
COMPUTER GRAPHICS COURSE 

Georgios Papaioannou - 2014 

Scene Organization 

Screenshot from WALL-E  



Scene organization 

• Primitives (building blocks) of a scene are gathered in 
spatially coherent clusters 

• The clusters can be grouped in larger spatial 
aggregations based on: 
– Function  
– Relational clustering 
– Spatial coherence 

• Why is this useful? 
– All primitives can be efficiently accessed, removed early 

from operations such as viewport frustum culling, and 
easily managed as memory objects (dynamic loading, 
caching, etc.) 

 



Types of Arrangement: Relational (1) 

• When designing a virtual world we think in 
ontological terms and group entities according to 
logical relationships 



Types of Arrangement: Relational (2) 

• This type of arrangement is a user-centric approach 
to scene management 
– Useful for modelling a virtual environment (scene) 
– Helps as synthesize larger constructions from small parts 
– Promotes reusability of the building blocks 

• The same environment can be modelled with 
different approaches (see example in previous page) 

• This object hierarchy is the basis for the scene graph 



Types of Arrangement: Spatial 

• We can organize data in spatially coherent manner 
instead (spatial partitioning) 

• Provides a significant performance improvement  
invisible geometry can be culled early in the process 
at a high hierarchy level  
– Ontological hierarchies are not necessarily optimized for 

spatial partitioning  
– Static geometry is represented ontologically and 

subsequently organized in spatial hierarchies for speed 

 



Transformation Hierarchies (1) 

• Consider this simple example: 
 
 
 
 
 
 
 
 

– Uses appropriately transformed 
objects 

– The camera and light are also 
transformed, following the user’s 
movement 
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Transformation Hierarchies (2) 

Some observations: 

Xform Xform Xform Xform 

Xform 

Scene 

Xform 

Single geometry nodes 
may be instanced under 
different transformations 

Transformations can be 
group (aggregate) nodes 

This group represents 
an entire room, i.e. a 
different ontological 

level than its children 



Traversing the Hierarchy (1) 

• We express one node (target) relative to another 
(reference) by a change of reference frame according 
to the intermediate transformations: 
– Perform an upward traversal of the tree from the target to 

the common parent node of the target and reference 
nodes 

– Descend to the reference node by inversely applying all 
transformations of this path 
 



Traversing the Hierarchy (2) 
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• Expressing all nodes w.r.t the WCS 
• r = Scene root = Β 
• A: every other node 

Traversing the Hierarchy: Example 1 
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Traversing the Hierarchy: Example 2 
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The Scene Graph 

• A DAG representing the scene entities and their 
relationships 

• Entities: 
– Geometry instances 
– Groups 
– Transformations 
– Virtual cameras and Lights 
– Dynamic nodes (triggers, iterators, etc) 
– Other “renderable” entities, such as sounds 

• Content of the scene graph may be indirectly indexed 
in other data structures (e.g. spatial hierarchies) 



Scene Graphs: Functionality 

• Usually scene graphs perform the following tasks: 
– Maintain and manage the relationships between the scene 

entities 
– Perform all per-frame state calculations, i.e. advance the 

current values of all node variables 
– Perform any culling operations (prune invisible node sub-

trees) 
– Trigger events and dispatch messages for node interaction 
– Provide a traversal mechanism for drawing the entire 

scene  



Scene Graphs: Basic Node Examples (1) 

class Node 
{ 
protected: 
    bool active; 
    bool culled; 
public: 
    Node(); 
    virtual void init(); 
    virtual void simulate(); 
    virtual void cull(); 
    virtual void draw(); 
    virtual void reset(); 
}; 
 
 
 
 

class Group : Node 
{ 
protected: 
    vector<Node*> children; 
    Bvolume extents; 
public: 
    Group(); 
    void add(Node *n); 
    void remove(int i); 
    Node * getChild(int i); 
    int  getNumChildren(); 
    virtual void init(); 
    virtual void simulate(); 
    virtual void cull(); 
    virtual void draw(); 
}; 

 



