
Working with
Data

Yannis Kotidis

Department of
Informatics

Athens University of
Economics and Business

Motivation

• We often need ways to
assess how similar or
dissimilar objects are in
comparison to one
another

• Examples: clustering,
outlier analysis, nearest-
neighbor search,
recommendation,
visualization, classification

Outlier?

NN3(Mary)

John Kostas

Jim

Simple Running Example

• Car dealership

– a customer inquired about car #1 that was sold

– which of the other cars is she most likely to buy?

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

Roadmap

• We will first discuss simple similarity metrics for
common data types: nominal, ordinal and
numerical attributes

• We will then extend our techniques to address
more complex scenarios
– Hierarchical domains (e.g. product ⟺ categories)
– Sets (e.g. basket data), Bags
– Vectors (multidimensional data)
– Strings
– Time Series
– Graphs

Preliminaries

• Let sim(a,b) denote the similarity of two values a, b of
a data attribute

• In order to have a common basis, we will normalize
values: sim(a,b) in range [0..1]
– sim(a,b) = 1, iff a and b are identical
– sim(a,b) = 0, iff a and b are unalike

• Dissimilarity: d(a,b) = 1 – sim(a,b)
– Formula assumes sim(a,b) [0..1]
– Notice that, depending on the internals of the sim()

function, dissimilarity is not necessarily a distance
function (i.e. triangle inequality may not hold)

Running Example

• Dataset describing used cars

• 3 known attributes : color, condition, mileage
(in 1000 Km)

Car Color Condition Mileage
(*1000 Km)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

Nominal Attributes

• The values are symbols (e.g., names of things)
that often represent some category or state

– Are a type of categorical attributes when there is
no ordering/importance implied by the values

• Cats are not better than dogs or vice-versa

– Can be used to differentiate records (e.g.,
pet=“cat” vs pet=“dog”)

• Numerical attributes (e.g., product-ids) may
also be treated as nominal

Dissimilarity of nominal attributes

• Let us define

d(a,b) = 1 if a≠b, 0 otherwise

• Examples

– d(Blue,Green) =1

– d(Green,Red) = 1

– d(Green,Green) = 0

X

X

Dissimilarity of nominal attributes

• We can form a dissimilarity matrix for Color:

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

Car 2

Car 1

Note

• Even for medium-sized datasets, the
dissimilarity matrix may not fit in memory as it
requires O(n2) space

• We use it in our examples in order to visually
inspect the computed pair-wise dissimilarities

Dissimilarity of ordinal attributes

• In this case there is an ordering of the symbols
• Consider rank of different values

– Fair (1) < Good (2) < Excellent (3)

• Let

𝑑 𝑎, 𝑏 =
|𝑟𝑎𝑛𝑘 𝑎 − 𝑟𝑎𝑛𝑘 𝑏 |

𝑚𝑎𝑥𝑟𝑎𝑛𝑘 − min𝑟𝑎𝑛𝑘
• Examples

– d(Fair, Good)=
|1−2|

3−1
= 0.5

– d(Excellent, Fair) =
|3−1|

3−1
= 1

Dissimilarity of ordinal attributes

• Dissimilarity matrix for Condition:

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

1 0

0.5 0.5 0

0 1 0.5 0

1

0.5

0

Dissimilarity of numerical attributes

• Compute:

𝑑 𝑎, 𝑏 =
|𝑎 − 𝑏|

𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒 − min𝑣𝑎𝑙𝑢𝑒
• Example

– d(45,22)=
|45−22|

64−22
= 0.55

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

Dissimilarity of numerical attributes

• Dissimilarity matrix for Mileage:

Car Color Condition Mileage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.55 0

0.45 1 0

0.40 0.14 0.86 0

Combining scores

• Simplest approach: take average of computed
dissimilarities

• Use weights to prioritize certain attributes

– e.g. user prioritizes mileage over color (w3 > w1)

d(ra, rb)=
w1∗dcolor(ra,rb)+w2∗dcondition(ra,rb)+w3∗dmileage(ra,rb)

w1+w2+w3

d(ra,rb)=
1

3
*(dcolor(ra,rb)+dcondition(ra,rb)+dmileage(ra,rb))

Example (weighted average)

• Assume mileage is more (2x) important than
color, condition

– wcolor=1, wcondition=1, wmileage=2

d(ra, rb)=
dcolor(ra,rb)+dcondition(ra,rb)+2∗dmileage(ra,rb)

1+1+2

Take avg of dissimilarity matrices

0

0.55 0

0.45 1 0

0.40 0.14 0.86 0

0

1 0

0.5 0.5 0

0 1 0.5 0

0

1 0

1 1 0

0 1 1 0

+ +

3

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

Outcome

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

Most similar pair of cars?

