
Big Data Systems

Hadoop and beyond
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Web Crawl Example
• Google crawls about 10,000,000,000 web pages 

– Average size of a web page is 20KB
– Overall, about 200TB worth of data

• A modern disk reads data at about 150 MB/sec
– Need >16 days just to read full web crawl
– But only 24 minutes if we were able to use 1000 disks

• Most algorithms require multiple passes over 
their data



Proposed Architecture (early 2000)

• Cluster of commodity Linux nodes

– Gigabit Ethernet interconnect

• How to organize computations in this 
architecture?

– What are the bottlenecks?

4



Cluster Architecture
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Each rack contains 16-80 nodes
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Rack Switch

Datacenter Switch~1 Gbps between 
Nodes in same rack

2-10 Gbps backbone between racks

Note: depicted network speeds are outdated 



http://www.google.com/about/datacenters



Check this video

https://www.youtube.com/watch?v=zDAYZU4A3w0



Data locality
• About 1Gb/sec between nodes in the same rack

– This is about as fast as reading from a local disk
– Thus, even if data lays in the memory of a nearby 

node, fetching this data over the network incurs a 
significant overhead

• Solutions?
– Move processing close to data
– Divide and conquer (via hashing)



Node failures

• Assume Mean-Time-Between-Failures (MTBF) 
is 3 years or about 1000 days

• Google has (more than) 1,000,000 nodes 
(guess)
– 1 node fails every 1000 days

– Farm with 100 nodes → One failure every 10 days

– Farm with 1M nodes → 1000 failures/day!



Stable Storage Requirement

• When nodes fail, how can we manage data 
persistently? 

• Solution-part 1: Distributed File System

– Provides global file namespace

– Google GFS; Hadoop HDFS; Kosmix KFS
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Distributed File Systems (GFS)
• Highly scalable distributed file system for large data-

intensive applications.
– E.g. 10K nodes, 100 million files, 10 PB

• Provides redundant storage of massive amounts of data on 
cheap and unreliable computers
– Files are replicated (usually x2 or x3) to handle hardware failure 
– Detects failures and recovers from them

• Support access to files on remote servers
– Handle dropped connections 



Google GFS Motivation
• Google needed a good distributed file system 
• Why not use an existing file system? 

– High component failure rates
– Inexpensive commodity components fail all the time
– “Modest” number of HUGE files
– Files are write-once, mostly appended to

• Perhaps concurrently
• In-place updates are not common

– Large sequential reads over random access
• High sustained throughput over low latency



GFS: Design Decisions

• Files stored as chunks
– Fixed size (64MB)

• Reliability through replication
– Each chunk replicated across 3+ chunk servers

• Single master to coordinate access, keep 
metadata
– Simple centralized management



GFS Metadata
• Global metadata is stored on the master

– File and chunk namespaces
• Mapping from files to chunks
• Locations of each chunk’s replicas

– All in memory (64 bytes / chunk)
• Fast
• Easily accessible

• Master has an operation log for persistent logging of critical metadata 
updates
– Persistent on local disk
– Replicated
– Checkpoints for faster recovery



Hadoop

• GFS paper published on 2003. 
– But GFS was never made open source.

• Doug Cutting and Yahoo! reverse engineered the GFS 
and called it Hadoop Distributed File System (HDFS).

• The software framework that supports HDFS, 
MapReduce and other related entities is called the 
project Hadoop or simply Hadoop.
– This is open source and distributed by Apache.
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HDFS: Motivation
• Based on Google’s GFS
• Data is organized into files and directories
• Files are divided into uniform sized blocks and distributed 

across cluster nodes
– Typical block size 128 MB
– Blocks are replicated to handle hardware failure
– The block size and replication factor are configurable per file
– Filesystem keeps checksums of data for corruption detection 

and recovery



HDFS Architecture
• Master-Slave architecture
• DFS Master “NameNode”

– Manages the filesystem namespace
– Maintains file name to list blocks + location mapping
– Manages block allocation/replication
– Checkpoints namespace and journals namespace changes for reliability
– Controls access to namespace

• DFS Slaves “DataNodes” handle block storage
– Store blocks using the underlying OS’s files 
– Clients access the blocks directly from DataNodes
– Periodically send block reports to NameNode
– Periodically check block integrity
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Secondary
NameNode

Client

NameNode

DataNodes

NameNode : Maps a file to a file-id and list of DataNodes
DataNode : Maps a block-id to a physical location on disk

HDFS Architecture



HDFS basic examples
• Create an HDFS folder /user/test

– hdfs dfs -mkdir /user/test

• List the content of that folder

– hdfs dfs -ls /user/test

• Copy a file from the local file system to that folder

– hdfs dfs -put /home/kotidis/Desktop/myfile /user/test

• Copy a file from HDFS back to the local fs

– hdfs dfs -copyToLocal /user/test/somefile /home/kotidis/Desktop



MapReduce
• When nodes fail, how can we manage data 

persistently and run distributed programs on 
them? 

