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Motivation

• We often need ways to 
assess how similar or 
dissimilar objects are in 
comparison to one 
another

• Examples: clustering, 
outlier analysis, nearest-
neighbor search, 
recommendation, 
visualization, classification

Outlier?
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Simple Running Example

• Car dealership

– a customer inquired about car #1 that was sold

– which of the other cars is she most likely to buy? 

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28



Roadmap

• We will first discuss simple similarity metrics for 
common data types: nominal, ordinal and 
numerical attributes

• We will then extend our techniques to address 
more complex scenarios
– Hierarchical domains (e.g. product ⟺ categories)
– Sets (e.g. basket data), Bags
– Vectors (multidimensional data)
– Strings
– Time Series
– Graphs



Preliminaries

• Let sim(a,b) denote the similarity of two values a, b of 
a data attribute

• In order to have a common basis, we will normalize
values: sim(a,b) in range [0..1]
– sim(a,b) = 1, iff a and b are identical
– sim(a,b) = 0, iff a and b are unalike

• Dissimilarity: d(a,b) = 1 – sim(a,b)
– Formula assumes sim(a,b) [0..1]
– Notice that, depending on the internals of the sim() 

function,  dissimilarity is not necessarily a distance 
function (i.e. triangle inequality may not hold)



Running Example

• Dataset describing used cars

• 3 known attributes : color, condition, mileage 
(in 1000 Km)

Car Color Condition Mileage
(*1000 Km)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28



Nominal Attributes

• The values are symbols (e.g., names of things) 
that often represent some category or state

– Are a type of categorical attributes when there is 
no ordering/importance implied by the values

• Cats are not better than dogs or vice-versa

– Can be used to differentiate records (e.g., 
pet=“cat” vs pet=“dog”)

• Numerical attributes (e.g., product-ids) may 
also be treated as nominal



Dissimilarity of nominal attributes

• Let us define

d(a,b) = 1 if a≠b, 0 otherwise

• Examples

– d(Blue,Green) =1

– d(Green,Red) = 1

– d(Green,Green) = 0 

X

X



Dissimilarity of nominal attributes

• We can form a dissimilarity matrix for Color:

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

Car 2

Car 1



Note

• Even for medium-sized datasets, the 
dissimilarity matrix may not fit in memory as it 
requires O(n2) space

• We use it in our examples in order to visually 
inspect the computed pair-wise dissimilarities



Dissimilarity of ordinal attributes

• In this case there is an ordering of the symbols
• Consider rank of different values

– Fair (1) < Good (2) < Excellent (3)

• Let

𝑑 𝑎, 𝑏 =
|𝑟𝑎𝑛𝑘 𝑎 − 𝑟𝑎𝑛𝑘 𝑏 |

𝑚𝑎𝑥𝑟𝑎𝑛𝑘 − min𝑟𝑎𝑛𝑘
• Examples

– d(Fair, Good)=
|1−2|

3−1
= 0.5

– d(Excellent, Fair) = 
|3−1|

3−1
= 1



Dissimilarity of ordinal attributes

• Dissimilarity matrix for Condition:

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

1 0

0.5 0.5 0

0 1 0.5 0

1

0.5

0



Dissimilarity of numerical attributes

• Compute:

𝑑 𝑎, 𝑏 =
|𝑎 − 𝑏|

𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒 − min𝑣𝑎𝑙𝑢𝑒
• Example

– d(45,22)= 
|45−22|

64−22
= 0.55

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28



Dissimilarity of numerical attributes

• Dissimilarity matrix for Mileage:

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.55 0

0.45 1 0

0.40 0.14 0.86 0



Combining scores

• Simplest approach: take average of computed 
dissimilarities

• Use weights to prioritize certain attributes

– e.g. user prioritizes mileage over color (w3 > w1)

d(ra, rb)= 
w1∗dcolor(ra,rb)+w2∗dcondition(ra,rb)+w3∗dmileage(ra,rb)

w1+w2+w3

d(ra,rb)= 
1

3
*(dcolor(ra,rb)+dcondition(ra,rb)+dmileage(ra,rb))