Most similar pair of cars

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

John: I like Car #3

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

Can we rank the cars on
our lot based on their
dissimilarities to car #3?

Nearest Neighbors of Car #3

• Data Matrix:

• Dissimilarity Matrix:

Car Color Condition Millage
(*1000)

1 Blue Excellent 45

2 Green Fair 22

3 Red Good 64

4 Blue Excellent 28

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

NN(Car #3):
Car#1 (d(1,3) = 0.65)
Car#4 (d(4,3) = 0.79)
Car#2 (d(3,2) = 0.83)

Most similar

Less similar

Extended Data Matrix

• How do we treat the newly added Type
attribute?

Car Color Condition Millage
(*1000)

Type

1 Blue Excellent 45 Supermini

2 Green Fair 22 Crossover

3 Red Good 64 SUV

4 Blue Excellent 28 Small family

Extended Data Matrix

• How do we treat the newly added Type attribute?

– Small family cars more similar to superminis?

– SUVs more similar to Crossover?

Car Color Condition Millage
(*1000)

Type

1 Blue Excellent 45 Supermini

2 Green Fair 22 Crossover

3 Red Good 64 SUV

4 Blue Excellent 28 Small family

Car-Type Hierarchy?

Car Type

City-car

Supermini
Small
Family

Adventure-
car

Crossover SUV

Six products

smartphone

sneakers

high heels

laptop

printer

Phone

Groups/Categories

smartphone

sneakers

high heels

laptop

printer

Computers

Shoes

Communication Devices

Phone

Higher-level Categories

smartphone

sneakers

high heels

laptop

printer

Computers

Shoes

Communication Devices

Electronics

Phone

Utilize the Star Schema

30

time_key
day
day_of_the_week
month
quarter
year

TIME

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
sub-category

PRODUCT

time_key

product_key

location_key

units

amount
{measures

ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and lca is their lowest
common ancestor in the hierarchy

• Examples
– lca(”Γραβιέρα”,”Φέτα”) = “Τυρί”

– lca(”Γραβιέρα”, ”Εβαπορέ”) = “Γαλακτοκομικά”

– lca(“Γραβιέρα”, ”Γίγαντες”) = “ΠΡΟΙΟΝΤΑ”

32

levels (0..3)

ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and |p_lca|= the length of
the path towards their lowest common ancestor
(lca)

– Define d(a,b) =
|p_lca|

tree_height
if a≠b, 0 otherwise

• Example

– d(”Γραβιέρα”,”Φέτα”) =
1

3
(lca = “Τυρί”)

33

ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and |p_lca|= the length of the
path towards their lowest common ancestor (lca)

– Define d(a,b) =
|p_lca|

tree_height
if a≠b, 0 otherwise

• Example

– d(”Γραβιέρα”, ”Εβαπορέ”) =
2

3
(lca = “Γαλακτοκομικά”)

34

ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Using Hierarchies (simplified)

• Assume a,b are leaves and |p_lca|= the length of
the path towards their lowest common ancestor
(lca)

– Define d(a,b) =
|p_lca|

tree_height
if a≠b, 0 otherwise

• Example

– d(“Γραβιέρα”, ”Γίγαντες”) =
3

3
(lca = “ΠΡΟΙΟΝΤΑ”)

35

d(Crossover, SUV)=?

Car Type

City-car

Supermini
Small
Family

Adventure-
car

Crossover SUV

d(Crossover, SUV)=
1

𝟐

Car Type

City-car

Supermini
Small
Family

Adventure-
car

Crossover SUV

COMBINING EVIDENCE

Combining similarities from
difference processes/sources

• Assume we have two separate processes for computing
similarities between users

• Process 1: assesses demographic data from the user
database (gender, age, marital status, etc.)
– Reports similarity score s1 based on demographic data

• Process 2: considers their interaction with our systems (e.g.
purchases, logins, etc.)
– Reports similarity score s2 based on user activity

Taking weighted averages

• We already saw this computation

• Can be fine-tuned to our preferences or trust
on these datasets

– E.g. if we believe that activity data is more
reliable or important, use w2 > w1

sim =
w1∗s1+w2∗s2

w1+w2

Treating scores as evidence

• One problem with averaging is that low scores
from one of the two processes (e.g. due to
wrong/missing data) will lower the overall
calculation
– Example: s1 = 0.7, s2=0.2, Average(s1, s2)=0.45

• Possible solution: take maximum score
– Take: Max(s1, s2)=0.70

• Another idea is to treat each score as
independent evidence that each boosts our
confidence on the similarity between the users

