
Big Data Systems for Graphs

Yannis Kotidis
http://pages.cs.aueb.gr/~kotidis/

Apache Spark

• There are multiple ways to process graph data
with Apache Spark
– GraphX: based on RDDs
– GraphFrames: based on DataFrames
– Pregel API

Friend suggestions example:
Define nodes using a DataFrame

val v =
spark.sqlContext.create
DataFrame(List(

("john", "John", 29),
("sara", "Sara", 22),
("jim", "Jim", 42),
("patrick", "Patrick",19),
("mary", "Mary", 31)

)).toDF("id", "name",
"age")

name: John

name: Jim

name: Sara

name: Maryname: Patrick

Now Define Edges
val e =

spark.sqlContext.createData
Frame(List(

("john", "sara", "knows"),
("john", "jim", "knows"),
("jim", "sara", "knows"),
("jim","mary","knows"),
("sara", "patrick", "knows"),
("sara", "mary", "knows")

)).toDF("src", "dst",
"relationship")

name: John

name: Jim

name: Sara

name: Maryname: Patrick

Create GraphFrame, run Motif

val g = GraphFrame(v, e)

g.find(
"(x)-[]->(f); (f)-[]->(fof);

!(x)-[]->(fof)").
select("x","fof").groupBy("x

","fof").count.orderBy("c
ount").show()

name: John

name: Jim

name: Sara

name: Maryname: Patrick

Result
name: John

name: Jim

name: Sara

name: Maryname: Patrick

PageRank Example
name: John

name: Jim

name: Sara

name: Maryname: Patrick

Vertex-centric programming

• Distributed systems mainly deal with graph
computations like shortest paths, pageRank that
can be parallelized

• Key ideas
– Implement processing logic on graph nodes (aka

vertex-centric programming)
• have all graph nodes perform the required computations in

parallel
– Sync results (message exchange phase)
– Repeat until computation converges

Computational Paradigm:
supper steps + synchronization

• Supper step: run user-defined code f()
• Synchronization: message exchange

f()
f()

f()

f()

f()

Node 1 Node 2 Node 3

Pregel
• Pregel is a framework developed by Google.

– System was never release to the public but has been copied once paper was
out

• It was designed for the Google cluster architecture.
– Each cluster consists of thousands of commodity PCs organized into racks with

high intra-rack bandwidth
– Clusters are interconnected but distributed geographically

Mem

Disk

CPU

Mem

Disk

CPU

…

Rack Switch

Mem

Disk

CPU

Mem

Disk

CPU

…

Rack Switch

Datacenter Switch

Computational Model

• All vertices compute in parallel during a superstep
– Process messages sent in the previous superstep
– Execute the same user-defined compute() function
– Optionally a vertex

• Modifies its value or that of its outgoing edges
• Sends messages to other vertices (to be received in the next

superstep)
• Changes the topology of the graph

– Votes to halt if it has no further work to do
• Pregel program terminates when

– All vertices are simultaneously inactive
– There are no messages in transit

actice inactice

vote to halt

message received

Bulk Synchronous Parallel Computing
(Leslie Gabriel Valiant)

Computation

Communication

Synchronization barrier

processors

Toy problem

• Find the maximum value in a strongly
connected graph component
– Strongly connected: there is a directed path

between any two vertices u, v

1 3 5 4 2

1 3 5 4 2

1 3 5 4 2

3 5 5 4 5

Super Step 1:
Transmit weights
to neighbors

Start of
Super Step 2:
Read messages

Super Step 2:
Update weights,
if necessary

Nothing to do: vote to halt

3 5 5 4 5

3 5 5 4 5

5 5 5 5 5

Super Step 2:
Transmit new weights,
if necessary

Super Step 3:
Read messages

Super Step 3:
Update weights

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

Single Source Shortest Path

• Find shortest path from a source node u to all
nodes

• Solution
– Single CPU machine: Dijkstra’s algorithm

u

1

10

2

2
5

Dijkstra’s algorithm Overview

• Maintain distances of nodes from source
(initially infinite, except source) in a priority
queue

• At each step
– Remove from queue node with minimum distance
– Update shortest paths of adjacent nodes

Example: initialize queue

0

inf

inf

inf

1

10

2

2
5

Q={0,inf,inf,inf}

Update distances of adjacent nodes

0

1

inf

10

1

10

2

2
5

Pop next node from queue

0

1

inf

10

1

10

2

2
5

Q={1,10,inf}

Update distances

0

1

3

10

1

10

2

2
5

Pop next node from queue

0

1

3

10

1

10

2

2
5

Q={3,10}

Update distances

0

1

3

5

1

10

2

2
5

Pop last node, finished!

0

1

3

5

1

10

2

2
5

Q={5}

Computed distances

0

1

3

5

1

10

2

2
5

Dijkstra on a billion nodes graph

Parallel Breadth-First Search (PBFS)

• Each node maintains current distance
estimate

• Upon receive of a message from neighbors
update estimate
– If newly computed distance is shorter, inform

neighbors

0

inf

inf

inf

1

10

2

2
5

0

1

inf

10

1

10

2

2
5

1

10

Transmit distance estimates to neighbours

Update estimates

0

1

inf

10

1

10

2

2
5

0

1

3

10

1

10

2

2
5

15 3

Transmit new distance estimates to neighbours

0

1

3

10

1

10

2

2
5

5

0

1

3

5

1

10

2

2
5

10
0

1

3

5

1

10

2

2
5

0

1

3

5

1

10

2

2
5

PBFS vs Dijkstra

PBFS: More (redundant) computations of
distances until true shortest path is found

BUT

Many parallel calculations per clock tick. No
need of a global priority query, only local state
maintained at each node

Shortest Path Code

PageRank Code

Semi-clustering in a social graph

• A semi-cluster in a social graph is a group of
people who interact frequently with each
other and less frequently with others.
– A person may belong to multiple semi-clusters

Boundary edge

Internal edge

Evaluation of Semi-clusters

• Ic: sum of weights of
internal edges

• Bc: sum of weights of
boundary edges

• Vc: size of semi-cluster
• Fb: boundary edge

score factor (0..1)

Ic =7 Bc =4 Vc =5

Computing Semi-clusters in Pregel
• Each vertex maintains a list containing at most Cmax semi-

clusters, sorted by score.
• In super-step 0 each node creates its own cluster and

informs neighbors.
• In subsequent super-steps a vertex V iterates over the

semi-clusters sent to it on the previous super-step.
– If a semi-cluster does not already contain V and is not full then V

is added to that cluster
– The best k semi-clusters (sorted by their scores) are sent to

neighbors
– Node keeps a list of semi-clusters that contain V (itself)

• Stop if no new semi-clusters are formed of after a set of
iterations

