Working with Data

Yannis Kotidis
Department of Informatics

Athens University of
Economics and Business

Motivation

- We often need ways to assess how similar or dissimilar objects are in comparison to one another
- Examples: clustering, outlier analysis, nearestneighbor search, recommendation,
 visualization, classification

Simple Running Example

- Car dealership
- a customer inquired about car \#1 that was sold
- which of the other cars is she most likely to buy?

Car	Color	Condition	Mileage $(* 1000)$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Roadmap

- We will first discuss simple similarity metrics for common data types: nominal, ordinal and numerical attributes
- We will then extend our techniques to address more complex scenarios
- Hierarchical domains (e.g. product \Leftrightarrow categories)
- Sets (e.g. basket data), Bags
- Vectors (multidimensional data)
- Strings
- Time Series
- Graphs

Preliminaries

- Let $\operatorname{sim}(a, b)$ denote the similarity of two values a, b of a data attribute
- In order to have a common basis, we will normalize values: $\operatorname{sim}(a, b)$ in range [0..1]
$-\operatorname{sim}(a, b)=1$, iff a and b are identical
$-\operatorname{sim}(a, b)=0$, iff a and b are unalike
- Dissimilarity: $\mathrm{d}(\mathrm{a}, \mathrm{b})=1-\operatorname{sim}(\mathrm{a}, \mathrm{b})$
- Formula assumes $\operatorname{sim}(a, b) \in[0 . .1]$
- Notice that, depending on the internals of the sim() function, dissimilarity is not necessarily a distance function (i.e. triangle inequality may not hold)

Running Example

- Dataset describing used cars
- 3 known attributes : color, condition, mileage (in 1000 Km)

Car	Color	Condition	Mileage $(* 1000 \mathrm{Km})$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Nominal Attributes

- The values are symbols (e.g., names of things) that often represent some category or state
- Are a type of categorical attributes when there is no ordering/importance implied by the values
- Cats are not better than dogs or vice-versa
- Can be used to differentiate records (e.g., pet="cat" vs pet="dog")
- Numerical attributes (e.g., product-ids) may also be treated as nominal

Dissimilarity of nominal attributes

- Let us define

$$
d(a, b)=1 \text { if } a \neq b, 0 \text { otherwise }
$$

- Examples
$-d$ (Blue,Green) =1

$-d($ Green,Red $)=1$

$-d($ Green,Green $)=0$

Dissimilarity of nominal attributes

- We can form a dissimilarity matrix for Color:

Note

- Even for medium-sized datasets, the dissimilarity matrix may not fit in memory as it requires $O\left(n^{2}\right)$ space
- We use it in our examples in order to visually inspect the computed pair-wise dissimilarities

Dissimilarity of ordinal attributes

- In this case there is an ordering of the symbols
- Consider rank of different values
- Fair (1) < Good (2) < Excellent (3)
- Let

$$
d(a, b)=\frac{|\operatorname{rank}(a)-\operatorname{rank}(b)|}{\operatorname{maxrank}-\operatorname{minrank}}
$$

- Examples
$-\mathrm{d}($ Fair, Good $)=\frac{|1-2|}{3-1}=0.5$
$-d($ Excellent, Fair $)=\frac{|3-1|}{3-1}=1$

Dissimilarity of ordinal attributes

- Dissimilarity matrix for Condition:

0			
1	0		
0.5	0.5	0	
0	1	0.5	0

	Car	Color	Condition	Mileage (*1000)
-	1	Blue	Excellent	45
1	2	Green	Fair	22
0.5	3	Red	Good	64
$\nu 0$	4	Blue	Excellent	28

Dissimilarity of numerical attributes

- Compute:

$$
d(a, b)=\frac{|a-b|}{\text { maxvalue }-\min v a l u e}
$$

- Example
$-d(45,22)=\frac{|45-22|}{64-22}=0.55$

Car	Color	Condition	Mileage $(* 1000)$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Dissimilarity of numerical attributes

- Dissimilarity matrix for Mileage:

0			
0.55	0		
0.45	1	0	
0.40	0.14	0.86	0

Car	Color	Condition	Mileage $(* 1000)$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

Combining scores

- Simplest approach: take average of computed dissimilarities

$$
\mathrm{d}\left(r_{a}, r_{b}\right)=\frac{1}{3} *\left(d_{\text {color }}\left(r_{a}, r_{b}\right)+d_{\text {condition }}\left(r_{a}, r_{b}\right)+d_{\text {mileage }}\left(r_{a}, r_{b}\right)\right)
$$