Treating similarities as probabilities

• Assuming independence, combine scores in a
probabilistic manner

• In our example

– sim(0.7,0.2)=0.7+0.2-0.14=0.76

• Notice that sim(s1,s2) ≥ max(s1,s2)

sim(s1,s2) = s1 + s2 - s1 * s2 s2s1

Using additional sources

• This calculation can be extended in case we have more
sources suggesting similarity for the customers
– e.g. based on customer surveys s3= 0.8

• Combine scores in a probabilistic manner

• In our running example
– sim(0.7,0.2,0.8) = 0.76 + 0.8 – 0.76*0.8 = 0.952
– Compare with average (0.7,0.2,0.8) = 0.56
– Compare with max (0.7,0.2,0.8) = 0.8
– Compare with min (0.7,0.2,0.8) = 0.2

sim(s1, s2 ,s3) = sim(s1, s2) + s3 - sim(s1, s2) *s3

WORKING WITH SETS

How do we compare sets?

• UserA= {milk, bread, coffee}

• UserB= {milk, bread, donut}

• UserC= {milk, bread, soda, potatoes}

• Straightforward idea: look at their intersection
– Intersection(UserA,UserB) = {milk,bread}

– Intersection(UserA,UserC) = {milk,bread}

• Intersection not enough!
– Need to look at their differences too

46

• Jaccard(S1,S2) = the ratio of the sizes of the
intersection and union of S1 and S2
– Jaccard(S1,S2) =|S1S2|/|S1S2|

• Note that |S1S2|≤|S1S2|
• Thus, 0 ≤ Jaccard(S1,S2) ≤ 1

Set similarity: Jaccard Index

47

union

intersection

• Recall: Jaccard(S1,S2) = |S1S2|/|S1S2|

• Jaccard({potatoes, lettuce}, {potatoes, tomatoes}) =
1

3

• Jaccard({potatoes, lettuce, cucumbers}, {potatoes, tomatoes, ketchup}) =
1

5

• Jaccard({potatoes, lettuce}, {potatoes, lettuce, tomatoes}) =
2

3

• Jaccard({lettuce}, {milk, soda}) = 0

• Jaccard({soda, milk}, {milk, soda}) = 1

Jaccard Index Examples

48

Toy exercise
(python jupyter notebook in e-class)

• Assume the following 5 customers with their
purchases

• Can you group these customers into two
clusters?

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ’tea’]

Clustering
❑ Separate data into disjoint groups such that:

❑ Increased similarity among members of the same
group (cluster cohesion)

❑ Members of different groups are dissimilar

The famous k-Means algorithm

• Assume n points in the Euclidian space and a user-defined
value of k=#clusters

1. Pick k points (centroids), one per cluster
2. Assign remaining points to closest centroid
3. In each cluster update location of its centroid
4. Reassign points, if necessary
5. Repeat steps 3-4 until clusters stabilize

• k-Means seeks to minimize the sum of squared distances
(thus the variance of the distances) from the centroids

– the algorithm always converges to some (local) minimum
solution

Example for k=3

Initial centroids are
existing dataset points

New centroids + reassignment

reassignment

updated centroids may not
be part of the dataset

Wait! ❑ Our dataset is not points in a Euclidian space
❑ There is no obvious way to compute a “centroid”

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ’tea’]

Our data:

Hierarchical Clustering to the rescue

a
b

c

d
e

a b c d e

f
f

h

h

g
g

i

i

Initial set of clusters

Executive decision

• Purchases are modelled as sets of items

– Use Jaccard for computing customer pair-wise
similarity

Jaccard_sim = 1/6 = 16%

Jaccard_sim = 2/4 = 50%
user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ’tea’]

Jaccard Similarity

• All-pair similarity computation

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]

Jaccard_sim of user1 , user2 is 0.5
Jaccard_sim of user1 , user3 is 0.2
Jaccard_sim of user1 , user4 is 0.0
Jaccard_sim of user1 , user5 is 0.16
Jaccard_sim of user2 , user3 is 0.2
Jaccard_sim of user2 , user4 is 0.2
Jaccard_sim of user2 , user5 is 0.4
Jaccard_sim of user3 , user4 is 0.2
Jaccard_sim of user3 , user5 is 0.4
Jaccard_sim of user4 , user5 is 0.16

Hierarchical Clustering

• Merge most similar pair to form a new cluster

Jaccard_sim of user1 , user2 is 0.5
Jaccard_sim of user1 , user3 is 0.2
Jaccard_sim of user1 , user4 is 0.0
Jaccard_sim of user1 , user5 is 0.16
Jaccard_sim of user2 , user3 is 0.2
Jaccard_sim of user2 , user4 is 0.2
Jaccard_sim of user2 , user5 is 0.4
Jaccard_sim of user3 , user4 is 0.2
Jaccard_sim of user3 , user5 is 0.4
Jaccard_sim of user4 , user5 is 0.16