• Solution-part 1: Distributed File System (HDFS)
• Solution-part 2: MapReduce

– Simple programming abstraction that hides 
complexity of running (and managing) parallel 
computations in a cluster
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Why MapReduce?
• Large scale data processing was difficult (early 2000)!

– Want to use 1000s of CPUs
• But don’t want hassle of managing things

• MapReduce provides all of these, easily!
– Managing hundreds or thousands of processors
– Managing parallelization and distribution
– I/O Scheduling
– Status and monitoring
– Fault/crash tolerance

Also its free! (unlike Parallel DBMSs)



What is MapReduce?
• MapReduce is a concept and method for typically batch-based large 

scale parallelization. It is inspired by functional programming's 
map() and reduce() functions

• MapReduce is highly scalable and can be used across many 
computers

• Many small machines can be used to process jobs that normally 
could not be processed by a large machine

• Abstracts issues of distributed and parallel environment from 
programmer

• Runs over distributed file systems (GFS,HDFS)



MapReduce

• Created by Google in 2004

• Inspired by LISP
– Map(function, set of values)

• Applies function to each value in the set

• (map ‘length ‘((a c) (a) (a b) (a b c))) ⇒ (2 1 2 3)

– Reduce(function, set of values)
• Combines all the values using a binary function (e.g., +)

• (reduce #'+ ‘(2 1 2 3)) ⇒ 8



Map & Reduce
• Map: (input data) → intermediate(key/value pairs)

– Map calls are distributed across machines by automatically 
partitioning the input data into M “chunks".

– MapReduce library groups together all intermediate values associated 
with the same intermediate key & passes them to the Reduce function

• Reduce: intermediate(key/value pairs) → result files
– Accepts an intermediate key & a set of values for the key
– It merges these values together to form the desired output
– Reduce calls are distributed by partitioning the intermediate key space 

into R pieces using a partitioning function (e.g., hash(key) mod R).The 
user specifies the # of partitions (R) and the partitioning function.



Distributed Execution Overview 
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Step 1: Split input files into M chunks

• Number M is derived from the following 
formula:

M = total data size / input split size 

where input split size is defined in Hadoop    
configuration.



Step 2: Fork processes
• Start up many copies of the program on a cluster of 

machines
– 1 master: scheduler & coordinator
– Lots of workers

• Idle workers are assigned either:
– map tasks (each works on a chunk) – there are M map tasks
– reduce tasks (each works on intermediate files) – there are R 

reduce tasks
– R = # partitions, defined by the user



Step 3: Map Task

• Reads contents of its assigned input chunk

– Parses key/value pairs out of the input data

– Passes each pair to a user-defined map function

• Produces intermediate key/value pairs



Step 4: Create intermediate files

• Intermediate key/value pairs produced by the 
user’s map function are buffered in memory and 
are periodically written to the local disk

– Partitioned into R regions by a partitioning function

– Notifies master when complete

– Passes locations of intermediate data to the master

– Master forwards these locations to the reduce worker



Step 5: Reduce Task: sorting
• Reduce worker gets notified by the master about 

the location of intermediate files for its partition
• Reads the data from the local disks of the map 

workers
• When the reduce worker reads intermediate data 

for its partition
– It sorts the data by the intermediate keys
– All occurrences of the same key are grouped together



Step 6: Reduce Task: Reduce
• The sort phase grouped data with a unique 

intermediate key
• User’s Reduce function is given the key and the 

set of intermediate values for that key
– < key, (value1, value2, value3, value4, …) >
– Performs a user-defined computation on these values
– The output of the Reduce function is appended to an 

output file



Step 7: Return to user

• When all map and reduce tasks have completed, 
the master wakes up the user program

• The MapReduce call in the user program returns 
and the program can resume execution.

