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You may not have recognized it before, but your ear is a master at computing Fourier

coefficients! When two or more notes are played simultaneously on an intrument we call

the resulting sound a chord. Though the emitted sound is actually a complicated sum of

waves, your ear can usually pick out which notes are in the chord with relative ease. This

is because different parts of your cochlea are stimulated by different frequencies of vibration

of the air. Your ear thus naturally performs a Fourier decomposition, and sends only the

transformed waveform to your brain, which allows you to isolate the frequency components

in a given sound signal. When many notes are played at once (say 6 or more), your ear

may be somewhat overwhelmed and even the most trained musician may have difficulty

separating the chord into its various notes. However, the Fourier methods you have learned

in class will still apply as they should, and with sufficient effort it is still possible to tell the

notes apart. In this project we will play around with these ideas.

1 A little history: the standard chromatic scale

Consonance and dissonance. When two arbitrary frequencies are played together, the

result can sound good or bad. In elementary music theory, the source of dissonance in

such a situation can be traced to “beats”, or audible volume fluctuations, that occur in the

resulting sound signal. Good sounding, or consonant chords, have the feature that the beats

are unnoticeable. (Physiologically, beats are noticeable only when the volume fluctuations

that compose the sound signal occur at a rate lower than 20 Hz. That is to say, if one were

to tap a tabletop at 10 Hz the human ear would perceive the individual taps, but at 30 Hz

the ear cannot distinguish the taps and instead interprets the sound as a pitch.) Pythagoras

is credited as being the first to recognize the principle of consonance. He observed that

two frequencies played together have the least audible beating, and hence a pleasing sound,
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when one frequency is a simple rational multiple of the other. That is, the frequency ν

and some higher frequency αν sound good together when α = m/n for integers m, n with

n as small as possible. The simplest nontrivial example, and hence the “best” sounding

chord, occurs when α =
{

2
1

}
. In fact, this chord is so pleasing that the two pitches sound

almost identical. We call such chords octaves, and we say that any frequency of the form{
. . . , ν

4
, ν

2
, ν, 2ν, 4ν, . . .

}
has the same pitch class as ν.

Scales. We now turn to the concept of a scale. In its most general definition, a scale is

simply a way of choosing a finite set of frequencies to fill in the gap between a reference

frequency ν and its octave 2ν. An example of a scale with 4 pitches might be

ν, 1.3ν, 1.8ν, 2ν

Once a scale has been defined between ν and 2ν as above, the scale quickly reapplies to the

frequency band between 2ν and 4ν by simply replacing the reference frequency with 2ν. This

can be done as well in the other direction; replacing ν with ν/2 would produce the equivalent

scale starting the octave below ν. The scale can be continually ascended and descended in

this fashion, thereby discretizing the entire range of audible frequencies into a select set of

chosen pitches. Any two pitches that differ by a multiple of 2n occupy the same position in

the scale but in different octaves.

There is a rich history behind the forging of the modern chromatic scale in Western

music. In short, it was selected so as to offer the most two and three note pairings that are

consonant to the ear. The reference frequency is chosen to be “concert A”=440 Hz and the

“justly tuned” scale from concert A to its octave contains the following notes, with pitch

class determined by a letter (A-G) and possibly a sharp (]):

440 Hz × 1 16/15 9/8 6/5 5/4 4/3 7/5 3/2 8/5 5/3 16/9 15/8 2

Pitch class: A A] B C C] D D] E F F] G G] A

By adding or subtracting octaves from the above, we can see that all notes used in modern

Western music have frequencies of the form α × 2n × 440 Hz, where α is a rational number

from the above table and n is any integer, positive or negative, so that 2n shifts the note to

any other octave.
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2 Problems

Preliminary Problem: Suppose I have a sound generator that can create signals of the

form A(t) = sin (nπt/T ) where n can be any integer and T is some fixed constant. What

is the smallest possible value for the constant T so that every pitch in the chromatic scale

with a frequency of 110 Hz (double low A) or higher can be played by the sound generator?

Series Problem 1: The sound file majortriad contains a 4 second sample of one of the

most common chords from the modern Western scale. Each note in the chord is played

by the sinusoidal sound generator and none of the notes are below double low A or above

14,080 Hz (the A six octaves above concert A; almost the upper extreme of human hearing).

Listen to the chord, then use the MATLAB function wavread to plot the chord directly as a

waveform (amplitude vs time). Use your result from problem 1 and your knowledge of Fourier

series to determine the individual frequencies that compose this chord. Identify the pitch

class corresponding to each frequency by its letter name. Please include whatever MATLAB

code(s) you write to perform the analysis. Using the MATLAB function wavwrite, convert

each individual frequency into a sound file. As a check to your work, play each of your

predicted frequencies and then play the original chord again. You should be able to hear

each individual note occuring in the chord.

Series Problem 2: Listen to the 4 second sound file allexceptone. This eerie sounding

chord contains many pitches spanning several octaves. All pitches are from the chromatic

scale and are within the frequency range of 110 Hz - 14,080 Hz. Each pitch is a pure sinusoidal

frequency. In this case, your ear won’t be of much help to you! Using Fourier series methods

again, identify each frequency in this chord, and determine by letter name the only note of

the chromatic scale that is not included in this chord.

Transform Problem 1: Now we will employ the ideas developed above to analyze a

real chord. However, “real” musical instruments differ from idealized sound generator of

the previous problems in two important ways. First, real instruments produce a continous

spectrum of frequencies rather than a discrete set, so the proper tool to use is a Fourier

transform. Second, real instruments (including the human throat), even when playing a

single base pitch ωB, produce a series of extra pitches ωH known as harmonics, which are

integer multiples of ωB. These arise because they naturally “fit” into imperfect resonators

with base frequency ωB. However, you may not have conciously heard them because they

tend to be much quieter than the base pitch.

3



Listen to the 2 second sound file beatleschord, which contains a chord from the Beatles’

song “Because.” Now load the file into Matlab using the wavread() function. The resulting

structure will be an 88200× 2 matrix contining one soundwave for each channel of a stereo

recording (CD’s are recorded, by default, at 44100 samples per second). Split each channel

into two one-second segments, obtaining four total waveforms to analyze. Compute the

fourier transform of each sample (you may use Matlab’s built-in fft() function), and then

find its magnitude, obtaining what is called the power spectrum A (ω). Now average the four

results, and plot data points 20-880 on a log-log scale (corresponding to 20-880 Hz). You

will see a series of spikes in the amplitude A occuring at various frequencies ω. Some will be

“base” pitches that were actually sung by the Beatles, while others will be harmonics of those

pitches. Assuming that harmonics are always of smaller magnitude than their generating

base pitch, devise and write down an algorithm to isolate the pitches actually sung by the

beatles. Using your algorithm, identify the name of each pitch using the table above, and

label the appropriate spikes on a printout of the power spectrum.

Transform Problem 2 (Extra Credit): For extra credit, build a spectrum analyzer.

Create a 30-second .wav file of your favorite song. Break it into segments that are each,

say, 1/10th of a second long (i.e., 4410 samples). You will then perform a fourier transform

on each segment, collecing the power spectrum as a function of both frequency and time:

A = A (t, ω). By generating an image from this data set, construct a visual illustration of

the distribution of pitches over time. At this point, one might naturally wonder whether

this strategy could be used to automatically transcribe any waveform into musical notation!

Based on your knowledge of of Fourier series and transforms, and your experiences so far on

this project, discuss any difficulties that you can see to implementing such a system.
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