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]

New state

• Merge best pair (user1+user2) to form a new
cluster

– Represent cluster of customers as their union (not
ideal, other options exist)

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]
user1+user2 : ['bread', 'cola', 'milk', 'coffee’]

Next step
(most similar pair: user3, user5)

user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’, ‘tea’]
user1+user2 :['bread', 'cola', 'milk', 'coffee’]

user4 : ['donut', 'cream', 'cola’]
user1+user2 :['bread', 'cola', 'milk', 'coffee’]
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea’]

Final step
(most similar pair: user4, user3+user5)

user4 : ['donut', 'cream', 'cola’]
user1+user2 :['bread', 'cola', 'milk', 'coffee’]
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea’]

user1+user2 :['bread', 'cola', 'milk', 'coffee’]
user4+user3+user5 : {'donut', 'cereal', 'milk', 'cream', 'cola', 'tea'}

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]

user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’]

Cluster 1 Cluster 2

Notes

• In this toy example we performed Hierarchical Clustering up
to 2 clusters without checking the quality of the intermediate
clusters
– Sometimes it is better to stop sooner that later

• To simplify the code, we used as a representative (clustoid) of
a cluster the UNION of its members
– Can you think of examples where this is a bad choice?

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]

user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal’]

Cluster 1 Cluster 2

Jaccard Distance between sets

• Can be defined as the complement of their
Jaccard similarity

– djacc(S1,S2) = 1 −
|S1S2|

S1S2
=

S1S2 −|S1S2|

S1S2

union

Symmetric difference

How about
bags?

Jaccard can be extended to
work with bags

Intersection(S1,S2): count an
element n times in the

intersection, where n is the
minimum of the number of times
the element appears in S1 and S2

Union(S1,S2): count the element
the sum of the number of times

it appears in S1, S2

Bags are “sets” with
repetition of elements

allowed

#iphone
#MeToo

#android

#NBAfinals

#NBAfinals#android

#android

#android

#android

Example

• S1 = {a,a,a,b}, S2 = {a,a,b,b,c}

• Then, intersection is {a,a,b} and union
{a,a,a,a,a,b,b,b,c}

• Bag-similarity is thus, 3/9 = 1/3

• Note, bag similarity is between 0 and ½ (why?)

Alternative bag similarity

• Count an element n times in the intersection,
where n is the minimum of the number of
times the element appears in S1 and S2

• In the union, count the element the max of
the number of times it appears in S1, S2

Example (alt)

• S1 = {a,a,a,b}, S2 = {a,a,b,b,c}

• Then, intersection is {a,a,b} and union
{a,a,a,b,b,c}

• Bag-similarity of S1, S2 is thus, 3/6 = 50%

• Note, alternative bag similarity is between 0
and 1 (why?)

Bag Similarity Example

• Movies ratings dataset

– John: Star_Wars_I:3/5, Avatar: 4/5, Aliens: 2/5

– Mary: Star_Wars_I: 2/5, Avatar: 5/5, ET: 4/5

– Nick: Star_Wars_I: 4/5, Aliens: 2/5, ET: 1/5

• Who is the Nearest Neighbor of John?

• Note: if treated as sets

– Jaccard(John, Mary) = Jaccard(John, Nick) = 2/4 = 50%

– Let us consider their bag similarity instead!

Bag Similarity Example

• Convert to bags:
– John: {Star_Wars_I, Star_Wars_I, Star_Wars_I, Avatar,

Avatar, Avatar, Avatar, Aliens, Aliens}
– Mary: {Star_Wars_I, Star_Wars_I, Avatar, Avatar,

Avatar, Avatar, Avatar, ET, ET, ET, ET}
– Nick: {Star_Wars_I, Star_Wars_I, Star_Wars_I,

Star_Wars_I, Aliens, Aliens, ET}

• Bag_similarity_alt(John,Mary) = (2+4)/(3+5+4+2)
= 6/14 = 42.9%

• Bag_similarity_alt(John,Nick) = (3+2)/(4+4+2+1)
= 5/11 = 45.5%

WORKING WITH VECTORS

Basket data example

• Three distinct products:
– potato (p), lettuce (l),

tomato (t)

