Working with Data

Yannis Kotidis Department of Informatics Athens University of Economics and Business

Motivation

- We often need ways to assess how similar or dissimilar objects are in comparison to one another
- Examples: clustering, outlier analysis, nearestneighbor search, recommendation, visualization, classification

Simple Running Example

- Car dealership
 - a customer inquired about car #1 that was sold
 - which of the other cars is she most likely to buy?

Car	Color	Condition	Mileage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Roadmap

- We will first discuss <u>simple</u> similarity metrics for common data types: nominal, ordinal and numerical attributes
- We will then extend our techniques to address more complex scenarios
 - Hierarchical domains (e.g. product \Leftrightarrow categories)
 - Sets (e.g. basket data), Bags
 - Vectors (multidimensional data)
 - Strings
 - Time Series
 - Graphs

Preliminaries

- Let sim(a,b) denote the similarity of two values a, b of a data attribute
- In order to have a common basis, we will normalize values: sim(a,b) in range [0..1]
 - sim(a,b) = 1, iff a and b are identical
 - sim(a,b) = 0, iff a and b are unalike
- Dissimilarity: d(a,b) = 1 sim(a,b)
 - Formula assumes $sim(a,b) \in [0..1]$
 - Notice that, depending on the internals of the sim() function, dissimilarity is not necessarily a distance function (i.e. triangle inequality may not hold)

Running Example

- Dataset describing used cars
- 3 known attributes : *color, condition, mileage* (in 1000 Km)

Car	Color	Condition	Mileage (*1000 Km)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Nominal Attributes

- The values are symbols (e.g., names of things) that often represent some category or state
 - Are a type of categorical attributes when there is no ordering/importance implied by the values
 - Cats are not better than dogs or vice-versa
 - Can be used to differentiate records (e.g., pet="cat" vs pet="dog")
- Numerical attributes (e.g., product-ids) may also be treated as nominal

Dissimilarity of nominal attributes

• Let us define

d(a,b) = 1 if a≠b, 0 otherwise

- Examples
 - d(Blue,Green) = 1 $\frown \circ$ X- d(Green,Red) = 1 $\frown \circ$ \checkmark d(Green,Green) = 0 $\frown \circ$ $\frown \circ$

Dissimilarity of nominal attributes

• We can form a *dissimilarity matrix* for Color:

Blue

4

Excellent

28

Note

 Even for medium-sized datasets, the dissimilarity matrix may not fit in memory as it requires O(n²) space

• We use it in our examples in order to visually inspect the computed pair-wise dissimilarities

Dissimilarity of *ordinal* **attributes**

- In this case there is an ordering of the symbols
- Consider rank of different values

 Fair (1) < Good (2) < Excellent (3)
- Let

$$d(a,b) = \frac{|rank(a) - rank(b)|}{maxrank - minrank}$$

Examples

- d(Fair, Good)=
$$\frac{|1-2|}{3-1}$$
= 0.5
- d(Excellent, Fair) = $\frac{|3-1|}{3-1}$ = 1

Dissimilarity of ordinal attributes

• Dissimilarity matrix for Condition:

	Car	Color	Condition	Mileage (*1000)
	1	Blue	Excellent	45
	2	Green	Fair	22
0.5	3	Red	Good	64
0	4	Blue	Excellent	28

Dissimilarity of numerical attributes

• Compute:

$$d(a,b) = \frac{|a-b|}{maxvalue - minvalue}$$

• Example

$$-d(45,22) = \frac{|45-22|}{64-22} = 0.55$$

Car	Color	Condition	Mileage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Dissimilarity of numerical attributes

• Dissimilarity matrix for Mileage:

Car	Color	Condition	Mileage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Combining scores

• Simplest approach: take average of computed dissimilarities

 $d(r_a, r_b) = \frac{1}{3} * (d_{color}(r_a, r_b) + d_{condition}(r_a, r_b) + d_{mileage}(r_a, r_b))$

Use weights to prioritize certain attributes

- e.g. user prioritizes mileage over color ($w_3 > w_1$)

 $d(r_a, r_b) = \frac{W_1 * d_{color}(r_a, r_b) + W_2 * d_{condition}(r_a, r_b) + W_3 * d_{mileage}(r_a, r_b)}{W_1 + W_2 + W_3}$

Example (weighted average)

Assume mileage is more (2x) important than color, condition

- w_{color}=1, w_{condition}=1, w_{mileage}=2

$$d(r_a, r_b) = \frac{d_{color}(r_a, r_b) + d_{condition}(r_a, r_b) + 2 * d_{mileage}(r_a, r_b)}{1 + 1 + 2}$$

Take avg of dissimilarity matrices

3

Outcome

• Data Matrix:

Car	Color	Condition	Millage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

• Dissimilarity Matrix:

0		-	
0.85	0		
0.65	0.83	0	
0.13	0.71	0.79	0

Most similar pair of cars?