• Output of MapReduce is available in R output 
files (one per reducer)



Example
• Count # occurrences of each word in a collection of documents

– Map:
• Parse data; output each word and a count (1)

– Reduce:
• Sort: sort by keys (words)
• Reduce: Sum together counts each key (word)

reduce(String key, Iterator values):
// key: a word; values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

map(String key, String value):
// key: document name, value: document 
contents
for each word w in value:
EmitIntermediate(w, "1");



More details: the MAP Function

a bb ccc dddd
bb ccc a a a
ccc bb ccc bb 
a a a bb ccc
dddd bb

Mapper 1

Reducer 1

Mapper 2

Mapper 3

Reducer 2

a 1
bb 1
bb 1
a 1
a 1
a 1
bb 1
bb1
a 1
a 1
a 1
bb 1
bb 1

ccc 1
dddd 1
ccc 1
ccc 1
ccc 1
ccc 1
dddd 1

a bb a bb a 
dddd bb ccc a 
bb ccc dddd
bb a a bb ccc
bb a

dddd ccc bb a 
bb dddd a a
ccc bb a bb 
ccc dddd a
bb dddd

a bb ccc dddd
bb ccc a a a ccc
bb ccc bb a a a
bb ccc dddd bb 
a bb a bb a 
dddd bb ccc a 
bb ccc dddd bb 
a a bb ccc bb a 
dddd ccc bb a 
bb dddd a a ccc
bb a bb ccc
dddd a
bb dddd

a1
bb 1
a 1
bb 1
a 1
a 1
bb 1
bb1 
a 1
a 1
bb 1
bb 1
a 1

dddd 1
ccc 1
ccc 1
dddd 1
ccc 1

bb 1
a 1
bb 1
a 1
a 1
bb 1
a 1
bb1
a 1
bb 1 

dddd 1
ccc 1
dddd 1
ccc 1
ccc 1
dddd 1
dddd 1

Document Chunk 1

Chunk 2

Chunk 3

Partition 1 Partition 2

Partition 1 Partition 2

Partition 1 Partition 2



The MAP Combiner

a bb ccc dddd
bb ccc a a a
ccc bb ccc bb 
a a a bb ccc
dddd bb

Mapper 1

Reducer 1

Mapper 2

Mapper 3

Reducer 2

a bb a bb a 
dddd bb ccc a 
bb ccc dddd
bb a a bb ccc
bb a

dddd ccc bb a 
bb dddd a a
ccc bb a bb 
ccc dddd a
bb dddd

a bb ccc dddd
bb ccc a a a ccc
bb ccc bb a a a
bb ccc dddd bb 
a bb a bb a 
dddd bb ccc a 
bb ccc dddd bb 
a a bb ccc bb a 
dddd ccc bb a 
bb dddd a a ccc
bb a bb ccc
dddd a
bb dddd

Document Chunk 1

Chunk 2

Chunk 3

a 7
bb 6

ccc 5
dddd 2

a 7
bb 6

ccc 3
dddd 2

a 5
bb 5

ccc 3
dddd 4

Partition 1 Partition 2

Partition 1 Partition 2

Partition 1 Partition 2



The REDUCE Function

a bb ccc dddd
bb ccc a a a
ccc bb ccc bb 
a a a bb ccc
dddd bb

Mapper 1
Reducer 1

Mapper 2

Mapper 3

Reducer 2

a bb a bb a 
dddd bb ccc a 
bb ccc dddd
bb a a bb ccc
bb a

dddd ccc bb a 
bb dddd a a
ccc bb a bb 
ccc dddd a
bb dddd

a bb ccc dddd
bb ccc a a a ccc
bb ccc bb a a a
bb ccc dddd bb 
a bb a bb a 
dddd bb ccc a 
bb ccc dddd bb 
a a bb ccc bb a 
dddd ccc bb a 
bb dddd a a ccc
bb a bb ccc
dddd a
bb dddd

Document Chunk 1

Chunk 2

Chunk 3

a 7
bb 6

ccc 5
dddd 2

a 7
bb 6

ccc 3
dddd 2

a 5
bb 5

ccc 3
dddd 4

Partition 1 Partition 2

Partition 1 Partition 2

Partition 1 Partition 2

a 19
bb 17

ccc 11
dddd 8

Output File 1

Output File 2

[a,(7,7,5)]
[bb,(6,6,5)]

key
list of values for key

[ccc,(5,3,3)]
[dddd,(2,2,4)]



Inverted Index Example
Image adapted from http://www.xml-data.org/DZKJDXXBYWB/html/20170208.htm



Inverted index

• Find what documents contain a specific word
– Map: parse document, omit stop words

• Emit <word, document-ID> pairs

– Reduce: for each word, sort the corresponding 
document IDs 

• Emit a <word, list(document-ID)> pair

– The set of all output pairs is an inverted index



Count URL access frequency 
in web logs

• Find the frequency of each URL in web logs

– Map: process logs of web page access; output 
<URL, 1>

– Reduce: add all values for the same URL



Reverse web-link graph
(find where page links come from)

a.html b.html

c.html

<html>
<a href=“b.html”>….</a>
…
<a href=“c.html”>….</a>

<html>
<a href=“b.html”>….</a>
…
<a href=“c.html”>….</a>

a.html

b.html



Reverse web-link graph

• Use href as a key, source url as value!