Example (weighted average)

• Assume mileage is more (2x) important than 
color, condition

– wcolor=1, wcondition=1, wmileage=2

d(ra, rb)= 
dcolor(ra,rb)+dcondition(ra,rb)+2∗dmileage(ra,rb)

1+1+2



Take avg of dissimilarity matrices

0

0.55 0

0.45 1 0

0.40 0.14 0.86 0

0

1 0

0.5 0.5 0

0 1 0.5 0

0

1 0

1 1 0

0 1 1 0

+ +

3

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0



Outcome

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

Most similar pair of cars?



Most similar pair of cars

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0



John: I like Car #3

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

Can we rank the cars on 
our lot based on their 
dissimilarities to car #3?



Nearest Neighbors of Car #3

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

NN(Car #3):
Car#1 (d(1,3) = 0.65)
Car#4 (d(4,3) = 0.79)
Car#2 (d(3,2) = 0.83)

Most similar

Less similar



Extended Data Matrix

• How do we treat the newly added Type
attribute?

Car Color Condition Millage
(*1000)

Type

1 Blue Excellent 45 Supermini

2 Green Fair 22 Crossover

3 Red Good 64 SUV

4 Blue Excellent 28 Small family



Extended Data Matrix

• How do we treat the newly added Type attribute?

– Small family cars more similar to superminis?

– SUVs more similar to Crossover?

Car Color Condition Millage
(*1000)

Type

1 Blue Excellent 45 Supermini

2 Green Fair 22 Crossover

3 Red Good 64 SUV

4 Blue Excellent 28 Small family



Car-Type Hierarchy?

Car Type

City-car

Supermini
Small 
Family

Adventure-
car

Crossover SUV



Six products

smartphone

sneakers

high heels

laptop

printer

Phone



Groups/Categories

smartphone

sneakers

high heels

laptop

printer

Computers

Shoes

Communication Devices

Phone



Higher-level Categories

smartphone

sneakers

high heels

laptop

printer

Computers

Shoes

Communication Devices

Electronics

Phone



Utilize the Star Schema

30

time_key
day
day_of_the_week
month
quarter
year

TIME

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
sub-category

PRODUCT

time_key

product_key

location_key

units

amount
{measures



ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and lca is their lowest 
common ancestor in the hierarchy

• Examples
– lca(”Γραβιέρα”,”Φέτα”) = “Τυρί”

– lca(”Γραβιέρα”, ”Εβαπορέ”) = “Γαλακτοκομικά”

– lca(“Γραβιέρα”, ”Γίγαντες”)  = “ΠΡΟΙΟΝΤΑ”

32

levels (0..3)



ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and |p_lca|= the length of 
the path towards their lowest common ancestor
(lca)

– Define d(a,b) = 
|p_lca|

tree_height
if a≠b, 0 otherwise 

• Example  

– d(”Γραβιέρα”,”Φέτα”) =
1

3
(lca = “Τυρί”)

33



ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and |p_lca|= the length of the 
path towards their lowest common ancestor (lca)

– Define d(a,b) = 
|p_lca|

tree_height
if a≠b, 0 otherwise 

• Example  

– d(”Γραβιέρα”, ”Εβαπορέ”) =
2

3
(lca = “Γαλακτοκομικά”)

34



ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and |p_lca|= the length of 
the path towards their lowest common ancestor
(lca)

– Define d(a,b) = 
|p_lca|

tree_height
if a≠b, 0 otherwise 

• Example  

– d(“Γραβιέρα”, ”Γίγαντες”)  = 
3

3
(lca = “ΠΡΟΙΟΝΤΑ”)
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d(Crossover, SUV)=?