Most similar pair of cars

• Data Matrix:

Car	Color	Condition	Millage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

• Dissimilarity Matrix:

0			
0.85	0		
0.65	0.83	0	
0.13	0.71	0.79	0

John: I like Car #3

• Data Matrix:

Car	Color	Condition	Millage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

• Dissimilarity Matrix:

Can we rank the cars on our lot based on their dissimilarities to car #3?

Nearest Neighbors of Car #3

• Data Matrix:

Car	Color	Condition	Millage (*1000)
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

• Dissimilarity Matrix:

0			
0.85	0		
0.65	0.83	0	
0.13	0.71	0.79	0

Extended Data Matrix

Car	Color	Condition	Millage (*1000)	Туре
1	Blue	Excellent	45	Supermini
2	Green	Fair	22	Crossover
3	Red	Good	64	SUV
4	Blue	Excellent	28	Small family

 How do we treat the newly added Type attribute?

Extended Data Matrix

Car	Color	Condition	Millage (*1000)	Туре
1	Blue	Excellent	45	Supermini
2	Green	Fair	22	Crossover
3	Red	Good	64	SUV
4	Blue	Excellent	28	Small family

- How do we treat the newly added Type attribute?
 - Small family cars more similar to superminis?
 - SUVs more similar to Crossover?

Six products

high heels

sneakers

Groups/Categories

Utilize the Star Schema

- Assume a,b are leaves and lca is their *lowest* common ancestor in the hierarchy
- Examples
 - lca("Γραβιέρα","Φέτα") = "Τυρί"
 - Ιca("Γραβιέρα", "Εβαπορέ") = "Γαλακτοκομικά"
 - Ιca("Γραβιέρα", "Γίγαντες") = "ΠΡΟΙΟΝΤΑ"

 Assume a,b are leaves and |p_lca|= the length of the path towards their *lowest common ancestor* (lca)

• Example

- d("Γραβιέρα","Φέτα") =
$$\frac{1}{3}$$
 (lca = "Τυρί")

 Assume a,b are leaves and |p_lca|= the length of the path towards their *lowest common ancestor* (lca)

• Example

- d("Γραβιέρα", "Εβαπορέ") =
$$\frac{2}{3}$$
 (lca = "Γαλακτοκομικά")

 Assume a,b are leaves and |p_lca|= the length of the path towards their *lowest common ancestor* (lca)

• Example

- d("Γραβιέρα", "Γίγαντες" $) = \frac{3}{3} (Ica =$ "ΠΡΟΙΟΝΤΑ")

COMBINING EVIDENCE

Combining similarities from difference processes/sources

- Assume we have two separate processes for computing similarities between users
- Process 1: assesses demographic data from the user database (gender, age, marital status, etc.)
 - Reports similarity score s₁ based on demographic data
- Process 2: considers their interaction with our systems (e.g. purchases, logins, etc.)
 - Reports similarity score s₂ based on user activity
Taking weighted averages

• We already saw this computation

sim =
$$\frac{W_1 * s_1 + W_2 * s_2}{W_1 + W_2}$$

- Can be fine-tuned to our preferences or trust on these datasets
 - E.g. if we believe that activity data is more reliable or important, use $w_2 > w_1$

Treating scores as evidence

- One problem with averaging is that low scores from one of the two processes (e.g. due to wrong/missing data) will lower the overall calculation
 - Example: s₁ = 0.7, s₂=0.2, Average(s₁, s₂)=0.45
- Possible solution: take maximum score
 Take: Max(s₁, s₂)=0.70
- Another idea is to treat each score as independent evidence that each boosts our confidence on the similarity between the users

Treating similarities as probabilities

Assuming independence, combine scores in a probabilistic manner

- In our example
 - sim(0.7,0.2)=0.7+0.2-0.14=0.76
- Notice that sim(s₁,s₂) ≥ max(s₁,s₂)

Using additional sources

- This calculation can be extended in case we have more sources suggesting similarity for the customers
 - e.g. based on customer surveys $s_3 = 0.8$
- Combine scores in a probabilistic manner

$$sim(s_1, s_2, s_3) = sim(s_1, s_2) + s_3 - sim(s_1, s_2) * s_3$$

- In our running example
 - sim(0.7, 0.2, 0.8) = 0.76 + 0.8 0.76*0.8 = 0.952
 - Compare with average (0.7,0.2,0.8) = 0.56
 - Compare with max (0.7,0.2,0.8) = 0.8
 - Compare with min (0.7,0.2,0.8) = 0.2

WORKING WITH SETS

How do we compare <u>sets</u>?