<html>
<a href=“b.htm”>….</a>
…
<a href=“c.html”>….</a>

<html>
<a href=“b.htm”>….</a>
…
<a href=“c.htm”>….</a>

a.htm

b.htm

b.htm, a.htm

c.htm, a.htm

b.htm, b.htm

c.htm, b.htm

b.htm, {a.htm,b.htm}

c.htm, {a.htm,b.htm}

Mappers Reducers

b got a link from a

a.html b.html

c.html



Reverse web-link graph Recap

• Find where page links come from

– Map: output <target, source> for each link to 
target in a page source

– Reduce: concatenate the list of all source URLs 
associated with a target

• Output <target, list(source)>



Computing Natural Join by Map-Reduce

• Look at the specific case of joining R(A,B) with S(B,C). 

• We must find records that agree on their B attributes
– Thus, we shall use the B-value of tuples from either 

relation as the key

• The value will be the other attribute(s) and the name 
of the relation
– So that the reduce() function knows where each record 

came from



The Map Function 

• R and S are the relations we are joining

• For each record (a, b) of R, produce the key-value 
pair
– [b, (R, a)]

• For each record (b, c) of S, produce the key-value 
pair
– [b, (S, c)]



The Reduce Function:

• Each key value b will be associated with a list 
of tuples (=records) from R or S

• Produces all pairs (result records) consisting of 
one with first component from R and the 
other with first component from S



A B

a1 b1

a2 b2

a2 b1

a4 b4

B C

b1 c1

b1 c1

b2 c2

b4 c4

Table R Table S

Assume 2 mappers / 2 reducers
• 1st mapper reads chunk-1 of R,S
• 2nd mapper reads chunk-2 of R,S
• First reducer receives odd key values (b1), second reducer 

receives even values (b2,b4)

chunk 1

chunk 2



A B

a1 b1

a2 b2

a2 b1

a4 b4

B C

b1 c1

b1 c1

b2 c2

b4 c4

Table R Table S

1st mapper file 1: [b1,(R,a1)], [b1,(S,c1)], [b1,(S,c1)]
file 2: [b2,(R,a2)]

Chunk 1

Chunk 2

2nd mapper file 1: [b1,(R,a2)]
file 2: [b4,(R,a4)], [b2,(S,c2)], [b4,(S,c4)]

key
value

Recall mapper 
creates one local 
file per reducer



A B

a1 b1

a2 b2

a2 b1

a4 b4

B C

b1 c1

b1 c1

b2 c2

b4 c4

Table R Table S

Reducer 1 receives: [(b1, ((R,a1),(S,c1),(S,c1),(R,a2))]
output for b1: (a1,b1,c1), (a1,b1,c1), (a2,b1,c1), (a2,b1,c1)

Reducer 2 receives: [b2,((R,a2),(S,c2))] , [b4,((R,a4),(S,c4))]
output for b2: (a2,b2,c2)
output for b4: (a4,b4,c4)

key list of values for that key



A B

a1 b1

a2 b2

a2 b1

a4 b4

B C

b1 c1

b1 c1

b2 c2

b4 c4

Table R Table S

Discussion

• Map-reduces essentially implements a distributed hash-based join algorithm
• All tuples with the same key value (e.g. b1) are sent (hashed) to the same “bucket” using 

B values as keys
• The contents of each “bucket” are all grouped by hadoop and passed to a reducer:

“Bucket” for b1: [(b1, ((R,a1),(S,c1),(S,c1),(R,a2))]

• The reducer computes the join output for the received tuples



Matrix Multiplication

• Suppose two  matrices:

– Matrix M with element mij in row i and column j, 

– Matrix N with element njk in row j and column k

• We want to compute the matrix P, where 
P=MN



Think relational!
• Consider each Matrix as a 

Relation
– M(I, J, V ), with tuples (i, j, mij)

– N(J, K, W ), with tuples (j, k, njk)