- Use weights to prioritize certain attributes
- e.g. user prioritizes mileage over color $\left(w_{3}>w_{1}\right)$

$$
\mathrm{d}\left(\mathrm{r}_{\mathrm{a}}, r_{\mathrm{b}}\right)=\frac{\mathrm{w}_{1} * \mathrm{~d}_{\text {color }}\left(r \mathrm{a}, \mathrm{r}_{\mathrm{b}}\right)+\mathrm{w}_{2} * \mathrm{~d}_{\text {condition }}\left(r \mathrm{a}, \mathrm{r}_{\mathrm{b}}\right)+\mathrm{w}_{3} * \mathrm{~d}_{\text {mileage }}\left(\mathrm{ra}, \mathrm{r}_{\mathrm{b}}\right)}{\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}}
$$

Example (weighted average)

- Assume mileage is more ($2 x$) important than color, condition
$-\mathrm{w}_{\text {color }}=1, \mathrm{w}_{\text {condition }}=1, \mathrm{w}_{\text {mileage }}=2$

$$
d\left(r_{a}, r_{b}\right)=\frac{d_{\text {color }}\left(r a, r_{b}\right)+d_{\text {condition }}\left(r a, r_{b}\right)+2 * d_{\text {mileage }}\left(r a, r_{b}\right)}{1+1+2}
$$

Take avg of dissimilarity matrices

0					0					0			
1	0				1	0				0.55	0		
1	1	0		+	0.5	0.5	0		+	0.45	1	0	
0	1	1	0		0	1	0.5	0		0.40	0.14	0.86	0

\square| | | | |
| :---: | :---: | :---: | :---: |
| | 0 | | |
| | 0.83 | 0 | |
| 0.13 | 0.71 | 0.79 | 0 |

Outcome

- Data Matrix:

Car	Color	Condition	Millage $(* 1000)$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

- Dissimilarity Matrix:

0			
0.85	0		
0.65	0.83	0	
0.13	0.71	0.79	0

Most similar pair of cars?

Most similar pair of cars

- Data Matrix:

Car	Color	Condition	Millage $(* 1000)$
$\mathbf{1}$	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
$\mathbf{4}$	Blue	Excellent	$\mathbf{2 8}$

- Dissimilarity Matrix:

0			
0.85	0		
0.65	0.83	0	
0.13	0.71	0.79	0

John: I like Car \#3

- Data Matrix:

Car	Color	Condition	Millage $(* 1000)$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

- Dissimilarity Matrix:

| 0

 0.85 0

 0.65 0.83 0

 0.13 0.71 0.79 | 0 |
| :---: | :---: | :---: | :---: |

Can we rank the cars on our lot based on their dissimilarities to car \#3?

Nearest Neighbors of Car \#3

- Data Matrix:

Car	Color	Condition	Millage $(* 1000)$
1	Blue	Excellent	45
2	Green	Fair	22
3	Red	Good	64
4	Blue	Excellent	28

- Dissimilarity Matrix:

0	0			NN(Car \#3): Most similar	
				Car\#1 ($\mathrm{d}(1,3)=0.65)$	
0.85				Car\#4 (d(4,3) $=0.79$)	
0.65	0.83	0		Car\#2 $(\mathrm{d}(3,2)=0.83)$	
0.13	0.71	0.79	0		

Extended Data Matrix

Car	Color	Condition	Millage $\left({ }^{* 1000)}\right.$	Type
1	Blue	Excellent	45	Supermini
2	Green	Fair	22	Crossover
3	Red	Good	64	SUV
4	Blue	Excellent	28	Small family

- How do we treat the newly added Type attribute?

Extended Data Matrix

Car	Color	Condition	Millage $\left({ }^{* 1000)}\right.$	Type
1	Blue	Excellent	45	Supermini
2	Green	Fair	22	Crossover
3	Red	Good	64	SUV
4	Blue	Excellent	28	Small family

- How do we treat the newly added Type attribute?
- Small family cars more similar to superminis?
- SUVs more similar to Crossover?

Car-Type Hierarchy?