- UserA= {milk, bread, coffee}
- UserB= {milk, bread, donut}
- UserC= {milk, bread, soda, potatoes}
- Straightforward idea: look at their intersection
 - Intersection(UserA,UserB) = {milk,bread}
 - Intersection(UserA,UserC) = {milk,bread}
- Intersection not enough!
 - Need to look at their differences too

Set similarity: Jaccard Index

Jaccard(S1,S2) = the ratio of the sizes of the intersection and union of S1 and S2
 – Jaccard(S1,S2) = |S1∩S2|/|S1∪S2|

- Note that $|S1 \cap S2| \le |S1 \cup S2|$
- Thus, $0 \leq \text{Jaccard}(S1,S2) \leq 1$

Jaccard Index Examples

- Recall: Jaccard(S1,S2) = $|S1 \cap S2| / |S1 \cup S2|$
- Jaccard({potatoes, lettuce}, {potatoes, tomatoes}) = $\frac{1}{3}$
- Jaccard({potatoes, lettuce, cucumbers}, {potatoes, tomatoes, ketchup}) = $\frac{1}{5}$
- Jaccard({potatoes, lettuce}, {potatoes, lettuce, tomatoes}) = $\frac{2}{3}$
- Jaccard({lettuce}, {milk, soda}) = 0
- Jaccard({soda, milk}, {milk, soda}) = 1

Toy exercise (python jupyter notebook in e-class)

Assume the following 5 customers with their purchases

user1 : ['milk', 'bread', 'coffee'] user2 : ['milk', 'bread', 'cola'] user3 : ['cereal', 'milk', 'donut'] user4 : ['donut', 'cream', 'cola'] user5 : ['cola', 'milk', 'cereal', 'tea']

Can you group these customers into two clusters?

Clustering

□ Separate data into disjoint groups such that:

- Increased similarity among members of the same group (cluster cohesion)
- □ Members of different groups are dissimilar

The famous k-Means algorithm

- Assume n points in the Euclidian space and a user-defined value of k=#clusters
 - 1. Pick k points (centroids), one per cluster
 - 2. Assign remaining points to closest centroid
 - 3. In each cluster update location of its centroid
 - 4. Reassign points, if necessary
 - 5. Repeat steps 3-4 until clusters stabilize
- k-Means seeks to minimize the sum of squared distances (thus the variance of the distances) from the centroids
 - the algorithm always converges to some (local) minimum solution

Example for k=3

New centroids + reassignment

Wait!

Our dataset is not points in a Euclidian space

□ There is no obvious way to compute a "centroid"

Hierarchical Clustering to the rescue

Initial set of clusters

Executive decision

- Purchases are modelled as sets of items
 - Use Jaccard for computing customer pair-wise similarity

```
user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
```

Jaccard Similarity

• All-pair similarity computation

user1 : ['milk', 'bread', 'coffee'] user2 : ['milk', 'bread', 'cola'] user3 : ['cereal', 'milk', 'donut'] user4 : ['donut', 'cream', 'cola'] user5 : ['cola', 'milk', 'cereal', 'tea']

Jaccard_sim of user1 , user2 is 0.5 Jaccard_sim of user1 , user3 is 0.2 Jaccard_sim of user1 , user4 is 0.0 Jaccard_sim of user1 , user5 is 0.16 Jaccard_sim of user2 , user3 is 0.2 Jaccard_sim of user2 , user4 is 0.2 Jaccard_sim of user2 , user5 is 0.4 Jaccard_sim of user3 , user4 is 0.2 Jaccard_sim of user3 , user5 is 0.4 Jaccard_sim of user3 , user5 is 0.4

Hierarchical Clustering

• Merge most similar pair to form a new cluster

user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']