Car Type

City-car

Supermini
Small 
Family

Adventure-
car

Crossover SUV



d(Crossover, SUV)= 
1

𝟐

Car Type

City-car

Supermini
Small 
Family

Adventure-
car

Crossover SUV



COMBINING EVIDENCE



Combining similarities from 
difference processes/sources

• Assume we have two separate processes for computing 
similarities between users

• Process 1: assesses demographic data from the user 
database (gender, age, marital status, etc.)
– Reports similarity score s1 based on demographic data

• Process 2: considers their interaction with our systems (e.g. 
purchases, logins, etc.)
– Reports similarity score s2 based on user activity



Taking weighted averages

• We already saw this computation

• Can be fine-tuned to our preferences or trust
on these datasets

– E.g. if we believe that activity data is more 
reliable or important, use  w2 > w1

sim = 
w1∗s1+w2∗s2

w1+w2



Treating scores as evidence

• One problem with averaging is that low scores 
from one of the two processes (e.g. due to 
wrong/missing data) will lower the overall 
calculation
– Example: s1 = 0.7, s2=0.2, Average(s1, s2)=0.45 

• Possible solution: take maximum score
– Take: Max(s1, s2)=0.70 

• Another idea is to treat each score as 
independent evidence that each boosts our 
confidence on the similarity between the users



Treating similarities as probabilities

• Assuming independence, combine scores in a 
probabilistic manner

• In our example 

– sim(0.7,0.2)=0.7+0.2-0.14=0.76

• Notice that sim(s1,s2) ≥ max(s1,s2)

sim(s1,s2) = s1 + s2 - s1 * s2 s2s1



Using additional sources

• This calculation can be extended in case we have more 
sources suggesting similarity for the customers
– e.g. based on customer surveys s3= 0.8

• Combine scores in a probabilistic manner

• In our running example 
– sim(0.7,0.2,0.8) = 0.76 + 0.8 – 0.76*0.8 = 0.952
– Compare with average (0.7,0.2,0.8) = 0.56
– Compare with max (0.7,0.2,0.8) = 0.8
– Compare with min (0.7,0.2,0.8) = 0.2

sim(s1, s2 ,s3) = sim(s1, s2) + s3 - sim(s1, s2) *s3



WORKING WITH SETS 



How do we compare sets?

• UserA= {milk, bread, coffee}

• UserB= {milk, bread, donut}

• UserC= {milk, bread, soda, potatoes}

• Straightforward idea: look at their intersection
– Intersection(UserA,UserB) = {milk,bread}

– Intersection(UserA,UserC) = {milk,bread}

• Intersection not enough!
– Need to look at their differences too

46



• Jaccard(S1,S2) = the ratio of the sizes of the 
intersection and union of S1 and S2
– Jaccard(S1,S2) =|S1S2|/|S1S2|

• Note that |S1S2|≤|S1S2|
• Thus, 0 ≤ Jaccard(S1,S2) ≤ 1 

Set similarity: Jaccard Index

47

union

intersection



• Recall: Jaccard(S1,S2) = |S1S2|/|S1S2|

• Jaccard({potatoes, lettuce}, {potatoes, tomatoes}) = 
1

3

• Jaccard({potatoes, lettuce, cucumbers}, {potatoes, tomatoes, ketchup}) = 
1

5

• Jaccard({potatoes, lettuce}, {potatoes, lettuce, tomatoes}) = 
2

3

• Jaccard({lettuce}, {milk, soda}) = 0

• Jaccard({soda, milk}, {milk, soda}) = 1

Jaccard Index Examples

48



Toy exercise
(python jupyter notebook in e-class)

• Assume the following 5 customers with their 
purchases

 

• Can you group these customers into two 
clusters? 

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ’tea’]



Clustering
❑ Separate data into disjoint groups such that:

❑ Increased similarity among members of the same 
group (cluster cohesion)

❑ Members of different groups are dissimilar



The famous k-Means algorithm

• Assume n points in the Euclidian space and a user-defined 
value of k=#clusters

1. Pick k points (centroids), one per cluster
2. Assign remaining points to closest centroid
3. In each cluster update location of its centroid
4. Reassign points, if necessary
5. Repeat steps 3-4 until clusters stabilize

• k-Means seeks to minimize the sum of squared distances 
(thus the variance of the distances) from the centroids