• Three users with the
following purchases
– John: 2 potatoes, 1 lettuce

– Kostas: 1 tomato

– Mary: 10 potatoes, 6
lettuces

Vector Model

<#p,#l,#t>

J = <2,1,0>

K = <0,0,1>

M = <10,6,0>

Definition of Euclidean Distance

• x = <2,1,0,5>

• y = <5,6,1,10>

• Recall that:

d(x, y)= 2 − 5 2 + 1 − 6 2 + 0 − 1)2 + (5 − 10 2

= 9 + 25 + 1 + 25= 60 = 7.75

Euclidean Distance NN Calculations

Kostas

John

Mary

Kostas is the nearest neighbor of John!!!

potatoes

tomatoes

Vector Model

J = <2,1,0>

K = <0,0,1>

M = <10,6,0>

Angle Calculations:
favor direction over length (norm)

θ(J, K) = 90o

θ(J, M) = 4.3o

Mary

Kostas

John

p

l

t

Vector Model

J = <2,1,0>

K = <0,0,1>

M = <10,6,0>

When to use Cosine?

Cosine Similarity

• sim(x,y) = cos(θ(x,y)) [-1..+1]

– Used in collaborative filtering

– Popular in document matching

78

θ

Mary

Kostas

John

cos(θ(J, K)) = cos(90o) = 0

cos(θ(J, M)) = cos(4.3o) = 0.997

Dot (inner) product between two
vectors

• x . y =Σ(xk * yk)

• Example:

• Then:

x . y=1*1+3*0+0*1+5*6=31

= |x|*|y|*cos(θ(x, y))

x= (1,3,0,5)
y= (1,0,1,6)

θ

From dot to cosine

• cos(θ(x, y))=
x . y

|x|∗|y|

• In this example

• |x|= 12+32+02+52= 35

• |y|= 12+02+12+62 = 38

• cos(θ(x, y))=
31

35∗ 38
= 0.85

x= (1,3,0,5)
y= (1,0,1,6)

Dot product with unit vector

• x . y =Σ(xk * yk)
• Example for unit vector y:

• Notice that |y|=1
• Then:

x . y=1/2+3/2+5/2=9/2=4.5
= |x|*1*cos(θ(x, y))

x= (1,3,0,5)
y= (1/2,1/2,1/2,1/2)

x

y

Random Hyperplane Projection

 uses n d-dimensional
random vectors (rvi)

 Generates for each input
vector a bitmap of size n as
follows:

◼ Sets biti=1 if dot product of
input vector with i-th
random vector is positive

◼ Sets biti=0 if dot product of
input vector with i-th
random vector is negative

(Mining Massive Data Sets, Sec. 3.7.2)

rv1

rv2

rv3

rv4

RHP(x)

1 0 10

Locality Sensitive Hashing (LSH)

• Assign items to buckets using
a hash function h(x)
– E.g.

– Details of function h() depend
on the preferred similarity
metric:
• Similar objects are hashed to the

same bucket with high
probability

• Dissimilar objects are hashed to
the same bucket with very small
probability

• Repeat several times

83

h()=0110 in binary

Buckets (1-4)

Is RHP a locality-sensitive hashing
scheme?

 Assume vectors for customers
x and y point (approximately)
towards the same direction

 This means their cosine is close
to 1

 We expect that with high
probability the RHP values will
be identical

 Use RHP encodings as “bucket
ids”

 Similar customers are hashed to
the same bucket (with high
probability)

rv1

rv2

rv3

rv4

RHP(x)=RHP(y)

1 0 10

Hamming Distance

• The Hamming distance between two equal-
length strings of symbols is the number of
positions at which the corresponding symbols
are different (Wikipedia)

– Dh(‘00110101’,

 ’10110110’) = 3

– Dh (‘abc’,’acc’) = 1

• Vectors are collinear (θ(x,y)=0, cosine similarity = 1)

Approximate Similarity Computation via Hamming
Distance of RHP bitmaps

0 0 0 1 1 1

0 0 0 1 1 1

yx

RHP(x) :

RHP(y) :

n bits

• Vectors are opposite (θ(x,y)=π, cosine similarity = 0)

Approximate Similarity Computation via Hamming
Distance of RHP bitmaps

0 0 0 1 1 1

1 1 1 0 0 0

y

x

RHP(x) :

RHP(y) :

n bits

• Also works for the Pearson correlation
– Cor(x, y) = Cos(x-x, y-y)

Approximate Similarity Computation via Hamming
Distance of RHP bitmaps

1 0 1 1 1 1

0 0 0 1 1 1

y

x

RHP(x) :

RHP(y) :

n bits θ(x,y)

Estimate θ(x,y)=Dh(RHP(x),RHP(y))*π/n
^

θ(RHP(x),RHP(y))=2/6*π=π/3
^

RHP Example

• Calculations for John:
• <2,1,0>.<3,1,6> = 2*3+1*1+0*6=+7 → bit =1
• <2,1,0>.<-5,3,2> =-10+3=-7 → bit = 0
• Thus, RHP(John) = 10