Jaccard_sim of user1 , user2 is 0.5 Jaccard_sim of user1 , user3 is 0.2 Jaccard_sim of user1 , user4 is 0.0 Jaccard_sim of user1 , user5 is 0.16 Jaccard_sim of user2 , user3 is 0.2 Jaccard_sim of user2 , user4 is 0.2 Jaccard_sim of user2 , user5 is 0.4 Jaccard_sim of user3 , user4 is 0.2 Jaccard_sim of user3 , user5 is 0.4 Jaccard_sim of user3 , user5 is 0.4

New state

- Merge best pair (user1+user2) to form a new cluster
 - Represent cluster of customers as their union (not ideal, other options exist)

```
user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
user1+user2 : ['bread', 'cola', 'milk', 'coffee']
```

Next step (most similar pair: user3, user5)

```
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
user1+user2 :['bread', 'cola', 'milk', 'coffee']
```


user4 : ['donut', 'cream', 'cola'] user1+user2 :['bread', 'cola', 'milk', 'coffee'] user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea']

Final step

(most similar pair: user4, user3+user5)

user4 : ['donut', 'cream', 'cola']
user1+user2 :['bread', 'cola', 'milk', 'coffee']
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea']

user1+user2 :['bread', 'cola', 'milk', 'coffee'] user4+user3+user5 : {'donut', 'cereal', 'milk', 'cream', 'cola', 'tea'}

Cluster 1

user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']

Cluster 2

user3 : ['cereal', 'milk', 'donut'] user4 : ['donut', 'cream', 'cola'] user5 : ['cola', 'milk', 'cereal']

Notes

- In this toy example we performed Hierarchical Clustering up to 2 clusters without checking the quality of the intermediate clusters
 - Sometimes it is better to stop sooner that later
- To simplify the code, we used as a representative (clustoid) of a cluster the UNION of its members
 - Can you think of examples where this is a bad choice?

Cluster 1

user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']

Cluster 2

user3 : ['cereal', 'milk', 'donut'] user4 : ['donut', 'cream', 'cola'] user5 : ['cola', 'milk', 'cereal']

Jaccard Distance between sets

 Can be defined as the complement of their Jaccard similarity

union

$$-d_{jacc}(S1,S2) = 1 - \frac{|S1 \cap S2|}{|S1 \cup S2|} = \frac{|S1 \cup S2| - |S1 \cap S2|}{|S1 \cup S2|}$$

How about bags?

#android #MeToo

#android

#NBAfinals

#android

#iphone

#android #android

Bags are "sets" with repetition of elements allowed

Jaccard can be extended to work with bags

Intersection(S1,S2): count an element n times in the intersection, where n is the minimum of the number of times the element appears in S1 and S2

Union(S1,S2): count the element the sum of the number of times it appears in S1, S2

Example

- S1 = {a,a,a,b}, S2 = {a,a,b,b,c}
- Then, intersection is {a,a,b} and union {a,a,a,a,b,b,b,c}
- Bag-similarity is thus, 3/9 = 1/3

Note, bag similarity is between 0 and ½ (why?)

Alternative bag similarity

- Count an element n times in the intersection, where n is the minimum of the number of times the element appears in S1 and S2
- In the union, count the element the max of the number of times it appears in S1, S2

Example (alt)

- S1 = {a,a,a,b}, S2 = {a,a,b,b,c}
- Then, intersection is {a,a,b} and union {a,a,a,b,b,c}
- Bag-similarity of S1, S2 is thus, 3/6 = 50%

 Note, alternative bag similarity is between 0 and 1 (why?)

Bag Similarity Example

- Movies ratings dataset
 - John: Star_Wars_I:3/5, Avatar: 4/5, Aliens: 2/5
 - Mary: Star_Wars_I: 2/5, Avatar: 5/5, ET: 4/5
 - Nick: Star_Wars_I: 4/5, Aliens: 2/5, ET: 1/5
- Who is the Nearest Neighbor of John?
- Note: if treated as sets
 - Jaccard(John, Mary) = Jaccard(John, Nick) = 2/4 = 50%
 - Let us consider their bag similarity instead!