• Matrix multiplication can be 
seen as a natural join (based on 
index j) of the two “relations” 
N, M followed by aggregation
(so as to sum-up all mij*njk

values, for different values of j)

x

M N

i

k

j
j

pik=Σ
j
mij*njk



The MAP Function

• For each matrix M element mij emit the key 
value pair (j, (M, i, mij))

• For each matrix N element njk emit the key 
value pair (j, (N, k, njk))

• …. as in a join



What each reducer receives

• For each j, a list containing all corresponding 
(M, i, mij) and (N, k, njk) values:

(j, ( (M, i1, mi1j), (M, i2, mi2j),…, (N, k1, njk1
) ,…)

*
mi1j * njk1

Contributes to cell pi1k1



The REDUCE Function

• For each key j produce the tuple ((i, k), mij*njk) 

– mij = each value comes from M for that j

• (M, i, mij)

– njk= each value comes from N for that j

• (N, k, njk)



The Second MAP Function

• Map function is applied to the pairs that are 
output from the previous Reduce function

• It reads ((i,k),v) and outputs the same tuple



The Second REDUCE Function

• For each key (i, k), produce the sum of the list 
of values associated with this key.

• The result is a pair ((i, k), v’), where v’ is the 
value of the element in row i and column k of 
the matrix P = MN.



All is not perfect
• MapReduce

– Batch-oriented
– Not suited for near-real-time processes, streaming data
– Heavy use of disks (I/O)

• Fixed dependencies (synchronization)
– Cannot start a new phase until the previous has completed

• Multi-pass algorithms may have independent sub-tasks

– Reduce cannot start until all Map workers have completed
– Suffers from “stragglers” – workers that take too long (or fail)



Beyond MapReduce

• Map-reduce programming model requires 
developers to write custom programs, which are 
hard to maintain and reuse

• Newer systems hide low-level MapReduce
programming from end-user via the use of a 
declarative language interface (pig, hive)



• Data warehouse infrastructure tool to process structured data in 
Hadoop

• Used by facebook for more than 300PB of data (2014)

• Makes querying and analyzing Big Data easy via an SQL-like 
language called HiveQL

• HiveQL queries are compiled into map-reduce jobs executed on 
Hadoop

Hive: A Warehousing Solution over MapReduce



Hive Architecture
https://hive.apache.org/



Hive overview
• Hive Database Schema is stored in a relational database (Meta Store)

– Mysql, MS SQL Server, Oracle, Postgres, Apache derby,…
– Stores metadata of tables, databases, columns in a table, their data types, and HDFS mapping.

• Hive Tables are stored in HDFS directories
– or other data storage systems such as Apache HBase™

• Each table can have one or more partitions stored within sub-directories of the 
table directory

– E.g. partition sales table by date /mywarehouse/sales/date=14-12-2015/

• Data in each partition is split into buckets (randomly or hashed on a column value)
– Each bucket is stored as a file in the partition directory
– Helps when sampling the data
– May be used for fine-grained data partitioning
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Example: Create table
CREATE TABLE employees (

name STRING, 

salary FLOAT, 

address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT, country:STRING> )

PARTITIONED BY (country STRING, state STRING);

/mywarehouse/employees/usa/NJ/…
/mywarehouse/employees/usa/CA/…
/mywarehouse/employees/greece/Attiki/…

HDFS



Indexes
• Table partitions can be used to expedite queries

• Hive supports indexes on table columns for faster query execution

• Indexes are stored as separate tables providing pointers to data

• These indexes have to be manually updated when the data changes



HiveQL
• Inspired by SQL

• Data definition statements used to create/alter tables with specific formats
– Partitioning, bucketing, indexing constructs

• Supports select, project, join, aggregate, union all and sub-queries

• Can load and insert data into Hive tables, but can not update or delete rows in 
existing tables

– Hive is designed as a data warehouse for batch processing rather than an OLTP database

• Supports User Defined Functions (UDFs) implemented in Java
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Processing
CREATE TABLE employees (

name STRING, 

salary FLOAT, 

address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT, country:STRING> )

PARTITIONED BY (country STRING, state STRING);

• What to find number of Greek employees with salary >20000

• HiveQL ? 

• How to process this query?