Six products

Groups/Categories

Higher-level Categories

Utilize the Star Schema

Using Hierarchies (simplified)

- Assume a,b are leaves and Ica is their lowest common ancestor in the hierarchy
- Examples
- Ica("Г $Г \alpha \beta \iota \varepsilon ́ \rho \alpha ", " Ф \varepsilon ́ \tau \alpha ") ~=~ " T u \rho i " ~$

Using Hierarchies (simplified)

- Assume a,b are leaves and |p_Ica|= the length of the path towards their lowest common ancestor (Ica)
- Define $\mathrm{d}(\mathrm{a}, \mathrm{b})=\frac{\mid \mathrm{p} \text { Ica } \mid}{\text { tree_height }}$ if $\mathrm{a} \neq \mathrm{b}, 0$ otherwise
- Example
$-\mathrm{d}\left(\right.$ " $\lceil\rho \alpha \beta \iota \varepsilon ́ \rho \alpha ", " Ф \varepsilon ́ \tau \alpha ")=\frac{1}{3} \quad($ Ica = "Tupi")

Using Hierarchies (simplified)

- Assume a, b are leaves and $\left|p _|c a|=\right.$ the length of the path towards their lowest common ancestor (lca)
- Define $d(a, b)=\frac{\left|p _I c a\right|}{\text { tree_height }}$ if $a \neq b, 0$ otherwise
- Example

Using Hierarchies (simplified)

- Assume a,b are leaves and |p_Ica|= the length of the path towards their lowest common ancestor (Ica)
- Define $d(a, b)=\frac{|p-I c a|}{\text { tree_height }}$ if $a \neq b, 0$ otherwise
- Example

d(Crossover, SUV)=?

$d($ Crossover, SUV $)=\frac{1}{2}$

COMBINING EVIDENCE

Combining similarities from difference processes/sources

- Assume we have two separate processes for computing similarities between users
- Process 1: assesses demographic data from the user database (gender, age, marital status, etc.)
- Reports similarity score s_{1} based on demographic data
- Process 2: considers their interaction with our systems (e.g. purchases, logins, etc.)
- Reports similarity score s_{2} based on user activity

Taking weighted averages

- We already saw this computation

$$
\operatorname{sim}=\frac{\mathrm{w}_{1} * \mathrm{~s}_{1}+\mathrm{W}_{2} * \mathrm{~s}_{2}}{\mathrm{~W}_{1}+\mathrm{W}_{2}}
$$

- Can be fine-tuned to our preferences or trust on these datasets
- E.g. if we believe that activity data is more reliable or important, use $w_{2}>w_{1}$

Treating scores as evidence

- One problem with averaging is that low scores from one of the two processes (e.g. due to wrong/missing data) will lower the overall calculation
- Example: $s_{1}=0.7, s_{2}=0.2$, Average $\left(s_{1}, s_{2}\right)=0.45$
- Possible solution: take maximum score
- Take: $\operatorname{Max}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)=0.70$
- Another idea is to treat each score as independent evidence that each boosts our confidence on the similarity between the users

Treating similarities as probabilities

- Assuming independence, combine scores in a probabilistic manner

$$
\operatorname{sim}\left(s_{1}, s_{2}\right)=s_{1}+s_{2}-s_{1} * s_{2}
$$

- In our example
$-\operatorname{sim}(0.7,0.2)=0.7+0.2-0.14=0.76$
- Notice that $\operatorname{sim}\left(s_{1}, s_{2}\right) \geq \max \left(s_{1}, s_{2}\right)$

Using additional sources

- This calculation can be extended in case we have more sources suggesting similarity for the customers
- e.g. based on customer surveys $s_{3}=0.8$
- Combine scores in a probabilistic manner

$$
\operatorname{sim}\left(s_{1}, s_{2}, s_{3}\right)=\operatorname{sim}\left(s_{1}, s_{2}\right)+s_{3}-\operatorname{sim}\left(s_{1}, s_{2}\right){ }^{*} s_{3}
$$

- In our running example
$-\operatorname{sim}(0.7,0.2,0.8)=0.76+0.8-0.76 * 0.8=0.952$
- Compare with average ($0.7,0.2,0.8$) $=0.56$
- Compare with max $(0.7,0.2,0.8)=0.8$
- Compare with $\min (0.7,0.2,0.8)=0.2$

WORKING WITH SETS

How do we compare sets?

- UserA= \{milk, bread, coffee $\}$
- UserB= \{milk, bread, donut $\}$
- UserC= \{milk, bread, soda, potatoes $\}$
- Straightforward idea: look at their intersection
- Intersection(UserA,UserB) = \{milk,bread\}
- Intersection(UserA,UserC) = \{milk,bread $\}$
- Intersection not enough!
- Need to look at their differences too

Set similarity: Jaccard Index

- Jaccard $(\mathrm{S} 1, \mathrm{~S} 2)=$ the ratio of the sizes of the intersection and union of S1 and S2
$-\operatorname{Jaccard}(S 1, S 2)=|S 1 \cap S 2| /|S 1 \cup S 2|$