Bag Similarity Example

• Convert to bags:

- John: {Star_Wars_I, Star_Wars_I, Star_Wars_I, Avatar, Avatar, Avatar, Avatar, Aliens, Aliens}
- Mary: {Star_Wars_I, Star_Wars_I, Avatar, Avatar, Avatar, Avatar, Avatar, ET, ET, ET, ET}
- Nick: {Star_Wars_I, Star_Wars_I, Star_Wars_I, Star_Wars_I, Aliens, Aliens, ET}
- Bag_similarity_alt(John,Mary) = (2+4)/(3+5+4+2) = 6/14 = 42.9%
- Bag_similarity_alt(John,Nick) = (3+2)/(4+4+2+1) = 5/11 = 45.5%

WORKING WITH VECTORS

Basket data example

- Three distinct products:
 - potato (p), lettuce (l), tomato (t)
- Three users with the following purchases
 - John: 2 potatoes, 1 lettuce
 - Kostas: 1 tomato
 - Mary: 10 potatoes, 6 lettuces

Vector Model <#p,#l,#t>

$$\vec{J} = <2,1,0>$$

 $\vec{K} = <0,0,1>$
 $\vec{M} = <10.6.0>$

Definition of Euclidean Distance

- $\vec{x} = \langle 2, 1, 0, 5 \rangle$
- $\vec{y} = <5,6,1,10>$

• Recall that:

$$d(\vec{x}, \vec{y}) = \sqrt{(2-5)^2 + (1-6)^2 + (0-1)^2 + (5-10)^2}$$

$$=\sqrt{9+25+1+25}=\sqrt{60}=7.75$$

Euclidean Distance NN Calculations

When to use Cosine?

Cosine Similarity

- $sim(\vec{x},\vec{y}) = cos(\theta(\vec{x},\vec{y})) \in [-1..+1]$
 - Used in collaborative filtering
 - Popular in document matching

Dot (inner) product between two vectors

- $\vec{x} \cdot \vec{y} = \Sigma(x_k * y_k)$
- Example:
 - x= (1,3,0,5) y= (1,0,1,6)
- Then: $\vec{x} \cdot \vec{y} = 1 \cdot 1 + 3 \cdot 0 + 0 \cdot 1 + 5 \cdot 6 = 31$ $= |\vec{x}| \cdot |\vec{y}| \cdot \cos(\theta(\vec{x}, \vec{y}))$

From dot to cosine

•
$$\cos(\theta(\vec{x}, \vec{y})) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| * |\vec{y}|}$$

• In this example

•
$$|\vec{x}| = \sqrt{1^2 + 3^2 + 0^2 + 5^2} = \sqrt{35}$$

•
$$|\vec{y}| = \sqrt{1^2 + 0^2 + 1^2 + 6^2} = \sqrt{38}$$

•
$$\cos(\theta(\vec{x}, \vec{y})) = \frac{31}{\sqrt{35} \sqrt{38}} = 0.85$$

x̄= (1,3,0,5) ȳ= (1,0,1,6)

Dot product with unit vector

•
$$\vec{x} \cdot \vec{y} = \Sigma(x_k * y_k)$$

• Example for unit vector \vec{y} :

- Notice that $|\vec{y}|=1$
- Then:
 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 Then:

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

 x

Random Hyperplane Projection

(Mining Massive Data Sets, Sec. 3.7.2)

- uses *n* d-dimensional random vectors (rv_i)
- Generates for each input vector a bitmap of size n as follows:
 - Sets bit_i=1 if dot product of input vector with *i-th* random vector is positive
 - Sets bit_i=0 if dot product of input vector with *i-th* random vector is negative

Locality Sensitive Hashing (LSH)

- Assign items to buckets using a hash function h(x)
 - − E.g. h(●)=0110 in binary
 - Details of function h() depend on the preferred similarity metric:
 - Similar objects are hashed to the same bucket with high probability
 - Dissimilar objects are hashed to the same bucket with very small probability
- Repeat several times

Is RHP a locality-sensitive hashing scheme?

- Assume vectors for customers x and y point (approximately) towards the same direction
 - This means their cosine is close to 1
- We expect that with high probability the RHP values will be identical
- Use RHP encodings as "bucket ids"
 - Similar customers are hashed to the same bucket (with high probability)

Hamming Distance

 The Hamming distance between two equallength strings of symbols is the number of positions at which the corresponding symbols are different (Wikipedia)

```
- D<sub>h</sub>('00110101',
'10110110') = 3
```

 $- D_{h}(abc',acc') = 1$

Approximate Similarity Computation via Hamming Distance of RHP bitmaps

• Vectors are collinear ($\theta(\mathbf{x}, \mathbf{y})=0$, cosine similarity = 1)