– the algorithm always converges to some (local) minimum 
solution



Example for k=3

Initial centroids are
existing dataset points



New centroids + reassignment

reassignment

updated centroids may not 
be part of the dataset



Wait! ❑ Our dataset is not points in a Euclidian space
❑ There is no obvious way to compute a “centroid”

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ’tea’]

Our data:



Hierarchical Clustering to the rescue

a
b

c

d
e

a    b    c   d   e

f
f

h

h

g
g

i

i

Initial set of clusters



Executive decision

• Purchases are modelled as sets of items

– Use Jaccard for computing customer pair-wise 
similarity 

Jaccard_sim = 1/6 = 16%

Jaccard_sim = 2/4 = 50%
user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ’tea’]



Jaccard Similarity

• All-pair similarity computation

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]

Jaccard_sim of user1 , user2  is  0.5
Jaccard_sim of user1 , user3  is  0.2
Jaccard_sim of user1 , user4  is  0.0
Jaccard_sim of user1 , user5  is  0.16
Jaccard_sim of user2 , user3  is  0.2
Jaccard_sim of user2 , user4  is  0.2
Jaccard_sim of user2 , user5  is  0.4
Jaccard_sim of user3 , user4  is  0.2
Jaccard_sim of user3 , user5  is  0.4
Jaccard_sim of user4 , user5  is  0.16



Hierarchical Clustering

• Merge most similar pair to form a new cluster

Jaccard_sim of user1 , user2  is  0.5
Jaccard_sim of user1 , user3  is  0.2
Jaccard_sim of user1 , user4  is  0.0
Jaccard_sim of user1 , user5  is  0.16
Jaccard_sim of user2 , user3  is  0.2
Jaccard_sim of user2 , user4  is  0.2
Jaccard_sim of user2 , user5  is  0.4
Jaccard_sim of user3 , user4  is  0.2
Jaccard_sim of user3 , user5  is  0.4
Jaccard_sim of user4 , user5  is  0.16

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]



New state

• Merge best pair (user1+user2) to form a new 
cluster

– Represent cluster of customers as their union (not 
ideal, other options exist)

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]
user1+user2 : ['bread', 'cola', 'milk', 'coffee’]



Next step
(most similar pair: user3, user5)

user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]
user1+user2 :['bread', 'cola', 'milk', 'coffee’]

user4 : ['donut', 'cream', 'cola’]
user1+user2 :['bread', 'cola', 'milk', 'coffee’]
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea’]



Final step
(most similar pair: user4, user3+user5)

user4 : ['donut', 'cream', 'cola’]
user1+user2 :['bread', 'cola', 'milk', 'coffee’]
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea’]

user1+user2 :['bread', 'cola', 'milk', 'coffee’]
user4+user3+user5 : {'donut', 'cereal', 'milk', 'cream', 'cola', 'tea'}

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]

user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’]

Cluster 1 Cluster 2



Notes

• In this toy example we performed Hierarchical Clustering up 
to 2 clusters without checking the quality of the intermediate 
clusters
– Sometimes it is better to stop sooner that later

• To simplify the code, we used as a representative (clustoid) of 
a cluster the UNION of its members
– Can you think of examples where this is a bad choice?

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]

user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’]

Cluster 1 Cluster 2



Jaccard Distance between sets

• Can be defined as the complement of their 
Jaccard similarity

– djacc(S1,S2) = 1 −
|S1S2|

S1S2
=

S1S2 −|S1S2|

S1S2

union

Symmetric difference



How about 
bags?

Jaccard can be extended to 
work with bags

Intersection(S1,S2): count an 
element n times in the 

intersection, where n is the 
minimum of the number of times 
the element appears in S1 and S2

Union(S1,S2): count the element 
the sum of the number of times 

it appears in S1, S2

Bags are “sets” with 
repetition of elements 

allowed

#iphone
#MeToo

#android

#NBAfinals

#NBAfinals#android

#android

#android

#android



Example

• S1 = {a,a,a,b}, S2 = {a,a,b,b,c}

• Then, intersection is {a,a,b} and union 
{a,a,a,a,a,b,b,b,c}

• Bag-similarity is thus, 3/9 = 1/3

• Note, bag similarity is between 0 and ½ (why?)