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

rv1=<3,1,6>
rv2=<-5,3,2>

Mary

Kostas

John

RHP Example

• Calculations for Kostas:
• <0,0,1>.<3,1,6> = +6 → bit =1
• <0,0,1>.<-5,3,2> =+2 → bit = 1
• Thus, RHP(Kostas) = 11

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

rv1=<3,1,6>
rv2=<-5,3,2>

Mary

Kostas

John

RHP Example

• Calculations for Mary:
• <10,6,0>.<3,1,6> = +36→ bit =1
• <10,6,0>.<-5,3,2>=-32 → bit = 0
• Thus, RHP(Mary) = 10

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

rv1=<3,1,6>
rv2=<-5,3,2>

Mary

Kostas

John

RHP Example

• RHP(John) = RHP(Mary) = 10
• Hamming distance = 0
• Estimated angle is 0

– Thus, estimated cosine similarity = 1
– True cosine = 0.997

• Good accuracy by using just two bits!
– Disclaimer: Ι am cherry picking favorable examples here

92

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

Mary

Kostas

John

RHP Example

• RHP(John) = 10, RHP(Kostas) = 11

• Hamming distance = 1 (out of n = 2 bits)

• Estimated angle is π/2 = 90ο

– Thus, estimated cosine similarity = cos(π/2) = 0

– This is also the true cosine similarity

93

J = <2,1,0>
K = <0,0,1>
M = <10,6,0>

Mary

Kostas

John

WORKING WITH STRINGS

String distance computations

• Why it is useful
– String Matching

– Spelling Checking

• Examples
– Fix data entry errors: replace “Yiannis” with “Yannis”

– Address matching/correction
• Compare “Patission” , “Patision Str”, “Patission St”

– Fraud Detection
• Are “Kotidis123”, “Kotidis554” and “7Kotidis123”

 the same user?

String Edit Distance

• The edit distance between strings x = x1x2..xn and
y = y1y2..ym is the smallest number of insertions
and deletions of single characters that will
convert x to y

• As an example to convert x=“abcde” to y
=“acfdeg”
1. delete b and get “abcde”

2. insert f after c and get “acfde”

3. insert g after e and get “acfdeg” = y

• Thus, dedit(“abcde”,”acfdeg”)=3

Longest Common Subsequence (LCS)

• The LCS of x and y is the longest common
string that is constructed by deleting positions
from x and y

– For x=“abcde” to y =“acfdeg”

– LCS(x,y) = “acde”

• It holds that

– dedit(x,y)= len(x)+len(y)-2*len(LCS(x,y))

• In our example dedit(x,y)=5+6-2*4=3

Levenshtein Distance

• In addition to insertions and deletions of single
characters, Levenshtein distance also allows
substitutions

• As an example, for x=“STALL” and y=“TABLE”,
dlev(x,y)=3
1. (starting with “STALL”) delete S and get “TALL”,

2. substitute first L with B and get “TABL”,

3. insert E at the end and get “TABLE”

• In comparison dedit(“STALL”, “TABLE”,)=4
– Notice that 1 substitution ⟺ 1 deletion + 1 insertion

Note

• In the literature sometimes Levenshtein
distance is referred as edit distance (e.g. edit
distance adjusted to permit insertions,
deletions as well as substitutions)

Additional Metrics for strings

• Damerau–Levenshtein distance further allows
transportation between two successive
characters

– Corssroads → Crossroads

• Jaro distance only allows transportations

Time Series

• Sequence of data points
indexed in time order

– Examples: financial data,
sensor data, speech, etc

– Univariate (running
examples) vs multivariate

• Can be compared with
Euclidean distance (given two
series of same length)

– The ith point on one time
series is aligned with the
ith point on the other

• However, this often gives poor
results

• Does not work if series have
difference lengths
– Padding?

Image from
https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1a1e4afc

Time Series - Euclidean Distance

• Sx = <2,1,0,1>

• Sy = <2,0,2,3>

Euclidean−distace d(Sx, Sy)=

2 − 2 2 + 1 − 0 2 + 0 − 2)2
+ (1 − 3 2

= 02 + 12 + 22 + 22

= 0 + 1 + 4 + 4

= 9

= 3

Time Series - Euclidean Distance

• Sx = <2,1,0,1>

• Sy = <2,0,2,3,1,2,2,0,4>

What now?

Time Series - Euclidean Distance

• Sx = <2,1,0,1>

• Sy = <2,0,2,3,1,2,2,0,4>

Padding (convert to same length)?