Approximate Similarity Computation via Hamming Distance of RHP bitmaps

• Vectors are opposite ($\theta(\mathbf{x}, \mathbf{y}) = \pi$, cosine similarity = 0)

Approximate Similarity Computation via Hamming Distance of RHP bitmaps

Estimate $\hat{\theta}(x,y) = D_h(RHP_{(x)},RHP_{(y)})*\pi/n$

• Also works for the *Pearson correlation* - $Cor(x, y) = Cos(x-\overline{x}, y-\overline{y})$

J = <2,1,0> K = <0,0,1> M = <10,6,0>

rv1=<3,1,6> rv2=<-5,3,2>

- Calculations for John:
- <2,1,0>.<3,1,6> = 2*3+1*1+0*6=+7 → bit =1
- $<2,1,0>.<-5,3,2>=-10+3=-7 \rightarrow bit=0$
- Thus, **RHP(John) = 10**

J = <2,1,0> K = <0,0,1> M = <10,6,0>

rv1=<3,1,6> rv2=<-5,3,2>

- Calculations for Kostas:
- <0,0,1>.<3,1,6> = +6 \rightarrow bit =1
- <0,0,1>.<-5,3,2> =+2 → bit = 1
- Thus, RHP(Kostas) = 11

J = <2,1,0> K = <0,0,1> M = <10,6,0>

rv1=<3,1,6> rv2=<-5,3,2>

- Calculations for Mary:
- <10,6,0>.<3,1,6> = +36→ bit =1
- <10,6,0>.<-5,3,2>=-32 \rightarrow bit = 0
- Thus, RHP(Mary) = 10

J = <2,1,0> K = <0,0,1> M = <10,6,0>

- RHP(John) = RHP(Mary) = 10
- Hamming distance = 0
- Estimated angle is 0
 - Thus, estimated cosine similarity = 1
 - True cosine = 0.997
- Good accuracy by using just two bits!
 - Disclaimer: I am cherry picking favorable examples here

- RHP(John) = 10, RHP(Kostas) = 11
- Hamming distance = 1 (out of n = 2 bits)
- Estimated angle is $\pi/2 = 90^{\circ}$
 - Thus, estimated cosine similarity = $cos(\pi/2) = 0$
 - This is also the true cosine similarity

WORKING WITH STRINGS

String distance computations

- Why it is useful
 - String Matching
 - Spelling Checking
- Examples
 - Fix data entry errors: replace "Yiannis" with "Yannis"
 - Address matching/correction
 - Compare "Patission", "Patision Str", "Patission St"
 - Fraud Detection
 - Are "Kotidis123", "Kotidis554" and "7Kotidis123" the same user?

String Edit Distance

- The edit distance between strings $x = x_1x_2..x_n$ and y = y₁y₂..y_m is the <u>smallest</u> number of insertions and <u>deletions</u> of single characters that will convert x to y
- As an example to convert x="abcde" to y ="acfdeg"
 - 1. delete b and get "abcde"
 - 2. insert f after c and get "acfde"
 - 3. insert g after e and get "acfdeg" = y
- Thus, d_{edit}("abcde","acfdeg")=3

Longest Common Subsequence (LCS)

 The LCS of x and y is the longest common string that is constructed by deleting positions from x and y

$$-LCS(x,y) =$$
"acde"

It holds that

 $-d_{edit}(x,y) = len(x)+len(y)-2*len(LCS(x,y))$

In our example d_{edit}(x,y)=5+6-2*4=3

Levenshtein Distance

- In addition to insertions and deletions of single characters, *Levenshtein distance* also allows substitutions
- As an example, for x="STALL" and y="TABLE", d_{lev}(x,y)=3
 - 1. (starting with "STALL") delete S and get "TALL",
 - 2. substitute first L with B and get "TABL",
 - 3. insert E at the end and get "TABLE"
- In comparison d_{edit} ("STALL", "TABLE",)=4
 - Notice that 1 substitution \Leftrightarrow 1 deletion + 1 insertion

Note

 In the literature sometimes Levenshtein distance is referred as edit distance (e.g. edit distance adjusted to permit insertions, deletions as well as substitutions)

Additional Metrics for strings

- Damerau–Levenshtein distance further allows transportation between two successive characters
 - Corssroads \rightarrow Crossroads
- Jaro distance only allows transportations

Time Series

- Sequence of data points indexed in time order
 - Examples: financial data, sensor data, speech, etc
 - Univariate (running examples) vs multivariate
- Can be compared with Euclidean distance (given two series of same length)
 - The ith point on one time series is aligned with the ith point on the other
- However, this often gives poor results
- Does not work if series have difference lengths
 - Padding?