/mywarehouse/employees/usa/NJ/…
/mywarehouse/employees/usa/CA/…
/mywarehouse/employees/greece/Attiki/…

HDFS



Disk I/O in Hadoop

• MapReduce processing transforms data 
flowing from stable storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output



Apache Spark
(https://spark.apache.org/)

• Utilizes cluster memory to cache intermediate results
– Unlike MapReduce that always stores intermediate results 

on disks

• Extremely useful for repetitive tasks
– E.g. machine learning computations, pageRank, multi-pass 

algorithms

• Multiple APIs (Java, Scala, Python, R, SQL) and Libraries 
(MLlib, GraphX, Streaming) 



RDD abstraction

• Resilient Distributed Datasets:

– read-only collection of records

– partitioned across the cluster

– can be operated on in parallel

• May be cached in (distributed) main-memory

– fallback to disk possible (but slow)



RDD Creation 
(examples from https://spark.apache.org/docs/latest/rdd-programming-guide.html)

• RDDs can be created from any storage source 
supported by Hadoop, including your local file 
system (see wordcount example later)

• RDDs can also be created programmatically:

val data = Array(1, 2, 3, 4, 5) 
val distData = sc.parallelize(data) 

• parallelize() cuts the dataset into a number of 
partitions that are dispersed among the cluster nodes 

• Spark will run one task for each partition of the cluster

• You can specify the number of partitions (… if you 
know what you are doing)



RDD operations

• Transformations to build RDDs through 
deterministic operations on other RDDs
– transformations include map, filter, reduceByKey, join

– lazy evaluation

• Actions to return value or export data
– actions include count, collect, reduce

– actions trigger execution



Lazy evaluation of transformations

lines errlines
textFile() filter()

val lines = sc.textFile("weblogs.txt") 

val errlines = lines.filter(_.contains("error")) 

val errlineslengths = errlines.map(s => s.length) 

data.txt errlineslengths
map()

Read file from local disk 

Filter lines that contain string «error»

Count number of characters per such line

NOTHING IS COMPUTED YET !



Action triggers evaluation

lines errlines
textFile() filter()

val lines = sc.textFile("weblogs.txt") 

val errlines = lines.filter(_.contains("error")) 

val errlineslengths = errlines.map(s => s.length)

val totalLength = errlineslengths.reduce((a, b) => a + b)

data.txt errlineslengths
map()

Sum counters via reduce()

reduce() triggers execution and returns result

totalLength

reduce()



RDD Operations
Transformations

(define a new RDD)

map
filter
sample
union
groupByKey
join
cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
…



Another Job example

val log = sc.textFile(“hdfs://...”)

val errors = log.filter(_.contains(“ERROR”))

errors.cache()

errors.filter(_.contains(“I/O”)).count()

errors.filter(_.contains(“timeout”)).count()

Driver

Worker Worker Worker

Block3Block1 Block2

Cache1 Cache2 Cache3

Action!

Note: persist() can be used instead of cache() in 
order to store a result to user-defined storage 
(default is memory)



Application Execution
(https://spark.apache.org/docs/latest/cluster-overview.html)

• A Spark application is initiated from your main program (called the driver program) via 
the SpartContext object which

• acquires executors on nodes in the cluster (via the cluster manager)
• executors are processes that run computations and store data for your application
• sends tasks to the executors to run

• Tip: each application gets its own wen UI starting from http://<driver-node>:4040



RDD partition-level view

HadoopRDD
path = hdfs://...

FilteredRDD
func = _.contains(…)
shouldCache = true

log:

errors:

Partition-level view:Dataset-level view:

Task 1 Task 2 ...

source: https://cwiki.apache.org/confluence/display/SPARK/Spark+Internals



Word-count example
http://spark.apache.org/docs/latest/quick-start.html

val wordCounts = textFile.flatMap(line => line.split(" 
")).map(word => (word, 1)).reduceByKey((a, b) => a + b)

• map(func): Return a new distributed dataset formed by passing each element of 
the source through a function func. 

• flatMap(func): each input item can be mapped to 0 or more output items (so func
should return a Seq rather than a single item). 

• reduceByKey: When called on a dataset of (K, V) pairs, returns a dataset of (K, V) 
pairs where the values for each key are aggregated using the given reduce function 
func, which must be of type (V,V) => V. Like in groupByKey, the number of reduce 
tasks is configurable through an optional second argument. 



Top-10 most frequent words
val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val pairs=words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

val invCounts = wordCounts.map(x => (x._2,x._1)).sortByKey(false)

invCounts.take(10).foreach(println)



Sample text file
Panathinaikos B.C. also known simply as Panathinaikos, or by its full name, Panathinaikos BSA Athens, is the 
professional basketball team of the major Athens-based multi-sport club Panathinaikos A.O. It is owned by the 
billionaire Giannakopoulos family.