• Sx = <2,1,0,1,0,0,0,0,0>

• Sy = <2,0,2,3,1,2,2,0,4>

Dynamic Time Wrapping

• DTW computes the best
alignment between the two-
time series
– Works even if the input series

have different lengths

– Useful if series have different
frequencies or are out of phase
(e.g. lag)

• Has been shown to be
superior than Euclidean
distance for tasks such as
time series classification

• Drawback: quadratic
complexity O(n2)

Image from
https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1a1e4afc

Computation complexity: O(n*m)

Start

End

Example: Time Series Classification

Problem Statement

• Given:
– n time series x1,.., xn along with

their labels (classes) y1,.., yn to be
used as training examples

– a time series x with an unknown
label

• Goal:
– classify x: find the class label of x

“Sell stock”

x

“Buy stock” Binary
classification

Intuition

In a perfect world:
• Assume there is another data point

(time series) xi that is very similar to
the input series x

• I would then pick the label yi of xi as
my selection

• This decision is optimal if x = xi or,
equivalently when d(x, xi)→0

In practice:
• We will look at labeled data from the

neighborhood of xi

x

Some example xi

with known label yi

k-NN algorithm

• Given:
– n time series x1,.., xn along with their

labels (classes) y1,.., yn to be used as
training examples

– a time series x with an unknown
label

• Goal:
– classify x: find the class label of x

• Intuition:
– assign x to the class most common

among its k nearest neighbours

• Considerations:
– selection of k
– weigh neighbours

Sell stock

x

Buy stock

k-NN algorithm

• Given:
– n time series x1,.., xn along with their

labels (classes) y1,.., yn to be used as
training examples

– a time series x with an unknown
label

• Goal:
– classify x: find the class label of x

• Intuition:
– assign x to the class most common

among its k nearest neighbours

• Considerations:
– selection of k
– weigh neighbours

Sell stock

x

Buy stock

k-NN algorithm

• Given:
– n time series x1,.., xn along with their

labels (classes) y1,.., yn to be used as
training examples

– a time series x with an unknown
label

• Goal:
– classify x: find the class label of x

• Intuition:
– assign x to the class most common

among its k nearest neighbours

• Considerations:
– selection of k
– weigh neighbours

Sell stock

x

Buy stock

Comparing Distributions (1):
Convert to vectors

3
5 4 4

3 2vs

pets pets

cat dog bat snake cat dog bat snake

<3,5,0,4> vs. <4,3,2,0>

• Makes sense for categorical domains

Pet-shop A Pet-shop B

0 0

Comparing Distributions (2):
Earth Movers Distance

vs

Image source: https://sbl.inria.fr/doc/Earth_mover_distance-user-manual.html

Customer age Customer age
34 35 36 37 38 39 40 34 35 36 37 38 39 40

EMD Intuition

• Compute minimum amount of work required to
change one distribution into the other.
– Unit of work: the amount of work necessary to move one

unit of weight by one unit of ground distance.
• Informally: work = amount of dirt moved x distance travelled

– Ground distance: the distance measure between weight
locations.

• EMD allows partial matching (when cumulative
weights don’t match): Weight(X)<>Weight(Y)
– all the weight in the lighter distribution should be

matched to weight in the heavier distribution

– In this case EMD(x,y) is not a distance metric

5

2

4

d1

d2

Work = 2*d1+3*d2+1*d3

EMD = WORK / 6

Pile of dirt

Hole in the ground

1
d3

𝑬𝑴𝑫 𝑿, 𝒀 =
𝐦𝐢𝐧(𝑾𝒐𝒓𝒌 𝑿, 𝒀)

𝐦𝐢𝐧(𝑾𝒆𝒊𝒈𝒉𝒕 𝑿 , 𝑾𝒆𝒊𝒈𝒉𝒕 𝒀)

Compare results of Clustering

• Clusters: {(xi,ni), i=1,..n}

– xi is the cluster centroid

– ni is the size of the cluster

Compare Features Exported from
dataset

• Features: {(fi,ni), i=1,..n}

– fi : feature i

– ni : number of times fi appears in dataset

– Ground distance: dist(fi,fj)

Neat Application:
Word Movers Distance (Kusner et. al.)