Image from https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1a1e4afc

Time Series - Euclidean Distance

- Sx = <2,1,0,1>
- Sy = <2,0,2,3>

Euclidean-distace d(Sx, Sy)=

$$\sqrt{(2-2)^2 + (1-0)^2 + (0-2)^2 + (1-3)^2}$$

$$= \sqrt{0^2 + 1^2 + 2^2 + 2^2}$$

$$= \sqrt{0+1+4+4}$$

$$= \sqrt{9} = 3$$

Time Series - Euclidean Distance

- Sx = <2,1,0,1>
- Sy = <2,0,2,3,1,2,2,0,4>

What now?

Time Series - Euclidean Distance

- Sx = <2,1,0,1>
- Sy = <2,0,2,3,1,2,2,0,4>

Padding (convert to same length)?

- Sx = <2,1,0,1,0,0,0,0,0>
- Sy = <2,0,2,3,1,2,2,0,4>

Dynamic Time Wrapping

- DTW computes the best alignment between the twotime series
 - Works even if the input series have different lengths
 - Useful if series have different frequencies or are out of phase (e.g. lag)
- Has been shown to be superior than Euclidean distance for tasks such as time series classification
- Drawback: quadratic complexity O(n²)

Computation complexity: O(n*m)

End

Example: Time Series Classification

Problem Statement

- Given:
 - n time series x₁,.., x_n along with their labels (classes) y₁,.., y_n to be used as training examples
 - a time series **x** with an **unknown** label
- Goal:
 - classify x: find the class label of x

Intuition

In a perfect world:

- Assume there is another data point (time series) x_i that is very similar to the input series x
- I would then pick the label y_i of x_i as my selection
- This decision is **optimal** if $x = x_i$ or, equivalently when $d(x, x_i) \rightarrow 0$

In practice:

 We will look at labeled data from the neighborhood of x_i

k-NN algorithm

- Given:
 - n time series x₁,.., x_n along with their labels (classes) y₁,.., y_n to be used as training examples
 - a time series x with an unknown label
- Goal:
 - classify x: find the class label of x
- Intuition:
 - assign x to the class most common among its k nearest neighbours
- Considerations:
 - selection of k
 - weigh neighbours

k-NN algorithm

- Given:
 - n time series x₁,.., x_n along with their labels (classes) y₁,.., y_n to be used as training examples
 - a time series x with an unknown label
- Goal:
 - classify x: find the class label of x
- Intuition:
 - assign x to the class most common among its k nearest neighbours
- Considerations:
 - selection of k
 - weigh neighbours

k-NN algorithm

- Given:
 - n time series x₁,.., x_n along with their labels (classes) y₁,.., y_n to be used as training examples
 - a time series x with an unknown label
- Goal:
 - classify x: find the class label of x
- Intuition:
 - assign x to the class most common among its k nearest neighbours
- Considerations:
 - selection of k
 - weigh neighbours

Comparing Distributions (1): Convert to vectors

• Makes sense for categorical domains

Comparing Distributions (2): Earth Movers Distance

EMD Intuition

Pile of dirtHole in the ground

- Compute minimum amount of work required to change one distribution into the other.
 - Unit of work: the amount of work necessary to move one unit of weight by one unit of ground distance.
 - Informally: work = amount of dirt moved x distance travelled
 - Ground distance: the distance measure between weight locations.

$$EMD(X,Y) = \frac{\min(Work(X,Y))}{\min(Weight(X),Weight(Y))}$$

- EMD allows partial matching (when cumulative weights don't match): Weight(X)<>Weight(Y)
 - all the weight in the lighter distribution should be matched to weight in the heavier distribution
 - In this case EMD(x,y) is not a distance metric

 d_1

Work = $2*d_1+3*d_2+1*d_3$

EMD = WORK / 6
Compare results of Clustering

- Clusters: {(x_i,n_i), i=1,...n}
 - x_i is the cluster centroid
 - $-n_i$ is the size of the cluster

Compare Features Exported from dataset

- Features: {(f_i,n_i), i=1,...n}
 - f_i : feature i
 - $-n_i$: number of times f_i appears in dataset
 - Ground distance: dist(f_i,f_i)

Neat Application: Word Movers Distance (Kusner et. al.)