The parent athletic club was founded in 1908, while the basketball team was created in 1919, being one of the 
oldest in Greece. Alongside Aris, they are the only un-relegated teams with participation in every Greek First 
Division Championship until today. Panathinaikos has developed into the most successful basketball club in 
Greek basketball's history, and among the best in Europe, creating its own dynasty. They have won thirty-seven 
Greek Basket League Championships, eighteen Greek Cups, ten Doubles (all records), six EuroLeague
Championships, one Intercontinental Cup and two Triple Crowns. They also hold the record for most 
consecutive Greek League titles, as they are the only team to have won nine consecutive championships (2003 
- 2011), as well as for the most consecutive Greek Basketball Cup titles (six in a row 2012 to 2017). The team 
plays in the Olympic Indoor Hall, which has a capacity of 18,989 for basketball games.



Output
val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val pairs=words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

val invCounts = wordCounts.map(x => (x._2,x._1)).sortByKey(false)

invCounts.take(10).foreach(println)

(12,the)

(8,in)

(6,Greek)

(4,Panathinaikos)

(4,as)

(4,team)

(4,basketball)

(3,consecutive)

(3,club)

(3,for)



Issues with RDDs

• RDDs enable low-level transformation and actions 
better suited for unstructured data

• DataFrames (DF) permit developers to impose a 
structure onto a distributed collection of data, allowing 
higher-level abstraction
– A DF is conceptually equivalent to a table in a relational 

database (or to a DataFrame in Python ☺)

– Combined with SQL, DFs enable declarative programming 



Top-10 most freq. words (RDDs+DFs)

val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val pairs=words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

case class Record(word: String, count: Int)

val df=wordCounts.map(rec=>Record(rec._1,rec._2)).toDF

df.orderBy(desc("count")).show(10)



Declare schema & convert to DF
val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val pairs=words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

case class Record(word: String, count: Int)

val df=wordCounts.map(rec=>Record(rec._1,rec._2)).toDF

df.orderBy(desc("count")).show(10)



Exploit new DFs API
val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val pairs=words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

case class Record(word: String, count: Int)

val df=wordCounts.map(rec=>Record(rec._1,rec._2)).toDF

df.orderBy(desc("count")).show(10)

DF schema



DF+SQL

• Now that we have tabular data, why not 
express our computations using SQL?

• Notice that SQL is declarative permitting run-
time optimizations unlike hardcoded programs 



Top-10 most freq. words (DFs+SQL)
import org.apache.spark.sql.SparkSession

import spark.implicits._

val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")

wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R

group by word order by counter DESC limit 10")

result.show()



Create a DF containing all words in doc
import org.apache.spark.sql.SparkSession

import spark.implicits._

val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")

wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R

group by word order by counter DESC limit 10")

result.show()



Create a View in Hive
import org.apache.spark.sql.SparkSession

import spark.implicits._

val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")

wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R

group by word order by counter DESC limit 10")

result.show()



Query View R using SQL
import org.apache.spark.sql.SparkSession

import spark.implicits._

val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")

wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R

group by word order by counter DESC limit 10")

result.show()



Top-10 most freq. words (DFs+SQL)
import org.apache.spark.sql.SparkSession

import spark.implicits._

val spark = SparkSession.builder.config(sc.getConf).getOrCreate()

val file = sc.textFile("/home/yannisk/wordfile")

val words = file.flatMap(line => line.split(" "))

val wordsDF = words.toDF(colNames="word")

wordsDF.createOrReplaceTempView("R")

val result = spark.sql("Select word,count(*) as counter from R

group by word order by counter DESC limit 10")

result.show()



Spark Streaming engine



Streaming Word-count example

• Streaming text (e.g. tweets)

• Count #words at a per-minute interval



Set up Configuration
// Create a configuration with two threads and batch interval of 1 minute 

// The master requires 2 cores to prevent from a starvation scenario

val conf = new 
SparkConf().setMaster("local[2]").setAppName("NetworkWordCount") 

val ssc = new StreamingContext(conf, Seconds(60))

// DStream stands for Discretized Stream 

// Create a DStream that will connect to hostname:port, like localhost:9999 

val lines = ssc.socketTextStream("localhost", 9999)



Map-reduce style computation
// Split each line into words 

val words = lines.flatMap(_.split(" "))

// Count each word in each batch 

val pairs = words.map(word => (word, 1)) 

val wordCounts = pairs.reduceByKey(_ + _)

// Print the first ten elements of each RDD generated in this DStream to the 
console 

wordCounts.print()



Start stream processing

• ssc.start() // Start the computation 
ssc.awaitTermination() // Until you stop it



