 vector<Node*> children;
 Bvolume extents;
public:
 Group();
 void add(Node *n);
 void remove(int i);
 Node * getChild(int i);
 int getNumChildren();
 virtual void init();
 virtual void simulate();
 virtual void cull();
 virtual void draw();
};

Scene Graphs: Basic Node Examples (2)

void Group::draw()
{ vector <Node>::size_type i,sz;
 sz = children.size();
 for (i=0; i<sz; i++)
 children[i]->draw();
}

void Geometry::draw() // Geometry is a subclass of Node
{
 if (!enabled || culled)
 return;
 // ... render the geometry
}

Scene Graphs: Life Cycle

// Scene is a subclass of Group
Scene *myScene = new Scene();
myScene->load(“village.scn”);
myScene->init();

while (notTerminating)
{
 // ... other operations such as user input
 myScene->simulate() ;
 myScene->cull() ;
 // ... Rendering engine frame setup
 myScene->draw() ;
 // ... Rendering engine frame post processing
 // GUI, etc.
}

Node Instancing

• Node instancing helps
reduce the storage and
bandwidth
requirements for the
geometry
representation by
avoiding the replication
of geometry data

Xform Xform Xform Xform

Xform

Scene

Xform

Node Instancing: Use Cases

Killzone: Shadow Fall

Octane renderer

Accelerating Visibility Queries (1)

• In cluttered or large environments, it
is important to efficiently discard
objects that are not going to appear
in the view frustum either because:

– They are not contained in the frustum

(frustum culling)

– They are hidden behind other objects
(occlusion culling)

Accelerating Visibility Queries (2)

• To perform such queries, we must do so efficiently,
i.e. not at the detailed geometry level, but rather
using the objects’ bounding volumes or better, the
bounding volume of aggregations of objects

• Many more opportunities arise for culling, especially
in indoor environments (portal-based culling)

Bounding the World (1)

• It is much more efficient to perform visibility (and
other) queries on object bounds instead of the
objects themselves
– Provided that bounds are efficiently represented: boxes,

spheres or other easy to calculate and transform shapes

Bounding the World (2)

• Bounding Volumes provide a conservative query
mechanism
– They definitely enclose and contain the geometry
– But… may leave too much void space

Bounding Volume Hierarchies

Spatial Subdivision Structures

• Octrees
• BSP Trees
• K-d Trees

Frustum Culling

• Objects and object hierarchies whose bounds are
outside the frustum can be eliminated prior to a
drawing traversal

Occlusion Culling (1)

• In occlusion culling, we try to conservatively eliminate
objects that are hidden from view behind other
geometry
– We try to guess a potentially visible set of objects

 Visible geometry All geometry in frustum Potentially visible set

Occlusion Culling (2)

• To perform occlusion culling we:
– Determine geometry to act as a set of occluders (obstacles

behind which other geometry can be potentially hidden)
– Provide a mechanism to mark and cull hidden geometry

• Occlusion determination can be done:
– Analytically, via frustum culling

• Create a frustum using each occluder geometry and the eye position
• Perform frustum/object bounding box containment test

– In screen space (see next)

 Visible geometry All geometry in frustum Potentially visible set

Occluder Determination (1)

• Automatic occluder determination is hard for typical
scenes:
– Objects are not convex
– Geometry may be thin or filled with holes
– Geometry may be textured with transparent maps

Rendered geometry Occluder geometry

Images from “Practical Occlusion Culling on PS3”, GDC 2011

Occluder Determination (2)

• Most occluders are either:
– Manually built by artists or
– Automatically pre-selected based on certain features and

meta-data and approved by artists

Images from “Practical Occlusion Culling in Killzone 3”, SIGGRAPH Talk, 2011

Occluder Determination (3)

Images from “Practical Occlusion Culling in Killzone 3”, SIGGRAPH Talk, 2011

Practical Occlusion Culling in GPUs

• Typically, the occluders’ geometry is large enough to
make the generation of individual culling frusta
prohibitive

• Another solution is to create a rough depth buffer
based on the occlusion geometry and

• Test the bounding boxes of the objects against this
buffer:
– Fully hidden bounding boxes signify hidden objects

Contributors

• Georgios Papaioannou

	Slide Number 1
	Scene organization
	Types of Arrangement: Relational (1)
	Types of Arrangement: Relational (2)
	Types of Arrangement: Spatial
	Transformation Hierarchies (1)
	Transformation Hierarchies (2)
	Traversing the Hierarchy (1)
	Traversing the Hierarchy (2)
	Traversing the Hierarchy: Example 1
	Traversing the Hierarchy: Example 2
	The Scene Graph
	Scene Graphs: Functionality
	Scene Graphs: Basic Node Examples (1)
	Scene Graphs: Basic Node Examples (2)
	Scene Graphs: Life Cycle
	Node Instancing
	Node Instancing: Use Cases
	Accelerating Visibility Queries (1)
	Accelerating Visibility Queries (2)
	Bounding the World (1)
	Bounding the World (2)
	Bounding Volume Hierarchies
	Spatial Subdivision Structures
	Frustum Culling
	Occlusion Culling (1)
	Occlusion Culling (2)
	Occluder Determination (1)
	Occluder Determination (2)
	Occluder Determination (3)
	Practical Occlusion Culling in GPUs
	Contributors