- Note that $|S 1 \cap S 2| \leq|S 1 \cup S 2|$
- Thus, $0 \leq \operatorname{Jaccard}(\mathrm{S} 1, \mathrm{~S} 2) \leq 1$

Jaccard Index Examples

- Recall: Jaccard(S1,S2) =|S1 S2 $|/|S 1 \cup S 2|$
- Jaccard(\{potatoes, lettuce\}, \{potatoes, tomatoes\}) $=\frac{1}{3}$
- Jaccard(\{potatoes, lettuce, cucumbers\}, \{potatoes, tomatoes, ketchup\}) $=\frac{1}{5}$
- Jaccard(\{potatoes, lettuce\}, \{potatoes, lettuce, tomatoes\}) $=\frac{2}{3}$
- Jaccard (\{lettuce $\},\{$ milk, soda $\})=0$
- Jaccard(\{soda, milk\}, \{milk, soda\}) $=1$

Toy exercise (python jupyter notebook in e-class)

- Assume the following 5 customers with their purchases

user1 : ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola']
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola’]
user5 : ['cola', 'milk', 'cereal', 'tea']

- Can you group these customers into two clusters?
\square Separate data into disjoint groups such that:

Clustering

\square Increased similarity among members of the same group (cluster cohesion)

- Members of different groups are dissimilar

The famous k-Means algorithm

- Assume n points in the Euclidian space and a user-defined value of $k=\# c l u s t e r s$

1. Pick k points (centroids), one per cluster
2. Assign remaining points to closest centroid
3. In each cluster update location of its centroid
4. Reassign points, if necessary
5. Repeat steps 3-4 until clusters stabilize

- k-Means seeks to minimize the sum of squared distances (thus the variance of the distances) from the centroids
- the algorithm always converges to some (local) minimum solution

Example for $\mathrm{k}=3$

New centroids + reassignment

Wait!

\square Our dataset is not points in a Euclidian space

- There is no obvious way to compute a "centroid"

Hierarchical Clustering to the rescue

Initial set of clusters

Executive decision

- Purchases are modelled as sets of items
- Use Jaccard for computing customer pair-wise similarity

```
user1:['milk', 'bread', 'coffee'] ' ' ' Jaccard_sim = 2/4 = 50%
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
Jaccard_sim = 1/6 = 16%
```


Jaccard Similarity

- All-pair similarity computation

user1 : ['milk', 'bread', 'coffee’] user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea’]

Hierarchical Clustering

- Merge most similar pair to form a new cluster

user1: ['milk', 'bread', 'coffee’]
user2 : ['milk', 'bread', 'cola’]
user3 : ['cereal', 'milk', 'donut’]
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea’]

New state

- Merge best pair (user1+user2) to form a new cluster
- Represent cluster of customers as their union (not ideal, other options exist)

```
#serl:I'mill','breal','offee']
# 2:I'milk', 'breal', 'ola']
user3: ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
user1+user2 : ['bread', 'cola', 'milk', 'coffee']
```


Next step (most similar pair: user3, user5)

```
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
user1+user2 :['bread', 'cola', 'milk', 'coffee']
```



```
user4 : ['donut', 'cream', 'cola']
user1+user2 :['bread', 'cola', 'milk', 'coffee']
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea']
```


Final step (most similar pair: user4, user3+user5)

```
user4 : ['donut', 'cream', 'cola']
user1+user2 :['bread', 'cola', 'milk', 'coffee']
user3+user5 : ['cereal', 'donut', 'milk', 'cola', 'tea']
```



```
user1+user2 :['bread', 'cola', 'milk', 'coffee']
user4+user3+user5 : {'donut', 'cereal', 'milk', 'cream', 'cola', 'tea'}
```


Cluster 1

```
user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']
```

Cluster 2

```
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal']
```


Notes

- In this toy example we performed Hierarchical Clustering up to 2 clusters without checking the quality of the intermediate clusters
- Sometimes it is better to stop sooner that later
- To simplify the code, we used as a representative (clustoid) of a cluster the UNION of its members
- Can you think of examples where this is a bad choice?

Cluster 1

```
user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']
```

Cluster 2

```
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal']
```


Jaccard Distance between sets

- Can be defined as the complement of their Jaccard similarity

$$
-\mathrm{d}_{\mathrm{jacc}}(\mathrm{~S} 1, \mathrm{~S} 2)=1-\frac{|\mathrm{S} 1 \cap \mathrm{~S} 2|}{|\mathrm{S} 1 \cup \mathrm{~S} 2|}=\frac{|\mathrm{S} 1 \cup \mathrm{~S} 2|-|\mathrm{S} 1 \cap \mathrm{~S} 2|}{|\mathrm{S} 1 \cup \mathrm{~S} 2|}
$$

How about

?