From Streams to Batch Processing

• Treat streaming computations as a series of deterministic 
micro-batch computations on small time intervals

• Batches are executed using Spark’s distributed data 
processing framework



Integration with other platforms

publish-
subscribe

logs

streams



Batch vs Streaming

Batch Streaming



Micro-Batching (Spark Streaming)
*P. Taylor Goetz

Batch Streaming

Micro-batch



Hash tag-count example

• Build a stream engine that processes incoming 
tweets and reports the most frequent hash-
tags in them



Connect to Twitter API via tweepy

from tweepy import Stream

from tweepy import OAuthHandler

from tweepy.streaming import StreamListener

import json

import sys

#consumer key, consumer secret, access token, access secret.

ckey=“…get your own keys!….."

csecret=“…."

atoken=“….."

asecret=“……."



Connect to Twitter API via tweepy

class listener(StreamListener):

def on_data(self, data):

all_data = json.loads(data)

try:

tweet = all_data["text"]

except:

return

for hashtag in all_data["entities"]["hashtags"]:

print("#"+hashtag["text"].upper())

return(True)

def on_error(self, status):

print(status)



Connect to Twitter API via tweepy

auth = OAuthHandler(ckey, csecret)

auth.set_access_token(atoken, asecret)

twitterStream = Stream(auth, listener())

#retrieve tweets related to nba!!!

twitterStream.filter(track=[“nba"])



Lets try it

yannisk@ubuntuserver:~$ unbuffer python3 mytwitter.py

#NBAMEDIADAY

#NBA

#NBA

#GOSPURSGO

#NBAMEDIADAY

#DUBNATION

#NBA

#NBAMEDIADAY

#NBAMEDIADAY

#NBAMEDIADAY

#CELTICS

#NBA

#NBAMEDIADAY

#NBAMEDIADAY



Redirect to a local port
yannisk@ubuntuserver:~$ ubnuffer python3 mytwiter.py  | nc –lk 9999 



Stream logic

• Collect all hashtags in the past 120 seconds
– This defines the width of the window that is used 

to keep fresh hashtags

– Alternatively think that each hashtag has a Time-
to-Live (TTL) of 120 seconds

– Expired hashtags are thrown out of the window 
and are not used in subsequent computations



Window shift (slide)

• This is not a one-time computation but rather 
a continuous query

• How often would you like to perform the 
computation?
– Let’s assume a default value of 10 seconds

• Thus, every 10 second we will compute the 
counts for all hashtags in the past 120 seconds



10 secs

Sliding windows

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

(infinite) stream

These tuples will 
expire and won’t 
count in the next 
invocation

10 secs

These tuples will 
enter the 
window in the 
next invocation

Current window of 120 secspast future

present



Main logic
(full code available @eclass)

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

//filter hashtags only

val hashtags = words.filter(w=>w.contains("#"))

//count all hashtags in the last 120 seconds

val winh = hashtags.window(Seconds(120))

//iterate over accumulated hashtags

winh.foreachRDD { (rdd: RDD[String], time: Time) =>

val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate()

// Convert RDD[String] to RDD[case class] to DataFrame

val wordsDataFrame = rdd.map(w => Record(w)).toDF()

// Creates a temporary view using the DataFrame

wordsDataFrame.createOrReplaceTempView("words")

// Do word count on table using SQL and print it

val wordCountsDataFrame =

spark.sql("select word, count(*) as total from words group by word order by total DESC")

println(s"========= $time =========")

wordCountsDataFrame.show(20,false)

This computation is repeated
for all RDD data accumulated 
within a window



Sample Output



Apache Storm

• Distributed realtime computation system

• Operates on tuple streams

• Tuple-at-a-time operation

• Lower latency than spark (claimed)



Spouts

• Spouts are sources of data streams

– API calls (e.g. twitter), event data (e.g. RFID 
reader), web logs, etc 

Stream

tuple tuple tuple tuple tuple tuple tuple



Bolts

• Process stream tuples

– Apply functions, filters, transformations, aggregation, etc

– May create new streams

Stream

tuple tuple tuple tuple tuple tuple



Storm topology

Spout

Bolt



Word-count in Storm

Stream

wordtweet tweet tweet word

Stream Stream

(word,count) (word,count)

Twitter spout

Sentence splitter
bolt

Word counter
bolt

Reporting
bolt



Word-count execution*

*Image from Guido Schmutz (http://www.slideshare.net/gschmutz/apache-storm-vs-spark-streaming-two-stream-processing-platforms-compared)



Storm Architecture