Alternative bag similarity

• Count an element n times in the intersection, 
where n is the minimum of the number of 
times the element appears in S1 and S2

• In the union, count the element the max of 
the number of times it appears in S1, S2



Example (alt)

• S1 = {a,a,a,b}, S2 = {a,a,b,b,c}

• Then, intersection is {a,a,b} and union 
{a,a,a,b,b,c}

• Bag-similarity of S1, S2 is thus, 3/6 = 50%

• Note, alternative bag similarity is between 0 
and 1 (why?)



Bag Similarity Example

• Movies ratings dataset

– John: Star_Wars_I:3/5, Avatar: 4/5, Aliens: 2/5

– Mary: Star_Wars_I: 2/5, Avatar: 5/5, ET: 4/5

– Nick: Star_Wars_I: 4/5, Aliens: 2/5, ET: 1/5

• Who is the Nearest Neighbor of John?

• Note: if treated as sets

– Jaccard(John, Mary) = Jaccard(John, Nick) = 2/4 = 50%

– Let us consider their bag similarity instead!



Bag Similarity Example

• Convert to bags:
– John: {Star_Wars_I, Star_Wars_I, Star_Wars_I, Avatar, 

Avatar, Avatar, Avatar, Aliens, Aliens}
– Mary: {Star_Wars_I, Star_Wars_I, Avatar, Avatar, 

Avatar, Avatar, Avatar, ET, ET, ET, ET}
– Nick: {Star_Wars_I, Star_Wars_I, Star_Wars_I, 

Star_Wars_I, Aliens, Aliens, ET}

• Bag_similarity_alt(John,Mary)  = (2+4)/(3+5+4+2) 
= 6/14 = 42.9%

• Bag_similarity_alt(John,Nick)  = (3+2)/(4+4+2+1) 
= 5/11 = 45.5%



WORKING WITH VECTORS



Basket data example

• Three distinct products: 
– potato (p), lettuce (l), 

tomato (t)

• Three users with the 
following purchases
– John: 2 potatoes, 1 lettuce 

– Kostas: 1 tomato

– Mary: 10 potatoes, 6 
lettuces

Vector Model

<#p,#l,#t>

J = <2,1,0>

K = <0,0,1>

M = <10,6,0>



Definition of Euclidean Distance

• x = <2,1,0,5>

• y = <5,6,1,10>

• Recall that:

d(x, y)= 2 − 5 2 + 1 − 6 2 + 0 − 1)2 + (5 − 10 2

= 9 + 25 + 1 + 25= 60 = 7.75



Euclidean Distance NN Calculations

Kostas

John

Mary

Kostas is the nearest neighbor of John!!!

potatoes

tomatoes

Vector Model

J = <2,1,0>

K = <0,0,1>

M = <10,6,0>



Angle Calculations:
favor direction over length (norm)

θ(J, K) = 90o

θ(J, M) = 4.3o

Mary

Kostas

John

p

l

t

Vector Model

J = <2,1,0>

K = <0,0,1>

M = <10,6,0>



When to use Cosine?



Cosine Similarity

• sim(x,y) = cos(θ(x,y))  [-1..+1]

– Used in collaborative filtering

– Popular in document matching
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θ

Mary

Kostas

John

cos(θ(J, K)) = cos(90o) = 0

cos(θ(J, M)) = cos(4.3o) = 0.997



Dot (inner) product between two 
vectors

• x . y =Σ(xk * yk)

• Example:

• Then:

x . y=1*1+3*0+0*1+5*6=31

= |x|*|y|*cos(θ(x, y))

x= (1,3,0,5)
y= (1,0,1,6)

θ



From dot to cosine

• cos(θ(x, y))=
x . y

|x|∗|y|

• In this example

• |x|= 12+32+02+52= 35

• |y|= 12+02+12+62 = 38

• cos(θ(x, y))=
31

35∗ 38
= 0.85

x= (1,3,0,5)
y= (1,0,1,6)