Bags are "sets" with repetition of elements allowed

Jaccard can be extended to work with bags

Intersection(S1,S2): count an
element n times in the intersection, where n is the minimum of the number of times the element appears in S1 and S2

Union(S1,S2): count the element the sum of the number of times it appears in S1, S2

Example

- $S 1=\{a, a, a, b\}, S 2=\{a, a, b, b, c\}$
- Then, intersection is $\{a, a, b\}$ and union $\{a, a, a, a, a, b, b, b, c\}$
- Bag-similarity is thus, $3 / 9=1 / 3$
- Note, bag similarity is between 0 and $1 / 2$ (why?)

Alternative bag similarity

- Count an element n times in the intersection, where n is the minimum of the number of times the element appears in S1 and S2
- In the union, count the element the max of the number of times it appears in S1, S2

Example (alt)

- $S 1=\{a, a, a, b\}, S 2=\{a, a, b, b, c\}$
- Then, intersection is $\{a, a, b\}$ and union $\{a, a, a, b, b, c\}$
- Bag-similarity of $\mathrm{S} 1, \mathrm{~S} 2$ is thus, $3 / 6=50 \%$
- Note, alternative bag similarity is between 0 and 1 (why?)

Bag Similarity Example

- Movies ratings dataset
- John: Star_Wars_I:3/5, Avatar: 4/5, Aliens: 2/5
- Mary: Star_Wars_I: 2/5, Avatar: 5/5, ET: 4/5
- Nick: Star_Wars_I: 4/5, Aliens: 2/5, ET: 1/5
- Who is the Nearest Neighbor of John?
- Note: if treated as sets
- Jaccard(John, Mary) = Jaccard(John, Nick) $=2 / 4=50 \%$
- Let us consider their bag similarity instead!

Bag Similarity Example

- Convert to bags:
- John: \{Star_Wars_I, Star_Wars_I, Star_Wars_I, Avatar, Avatar, Avatar, Avatar, Aliens, Aliens\}
- Mary: \{Star_Wars_I, Star_Wars_I, Avatar, Avatar, Avatar, Avatar, Avatar, ET, ET, ET, ET\}
- Nick: \{Star_Wars_I, Star_Wars_I, Star_Wars_I, Star_Wars_I, Aliens, Aliens, ET\}
- Bag_similarity_alt(John,Mary) $=(2+4) /(3+5+4+2)$ = 6/14 = 42.9\%
- Bag_similarity_alt(John,Nick) $=(3+2) /(4+4+2+1)$ = 5/11 = 45.5\%

WORKING WITH VECTORS

Basket data example

- Three distinct products:
- potato (p), lettuce (I), tomato (t)

Vector Model
 <\#p,\#l,\#t>

- Three users with the following purchases
- John: 2 potatoes, 1 lettuce
- Kostas: 1 tomato

$$
\vec{K}=\langle 0,0,1\rangle
$$

- Mary: 10 potatoes, 6 lettuces

$$
\vec{\jmath}=\langle 2,1,0\rangle
$$

$$
\vec{M}=\langle 10,6,0\rangle
$$

Definition of Euclidean Distance

- $\vec{X}=\langle 2,1,0,5>$
- $\vec{y}=\langle 5,6,1,10\rangle$
- Recall that:

$$
\begin{aligned}
d(\vec{x}, \vec{y})= & \sqrt{(2-5)^{2}+(1-6)^{2}+(0-1)^{2}+(5-10)^{2}} \\
& =\sqrt{9+25+1+25}=\sqrt{60}=7.75
\end{aligned}
$$

Euclidean Distance NN Calculations

Angle Calculations: favor direction over length (norm)

When to use Cosine?

Cosine Similarity

- $\operatorname{sim}(\vec{x}, \vec{y})=\cos (\theta(\vec{x}, \vec{y})) \in[-1 . .+1]$
- Used in collaborative filtering
- Popular in document matching

$$
\begin{aligned}
& \cos (\theta(\vec{J}, \vec{K}))=\cos \left(90^{\circ}\right)=0 \\
& \cos (\theta(\vec{J}, \vec{M}))=\cos \left(4.3^{\circ}\right)=0.997
\end{aligned}
$$