	Slide 1: Working with Data
	Slide 2: Motivation
	Slide 3: Simple Running Example
	Slide 5: Roadmap
	Slide 6: Preliminaries
	Slide 8: Running Example
	Slide 9: Nominal Attributes
	Slide 10: Dissimilarity of nominal attributes
	Slide 11: Dissimilarity of nominal attributes
	Slide 12: Note
	Slide 13: Dissimilarity of ordinal attributes
	Slide 14: Dissimilarity of ordinal attributes
	Slide 15: Dissimilarity of numerical attributes
	Slide 16: Dissimilarity of numerical attributes
	Slide 17: Combining scores
	Slide 18: Example (weighted average)
	Slide 19: Take avg of dissimilarity matrices
	Slide 20: Outcome
	Slide 21: Most similar pair of cars
	Slide 22: John: I like Car #3
	Slide 23: Nearest Neighbors of Car #3
	Slide 24: Extended Data Matrix
	Slide 25: Extended Data Matrix
	Slide 26: Car-Type Hierarchy?
	Slide 27: Six products
	Slide 28: Groups/Categories
	Slide 29: Higher-level Categories
	Slide 30: Utilize the Star Schema
	Slide 32: Using Hierarchies (simplified)
	Slide 33: Using Hierarchies (simplified)
	Slide 34: Using Hierarchies (simplified)
	Slide 35: Using Hierarchies (simplified)
	Slide 37: d(Crossover, SUV)=?
	Slide 38: d(Crossover, SUV)= 1 over bold 2
	Slide 39: Combining evidence
	Slide 40: Combining similarities from difference processes/sources
	Slide 41: Taking weighted averages
	Slide 42: Treating scores as evidence
	Slide 43: Treating similarities as probabilities
	Slide 44: Using additional sources
	Slide 45: Working with SETS
	Slide 46: How do we compare sets?
	Slide 47: Set similarity: Jaccard Index
	Slide 48: Jaccard Index Examples
	Slide 49: Toy exercise (python jupyter notebook in e-class)
	Slide 51: Clustering
	Slide 52: The famous k-Means algorithm
	Slide 53: Example for k=3
	Slide 54: New centroids + reassignment
	Slide 55: Wait!
	Slide 56: Hierarchical Clustering to the rescue
	Slide 57: Executive decision
	Slide 58: Jaccard Similarity
	Slide 59: Hierarchical Clustering
	Slide 60: New state
	Slide 61: Next step (most similar pair: user3, user5)
	Slide 62: Final step (most similar pair: user4, user3+user5)
	Slide 63: Notes
	Slide 65: Jaccard Distance between sets
	Slide 66: How about bags?
	Slide 67: Example
	Slide 68: Alternative bag similarity
	Slide 69: Example (alt)
	Slide 70: Bag Similarity Example
	Slide 71: Bag Similarity Example
	Slide 72: Working with vectors
	Slide 73: Basket data example
	Slide 74: Definition of Euclidean Distance
	Slide 75: Euclidean Distance NN Calculations
	Slide 76: Angle Calculations: favor direction over length (norm)
	Slide 77: When to use Cosine?
	Slide 78: Cosine Similarity
	Slide 79: Dot (inner) product between two vectors
	Slide 80: From dot to cosine
	Slide 81: Dot product with unit vector
	Slide 82: Random Hyperplane Projection
	Slide 83: Locality Sensitive Hashing (LSH)
	Slide 84: Is RHP a locality-sensitive hashing scheme?
	Slide 85: Hamming Distance
	Slide 86: Approximate Similarity Computation via Hamming Distance of RHP bitmaps
	Slide 87: Approximate Similarity Computation via Hamming Distance of RHP bitmaps
	Slide 88: Approximate Similarity Computation via Hamming Distance of RHP bitmaps
	Slide 89: RHP Example
	Slide 90: RHP Example
	Slide 91: RHP Example
	Slide 92: RHP Example
	Slide 93: RHP Example
	Slide 94: WORKING WITH STRINGS
	Slide 95: String distance computations
	Slide 96: String Edit Distance
	Slide 97: Longest Common Subsequence (LCS)
	Slide 99: Levenshtein Distance
	Slide 100: Note
	Slide 101: Additional Metrics for strings
	Slide 102: Time Series
	Slide 103: Time Series - Euclidean Distance
	Slide 104: Time Series - Euclidean Distance
	Slide 105: Time Series - Euclidean Distance
	Slide 106: Dynamic Time Wrapping
	Slide 107: Computation complexity: O(n*m)
	Slide 108: Example: Time Series Classification
	Slide 109: Intuition
	Slide 110: k-NN algorithm
	Slide 111: k-NN algorithm
	Slide 112: k-NN algorithm
	Slide 114: Comparing Distributions (1): Convert to vectors
	Slide 115: Comparing Distributions (2): Earth Movers Distance
	Slide 116: EMD Intuition
	Slide 117: Compare results of Clustering
	Slide 118: Compare Features Exported from dataset
	Slide 119: Neat Application: Word Movers Distance (Kusner et. al.)