Dot product with unit vector

• x . y =Σ(xk * yk)
• Example for unit vector y:

• Notice that |y|=1
• Then:

x . y=1/2+3/2+5/2=9/2=4.5
= |x|*1*cos(θ(x, y))

x= (1,3,0,5)
y= (1/2,1/2,1/2,1/2)

x

y



Random Hyperplane Projection

 uses n d-dimensional 
random vectors (rvi)

 Generates for each input 
vector a bitmap of size n as 
follows:

◼ Sets biti=1 if dot product of 
input vector with i-th
random vector is positive

◼ Sets biti=0 if dot product of 
input vector with i-th
random vector is negative

(Mining Massive Data Sets, Sec. 3.7.2)

rv1

rv2

rv3

rv4

RHP(x)

1 0 10



Locality Sensitive Hashing (LSH)

• Assign items to buckets using 
a hash function h(x)
– E.g. 

– Details of function h() depend 
on the preferred similarity 
metric:
• Similar objects are hashed to the 

same bucket with high 
probability

• Dissimilar objects are hashed to 
the same bucket with very small 
probability

• Repeat several times
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h(   )=0110 in binary

Buckets (1-4)



Is RHP a locality-sensitive hashing 
scheme?

 Assume vectors for customers 
x and y point (approximately) 
towards the same direction 

 This means their cosine is close 
to 1

 We expect that with high 
probability the RHP values will 
be identical

 Use RHP encodings as “bucket 
ids”

 Similar customers are hashed to 
the same bucket (with high 
probability)

rv1

rv2

rv3

rv4

RHP(x)=RHP(y)

1 0 10



Hamming Distance

• The Hamming distance between two equal-
length strings of symbols is the number of 
positions at which the corresponding symbols 
are different (Wikipedia)

– Dh(‘00110101’,

         ’10110110’) = 3

– Dh (‘abc’,’acc’) = 1



• Vectors are collinear (θ(x,y)=0, cosine similarity = 1)

Approximate Similarity Computation via Hamming 
Distance of RHP bitmaps

0 0 0 1 1 1

0 0 0 1 1 1

yx

RHP(x) :

RHP(y) :

n bits



• Vectors are opposite (θ(x,y)=π, cosine similarity = 0)

Approximate Similarity Computation via Hamming 
Distance of RHP bitmaps

0 0 0 1 1 1

1 1 1 0 0 0

y

x

RHP(x) :

RHP(y) :

n bits



• Also works for the Pearson correlation
– Cor(x, y) = Cos(x-x, y-y)

Approximate Similarity Computation via Hamming 
Distance of RHP bitmaps

1 0 1 1 1 1

0 0 0 1 1 1

y

x

RHP(x) :

RHP(y) :

n bits θ(x,y)

Estimate θ(x,y)=Dh(RHP(x),RHP(y))*π/n
^

θ(RHP(x),RHP(y))=2/6*π=π/3
^



RHP Example

• Calculations for John:
• <2,1,0>.<3,1,6> = 2*3+1*1+0*6=+7 → bit =1
• <2,1,0>.<-5,3,2> =-10+3=-7 → bit = 0
• Thus, RHP(John) = 10

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

rv1=<3,1,6>
rv2=<-5,3,2>

Mary

Kostas

John



RHP Example

• Calculations for Kostas:
• <0,0,1>.<3,1,6> = +6 → bit =1
• <0,0,1>.<-5,3,2> =+2 → bit = 1
• Thus, RHP(Kostas) = 11

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

rv1=<3,1,6>
rv2=<-5,3,2>

Mary

Kostas

John



RHP Example

• Calculations for Mary:
• <10,6,0>.<3,1,6> = +36→ bit =1
• <10,6,0>.<-5,3,2>=-32 → bit = 0
• Thus, RHP(Mary) = 10