Dot (inner) product between two vectors

- $\vec{x} \cdot \vec{y}=\Sigma\left(x_{k}^{*} y_{k}\right)$
- Example:

$$
\begin{aligned}
& \vec{x}=(1,3,0,5) \\
& \vec{y}=(1,0,1,6)
\end{aligned}
$$

- Then:

$$
\begin{aligned}
\vec{x} \cdot \vec{y} & =1^{*} 1+3^{*} 0+0^{*} 1+5^{*} 6=31 \\
& =|\vec{x}|^{*}|\vec{y}|^{*} \cos (\theta(\vec{x}, \vec{y}))
\end{aligned}
$$

From dot to cosine

- $\cos (\theta(\vec{x}, \vec{y}))=\frac{\vec{x} \cdot \vec{y}}{|\vec{x}| *|\vec{y}|}$
- In this example

$$
\begin{aligned}
& \vec{x}=(1,3,0,5) \\
& \vec{y}=(1,0,1,6)
\end{aligned}
$$

- $|\overrightarrow{\mathrm{x}}|=\sqrt{1^{2}+3^{2}+0^{2}+5^{2}}=\sqrt{35}$
- $|\vec{y}|=\sqrt{1^{2}+0^{2}+1^{2}+6^{2}}=\sqrt{38}$
- $\cos (\theta(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}}))=\frac{31}{\sqrt{35} \times \sqrt{38}}=0.85$

Dot product with unit vector

- $\vec{X} \cdot \vec{y}=\Sigma\left(x_{k}{ }^{*} y_{k}\right)$
- Example for unit vector \vec{y} :

$$
\begin{aligned}
& \vec{x}=(1,3,0,5) \\
& \vec{y}=(1 / 2,1 / 2,1 / 2,1 / 2)
\end{aligned}
$$

- Notice that $|\vec{y}|=1$
- Then:

$$
\begin{aligned}
\vec{x} \cdot \vec{y} & =1 / 2+3 / 2+5 / 2=9 / 2=4.5 \\
& =|\vec{x}|^{*} 1^{*} \cos (\theta(\vec{x}, \vec{y}))
\end{aligned}
$$

Random Hyperplane Projection

(Mining Massive Data Sets, Sec. 3.7.2)
\square uses n d-dimensional random vectors ($\mathrm{rv} \mathrm{v}_{\mathrm{i}}$)
\square Generates for each input vector a bitmap of size n as follows:

- Sets bit $_{\mathrm{i}}=1$ if dot product of input vector with i-th random vector is positive
- Sets bit $_{\mathrm{i}}=0$ if dot product of input vector with i-th random vector is negative

Locality Sensitive Hashing (LSH)

- Assign items to buckets using a hash function $h(x)$
- E.g. h(O)=0110 in binary
- Details of function h() depend on the preferred similarity metric:
- Similar objects are hashed to the same bucket with high probability
- Dissimilar objects are hashed to the same bucket with very small probability
- Repeat several times

Is RHP a locality-sensitive hashing scheme?

\square Assume vectors for customers x and y point (approximately) towards the same direction

- This means their cosine is close to 1
\square We expect that with high probability the RHP values will be identical
$\square \quad$ Use RHP encodings as "bucket ids"
- Similar customers are hashed to
 the same bucket (with high probability)

Hamming Distance

- The Hamming distance between two equallength strings of symbols is the number of positions at which the corresponding symbols are different (Wikipedia)
- D_{h} ('00110101',
'10110110') $=3$
- $\mathrm{D}_{\mathrm{h}}\left({ }^{\prime} \mathrm{abc}^{\prime}\right.$ ' acc ') $=1$

Approximate Similarity Computation via Hamming Distance of RHP bitmaps

- Vectors are collinear $(\theta(\overrightarrow{\mathrm{x}}, \mathrm{y})=0$, cosine similarity $=1)$

Approximate Similarity Computation via Hamming Distance of RHP bitmaps

- Vectors are opposite $(\theta(\overrightarrow{\mathrm{x}}, \mathrm{y})=\pi$, cosine similarity $=0)$

Approximate Similarity Computation via Hamming Distance of RHP bitmaps

Estimate $\hat{\theta}(\mathrm{x}, \mathrm{y})=\mathrm{D}_{\mathrm{h}}\left(\operatorname{RHP}_{(\mathrm{x})}, \operatorname{RHP}_{(\mathrm{y})}\right) * \pi / \mathrm{n}$

- Also works for the Pearson correlation
$-\operatorname{Cor}(x, y)=\operatorname{Cos}(x-\bar{x}, y-\bar{y})$