Scene Graphs: Basic Node Examples (2) 

void Group::draw() 
{    vector <Node>::size_type i,sz;     
      sz = children.size();     
      for (i=0; i<sz; i++)         
          children[i]->draw();  
} 
 

void Geometry::draw() // Geometry is a subclass of Node 
{ 
    if (!enabled || culled) 
        return; 
    // ... render the geometry  
} 

 



Scene Graphs: Life Cycle 

// Scene is a subclass of Group 
Scene *myScene = new Scene(); 
myScene->load(“village.scn”); 
myScene->init(); 
 
while (notTerminating) 
{ 
    // ... other operations such as user input 
    myScene->simulate() ; 
    myScene->cull() ; 
    // ... Rendering engine frame setup 
    myScene->draw() ; 
         // ... Rendering engine frame post processing 
    // GUI, etc. 
} 
 



Node Instancing 

• Node instancing helps 
reduce the storage and 
bandwidth 
requirements for the 
geometry 
representation by 
avoiding the replication 
of geometry data  
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Node Instancing: Use Cases 

Killzone: Shadow Fall 

Octane renderer 



Accelerating Visibility Queries (1) 

• In cluttered or large environments, it 
is important to efficiently discard 
objects that are not going to appear 
in the view frustum either because: 

 
– They are not contained in the frustum 

(frustum culling) 
 

– They are hidden behind other objects 
(occlusion culling) 



Accelerating Visibility Queries (2) 

• To perform such queries, we must do so efficiently, 
i.e. not at the detailed geometry level, but rather 
using the objects’ bounding volumes or better, the 
bounding volume of aggregations of objects 

• Many more opportunities arise for culling, especially 
in indoor environments (portal-based culling)  



Bounding the World (1) 

• It is much more efficient to perform visibility (and 
other) queries on object bounds instead of the 
objects themselves 
– Provided that bounds are efficiently represented: boxes, 

spheres or other easy to calculate and transform shapes 



Bounding the World (2) 

• Bounding Volumes provide a conservative query 
mechanism 
– They definitely enclose and contain the geometry 
– But… may leave too much void space 



Bounding Volume Hierarchies 



Spatial Subdivision Structures 

• Octrees 
• BSP Trees 
• K-d Trees 



Frustum Culling 

• Objects and object hierarchies whose bounds are 
outside the frustum can be eliminated prior to a 
drawing traversal 
 



Occlusion Culling (1) 

• In occlusion culling, we try to conservatively eliminate 
objects that are hidden from view behind other 
geometry 
– We try to guess a potentially visible set of objects  

       Visible geometry               All geometry in frustum               Potentially visible set         



Occlusion Culling (2) 

• To perform occlusion culling we: 
– Determine geometry to act as a set of occluders (obstacles 

behind which other geometry can be potentially hidden) 
– Provide a mechanism to mark and cull hidden geometry 

• Occlusion determination can be done: 
– Analytically, via frustum culling 

• Create a frustum using each occluder geometry and the eye position 
• Perform frustum/object bounding box containment test 

– In screen space (see next) 
 
 

       Visible geometry               All geometry in frustum               Potentially visible set         



Occluder Determination (1) 

• Automatic occluder determination is hard for typical 
scenes: 
– Objects are not convex 
– Geometry may be thin or filled with holes 
– Geometry may be textured with transparent maps 

Rendered geometry Occluder geometry 

Images from “Practical Occlusion Culling on PS3”, GDC 2011 



Occluder Determination (2) 

• Most occluders are either:  
– Manually built by artists or 
– Automatically pre-selected based on certain features and 

meta-data and approved by artists 

Images from “Practical Occlusion Culling in Killzone 3”, SIGGRAPH Talk, 2011 



Occluder Determination (3) 

Images from “Practical Occlusion Culling in Killzone 3”, SIGGRAPH Talk, 2011 



Practical Occlusion Culling in GPUs 

• Typically, the occluders’ geometry is large enough to 
make the generation of individual culling frusta 
prohibitive 

• Another solution is to create a rough depth buffer 
based on the occlusion geometry and 

• Test the bounding boxes of the objects against this 
buffer: 
– Fully hidden bounding boxes signify hidden objects 
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