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

rv1=<3,1,6>
rv2=<-5,3,2>

Mary

Kostas

John



RHP Example

• RHP(John) = RHP(Mary) = 10
• Hamming distance = 0 
• Estimated angle is 0

– Thus, estimated cosine similarity = 1 
– True cosine = 0.997

• Good accuracy by using just two bits!
– Disclaimer: Ι am cherry picking favorable examples here
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J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

Mary

Kostas

John



RHP Example

• RHP(John) = 10,  RHP(Kostas) = 11

• Hamming distance = 1 (out of n = 2 bits)

• Estimated angle is π/2 = 90ο

– Thus, estimated cosine similarity = cos(π/2) = 0 

– This is also the true cosine similarity
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J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

Mary

Kostas

John



WORKING WITH STRINGS



String distance computations

• Why it is useful
– String Matching

– Spelling Checking

• Examples
– Fix data entry errors: replace “Yiannis” with “Yannis”

– Address matching/correction 
• Compare “Patission” , “Patision Str”, “Patission St”

– Fraud Detection
• Are “Kotidis123”, “Kotidis554” and “7Kotidis123”

 the same user? 



String Edit Distance

• The edit distance between strings x = x1x2..xn and 
y = y1y2..ym is the smallest number of insertions 
and deletions of single characters that will 
convert x to y

• As an example to convert x=“abcde” to y 
=“acfdeg”
1. delete b and get “abcde”

2. insert f after c and get “acfde”

3. insert g after e and get “acfdeg” = y

• Thus, dedit(“abcde”,”acfdeg”)=3



Longest Common Subsequence (LCS)

• The LCS of x and y is the longest common 
string that is constructed by deleting positions 
from x and y

– For x=“abcde” to y =“acfdeg”

– LCS(x,y) = “acde”

• It holds that 

– dedit(x,y)= len(x)+len(y)-2*len(LCS(x,y))

• In our example dedit(x,y)=5+6-2*4=3



Levenshtein Distance

• In addition to insertions and deletions of single 
characters, Levenshtein distance also allows 
substitutions

• As an example, for x=“STALL” and y=“TABLE”, 
dlev(x,y)=3
1. (starting with “STALL”) delete S and get “TALL”,

2. substitute first L with B and get “TABL”,

3. insert E at the end and get “TABLE”

• In comparison dedit(“STALL”, “TABLE”, )=4
– Notice that 1 substitution ⟺ 1 deletion + 1 insertion



Note

• In the literature sometimes Levenshtein  
distance is referred as edit distance (e.g. edit 
distance adjusted to permit insertions, 
deletions as well as substitutions)



Additional Metrics for strings

• Damerau–Levenshtein distance further allows 
transportation between two successive 
characters

– Corssroads → Crossroads

• Jaro distance only allows transportations



Time Series

• Sequence of data points 
indexed in time order

– Examples: financial data, 
sensor data, speech, etc

– Univariate (running 
examples) vs multivariate

• Can be compared with 
Euclidean distance (given two 
series of same length) 

– The ith point on one time 
series is aligned with the 
ith point on the other

• However, this often gives poor 
results

• Does not work if series have 
difference lengths
– Padding?

Image from
https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1a1e4afc



Time Series - Euclidean Distance

• Sx = <2,1,0,1>

• Sy = <2,0,2,3>

Euclidean−distace d(Sx, Sy)=

2 − 2 2 + 1 − 0 2 + 0 − 2)2 
+ (1 − 3 2

=  02 + 12 + 22 + 22

= 0 + 1 + 4 + 4

= 9
 
= 3



Time Series - Euclidean Distance

• Sx = <2,1,0,1>

• Sy = <2,0,2,3,1,2,2,0,4>

What now?



Time Series - Euclidean Distance

• Sx = <2,1,0,1>

• Sy = <2,0,2,3,1,2,2,0,4>

Padding (convert to same length)?