RHP Example

- Calculations for John:
- $\langle 2,1,0\rangle .\langle 3,1,6\rangle=2 * 3+1^{*} 1+0^{*} 6=+7 \rightarrow$ bit $=1$
- $\langle 2,1,0\rangle .\langle-5,3,2\rangle=-10+3=-7 \rightarrow$ bit $=0$
- Thus, RHP(John) = 10

$$
\begin{aligned}
& J=\langle 2,1,0\rangle \\
& \mathrm{K}=\langle 0,0,1\rangle \\
& \mathrm{M}=\langle 10,6,0\rangle \\
& \text { rv1=<3,1,6> } \\
& \text { rv2=<-5,3,2> }
\end{aligned}
$$

RHP Example

RHP Example

RHP Example

$$
\begin{aligned}
& \mathrm{J}=\langle 2,1,0\rangle \\
& \mathrm{K}=\langle 0,0,1\rangle \\
& \mathrm{M}=\langle 10,6,0\rangle
\end{aligned}
$$

- RHP(John) $=$ RHP(Mary) $=10$
- Hamming distance $=0$
- Estimated angle is 0
- Thus, estimated cosine similarity = 1
- True cosine = 0.997
- Good accuracy by using just two bits!
- Disclaimer: I am cherry picking favorable examples here

RHP Example

$$
\begin{aligned}
& \mathrm{J}=\langle 2,1,0\rangle \\
& \mathrm{K}=\langle 0,0,1\rangle \\
& \mathrm{M}=\langle 10,6,0\rangle
\end{aligned}
$$

RHP(John) = 10, RHP(Kostas) $=11$

- Hamming distance $=1$ (out of $\mathrm{n}=2$ bits)
- Estimated angle is $\pi / 2=90^{\circ}$
- Thus, estimated cosine similarity $=\cos (\pi / 2)=0$
- This is also the true cosine similarity

WORKING WITH STRINGS

String distance computations

- Why it is useful
- String Matching
- Spelling Checking
- Examples
- Fix data entry errors: replace "Yiannis" with "Yannis"
- Address matching/correction
- Compare "Patission" , "Patision Str", "Patission St"
- Fraud Detection
- Are "Kotidis123", "Kotidis554" and "7Kotidis123" the same user?

String Edit Distance

- The edit distance between strings $x=x_{1} x_{2} . . x_{n}$ and $y=y_{1} y_{2} \cdot . y_{m}$ is the smallest number of insertions and deletions of single characters that will convert x to y
- As an example to convert $x=$ "abcde" to y ="acfdeg"

1. delete b and get "abcde"
2. insert fafter cand get "acfde"
3. insert g after e and get "acfdeg" $=y$

- Thus, $d_{\text {edit }}($ "abcde","acfdeg")=3

Longest Common Subsequence (LCS)

- The LCS of x and y is the longest common string that is constructed by deleting positions from x and y
- For $x=$ "abcde" to $y=$ "acfdeg"
- LCS(x, y) = "acde"
- It holds that
$-d_{\text {edit }}(x, y)=\operatorname{len}(x)+\operatorname{len}(y)-2^{*} \operatorname{len}(\operatorname{LCS}(x, y))$
- In our example $d_{\text {edit }}(x, y)=5+6-2 * 4=3$

Levenshtein Distance

- In addition to insertions and deletions of single characters, Levenshtein distance also allows substitutions
- As an example, for $x=$ "STALL" and $y=$ "TABLE", $d_{\text {lev }}(x, y)=3$

1. (starting with "STALL") delete S and get "TALL",
2. substitute first L with B and get "TABL",
3. insert E at the end and get "TABLE"

- In comparison $d_{\text {edit }}$ ("STALL", "TABLE",)=4
- Notice that 1 substitution $\Leftrightarrow 1$ deletion +1 insertion

Note

- In the literature sometimes Levenshtein distance is referred as edit distance (e.g. edit distance adjusted to permit insertions, deletions as well as substitutions)

Additional Metrics for strings

- Damerau-Levenshtein distance further allows transportation between two successive characters
- Corssroads \rightarrow Crossroads
- Jaro distance only allows transportations

Time Series

- Sequence of data points indexed in time order
- Examples: financial data, sensor data, speech, etc
- Univariate (running examples) vs multivariate
- Can be compared with Euclidean distance (given two series of same length)
- The $i^{\text {th }}$ point on one time series is aligned with the $\mathrm{i}^{\text {th }}$ point on the other
- However, this often gives poor results
- Does not work if series have difference lengths

- Padding?