• Sx = <2,1,0,1,0,0,0,0,0>

• Sy = <2,0,2,3,1,2,2,0,4>



Dynamic Time Wrapping

• DTW computes the best 
alignment between the two-
time series
– Works even if the input series 

have different lengths

– Useful if series have different 
frequencies or are out of phase 
(e.g. lag)

• Has been shown to be 
superior than Euclidean 
distance for tasks such as 
time series classification

• Drawback: quadratic 
complexity O(n2)

Image from
https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1a1e4afc



Computation complexity: O(n*m)

Start

End



Example: Time Series Classification

Problem Statement

• Given:
– n time series x1,.., xn along with 

their labels (classes) y1,.., yn to be 
used as training examples

– a time series x with an unknown
label

• Goal:
– classify x: find the class label of x

“Sell stock”

x

“Buy stock” Binary 
classification



Intuition

In a perfect world:
• Assume there is another data point 

(time series) xi that is very similar to 
the input series x

• I would then pick the label yi of xi  as 
my selection

• This decision is optimal if x = xi or, 
equivalently when d(x, xi)→0

In practice:
• We will look at labeled data from the 

neighborhood of xi

x

Some example xi

with known label yi



k-NN algorithm

• Given:
– n time series x1,.., xn along with their 

labels (classes) y1,.., yn to be used as 
training examples

– a time series x with an unknown 
label

• Goal:
– classify x: find the class label of x

• Intuition:
– assign x to the class most common 

among its k nearest neighbours

• Considerations:
– selection of k
– weigh neighbours

Sell stock

x

Buy stock



k-NN algorithm

• Given:
– n time series x1,.., xn along with their 

labels (classes) y1,.., yn to be used as 
training examples

– a time series x with an unknown 
label

• Goal:
– classify x: find the class label of x

• Intuition:
– assign x to the class most common 

among its k nearest neighbours

• Considerations:
– selection of k
– weigh neighbours

Sell stock

x

Buy stock



k-NN algorithm

• Given:
– n time series x1,.., xn along with their 

labels (classes) y1,.., yn to be used as 
training examples

– a time series x with an unknown 
label

• Goal:
– classify x: find the class label of x

• Intuition:
– assign x to the class most common 

among its k nearest neighbours

• Considerations:
– selection of k
– weigh neighbours

Sell stock

x

Buy stock



Comparing Distributions (1): 
Convert to vectors

3
5 4 4

3 2vs

pets pets

cat  dog  bat snake cat dog bat snake

<3,5,0,4>     vs. <4,3,2,0>

• Makes sense for categorical domains

Pet-shop A Pet-shop B

0 0



Comparing Distributions (2): 
Earth Movers Distance

vs

Image source: https://sbl.inria.fr/doc/Earth_mover_distance-user-manual.html

Customer age Customer age
34   35 36 37 38 39 40 34   35 36  37 38 39 40



EMD Intuition

• Compute minimum amount of work required to 
change one distribution into the other. 
– Unit of work: the amount of work necessary to move one 

unit of weight by one unit of ground distance. 
• Informally: work = amount of dirt moved x distance travelled

– Ground distance: the distance measure between weight 
locations.

• EMD allows partial matching (when cumulative 
weights don’t match): Weight(X)<>Weight(Y)
– all the weight in the lighter distribution should be 

matched to weight in the heavier distribution

– In this case EMD(x,y) is not a distance metric

5

2

4

d1

d2

Work = 2*d1+3*d2+1*d3

EMD = WORK / 6

Pile of dirt

Hole in the ground

1
d3

𝑬𝑴𝑫 𝑿, 𝒀 =
𝐦𝐢𝐧(𝑾𝒐𝒓𝒌 𝑿, 𝒀 )

𝐦𝐢𝐧(𝑾𝒆𝒊𝒈𝒉𝒕 𝑿 , 𝑾𝒆𝒊𝒈𝒉𝒕 𝒀 )



Compare results of Clustering

• Clusters: {(xi,ni), i=1,..n}

– xi is the cluster centroid

– ni is the size of the cluster



Compare Features Exported from 
dataset

• Features: {(fi,ni), i=1,..n}

– fi : feature i

– ni : number of times fi appears in dataset

– Ground distance: dist(fi,fj)



Neat Application: 
Word Movers Distance (Kusner et. al.)
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