Time Series - Euclidean Distance

- $S x=\langle 2,1,0,1\rangle$
- $S y=<2,0,2,3>$

Euclidean-distace $d(S x, S y)=$
$\sqrt{(2-2)^{2}+(1-0)^{2}+(0-2)^{2}+(1-3)^{2}}$
$=\sqrt{0^{2}+1^{2}+2^{2}+2^{2}}$
$=\sqrt{0+1+4+4}$
$=\sqrt{9}=3$

Time Series - Euclidean Distance

- $S x=<2,1,0,1>$
- $S y=<2,0,2,3,1,2,2,0,4>$

What now?

Time Series - Euclidean Distance

- $S x=<2,1,0,1>$
- $\mathrm{Sy}=<2,0,2,3,1,2,2,0,4>$

Padding (convert to same length)?

- $\mathrm{Sx}=<2,1,0,1,0,0,0,0,0>$
- Sy = <2,0,2,3,1,2,2,0,4>

Dynamic Time Wrapping

- DTW computes the best alignment between the twotime series
- Works even if the input series have different lengths
- Useful if series have different frequencies or are out of phase (e.g. lag)
- Has been shown to be superior than Euclidean distance for tasks such as time series classification
- Drawback: quadratic complexity $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Computation complexity: O(n*m)

Start

Example: Time Series Classification

Problem Statement

- Given:
- n time series $x_{1}, . ., x_{n}$ along with their labels (classes) $y_{1}, . ., y_{n}$ to be used as training examples
- a time series \mathbf{x} with an unknown label
- Goal:
- classify x : find the class label of x

Intuition

In a perfect world:

- Assume there is another data point (time series) x_{i} that is very similar to the input series x
- I would then pick the label y_{i} of x_{i} as my selection
- This decision is optimal if $x=x_{i}$ or, equivalently when $\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{i}}\right) \rightarrow 0$
In practice:
- We will look at labeled data from the neighborhood of x_{i}

Some example x_{i} with known label y_{i}

k-NN algorithm

- Given:
- n time series $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$ along with their labels (classes) $y_{1}, . ., y_{n}$ to be used as training examples
- a time series x with an unknown label
- Goal:
- classify x : find the class label of x
- Intuition:
- assign x to the class most common among its k nearest neighbours
- Considerations:
- selection of k
- weigh neighbours

Buy stock

Sell stock

k-NN algorithm

- Given:
- n time series $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$ along with their labels (classes) $\mathrm{y}_{1}, . ., \mathrm{y}_{\mathrm{n}}$ to be used as training examples
- a time series x with an unknown label
- Goal:
- classify x : find the class label of x
- Intuition:
- assign x to the class most common among its k nearest neighbours
- Considerations:
- selection of k
- weigh neighbours

k-NN algorithm

- Given:
- n time series $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}$ along with their labels (classes) $y_{1}, . ., y_{n}$ to be used as training examples
- a time series x with an unknown label
- Goal:
- classify x : find the class label of x
- Intuition:
- assign x to the class most common among its k nearest neighbours
- Considerations:
- selection of k
- weigh neighbours

Buy stock

 Sell stock

Comparing Distributions (1): Convert to vectors

- Makes sense for categorical domains

Comparing Distributions (2): Earth Movers Distance

EMD Intuition

Hole in the ground

- Compute minimum amount of work required to change one distribution into the other.
- Unit of work: the amount of work necessary to move one unit of weight by one unit of ground distance.
- Informally: work = amount of dirt moved x distance travelled
- Ground distance: the distance measure between weight locations.
$\operatorname{EMD}(X, Y)=\frac{\min (\operatorname{Work}(X, Y))}{\min (\operatorname{Weight}(X), W \operatorname{eight}(Y))}$
- EMD allows partial matching (when cumulative weights don't match): Weight(X)<>Weight(Y)
- all the weight in the lighter distribution should be matched to weight in the heavier distribution
- In this case $\operatorname{EMD}(x, y)$ is not a distance metric

$$
\begin{aligned}
& \text { Work }=2 * d_{1}+3 * d_{2}+1 * d_{3} \\
& \text { EMD }=\text { WORK } / 6
\end{aligned}
$$

Compare results of Clustering

- Clusters: $\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}\right), \mathrm{i}=1, . . \mathrm{n}\right\}$
$-x_{i}$ is the cluster centroid
$-n_{i}$ is the size of the cluster

Compare Features Exported from dataset

- Features: $\left\{\left(\mathrm{f}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}\right), \mathrm{i}=1, . . \mathrm{n}\right\}$
$-f_{i}$: feature i
$-n_{i}$: number of times f_{i} appears in dataset
- Ground distance: $\operatorname{dist}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)$

Neat Application:

 Word Movers Distance (Kusner et. al.)

