OIKONOMIKO
MANENIETHMIO
AOHNAON

3 ."'\--
3 ATHENS UNIVERSITY
OF ECONOMICS
& AND BUSINESS

Big Data Systems for Graphs

Yannis Kotidis
http.//pages.cs.aueb.gr/~kotidis/

Apache Spark

* There are multiple ways to process graph data
with Apache Spark
— GraphX: based on RDDs
— GraphFrames: based on DataFrames
— Pregel API

Friend suggestions example:
Define nodes using a DataFrame

vaI V= [name: John }
spark.sqlContext.create

DataFrame(List(
("john", "John", 29),
("sara", "Sara", 22),

name: Jim }

(IljimII, IIJimII’ 42),
("patrick", "Patrick",19),

("mary", "Mary", 31)

)).toDF("id", "name",
Ilagell)

[name: Sara

[name: Patrick} name: Mary }

Now Define Edges

val e = [name: John }
spark.sqlContext.createData
Frame(List(

john", "sara", "knows"),
john", "jim", "knows"), name: Jim }

jim", "sara", "knows"),

(
(
(
(II nn
(
(

jim","mary","knows"),

sara", "patrick", "knows"),

sara", "mary", "knows")

)).toDF("src", "dst",
"relationship")

[name: Sara

[name: Patrick} name: Mary }

Create GraphFrame, run Motif

val g = GraphFrame(v, e) [name: Jonn }

g.find(
" (x)-[1->(f); (f)-[]->(fof);

name: Jim

I(X) [] >(f0f)") [name: Sara
select(x","fof").groupBy("x '
,'fof"). count orderBy("c
ount").show()

[name: Patrlck name: Mary

Result

scala> g.find("(x)-[]1->(f); (F)-[]1->(fof); ! (x)-[]->(fof)").select("x","fof").groupBy("x","fof")
.count.orderBy("count").show()

name: John

[jim, Jim, 42]|[patrick, Patrick...

|[john, John, 29]|[patrick, Patrick...
| [john, John, 29]| [mary, Mary, 31]|
Fommmm Fommmm e o +

name: Jim

name: Sara

name: Patrick name: Mary

PageRank Example

 name:sohn |
[

scala> val results = g.pageRank.resetProbability(0.01).maxIten(20).run()svertices.show()

mary | .4698147724378927 | name: Jim

|

| john | John | .5163835727128357|
| saral| Sara| .1541301946025058 |
|
|

jim| Jim| .7719934412056895 |

results: Unit

scala>‘

name: Patrick name: Mary

Vertex-centric programming

* Distributed systems mainly deal with graph
computations like shortest paths, pageRank that

can be parallelized

* Key ideas

— Implement processing logic on graph nodes (aka

vertex-centric programming)
* have all graph nodes perform the required computations in
parallel

— Sync results (message exchange phase)
— Repeat until computation converges

Computational Paradigm:
supper steps + synchronization

Node 1 Node 2 Node 3

Qk:ﬁ”@ @

- g

@

* Supper step: run user-defined code f()
* Synchronization: message exchange

Pregel

* Pregelis a framework developed by Google.

— System was never release to the public but has been copied once paper was
out

* It was designed for the Google cluster architecture.

— Each cluster consists of thousands of commodity PCs organized into racks with
high intra-rack bandwidth

— Clusters are interconnected but distributed geographically

Datacenter Switch

PU C PU C

Mem Mem Mem Mem

Disk Disk Disk Disk

C PU C PU

Computational Model

* All vertices compute in parallel during a superstep
— Process messages sent in the previous superstep
— Execute the same user-defined compute() function

— Optionally a vertex
* Modifies its value or that of its outgoing edges

* Sends messages to other vertices (to be received in the next
superstep)

* Changes the topology of the graph
— Votes to halt if it has no further work to do
* Pregel program terminates when
— All vertices are simultaneously inactive

— There are no messages in transit vote to halt

actice Inactice

message received

Bulk Synchronous Parallel Computing
(Leslie Gabriel Valiant)

processors

0 I I)
— Computation

W&& } Communication

I Synchronization barrier

Toy problem

* Find the maximum va
connected graph com

ue in a strongly

oonent

— Strongly connected: there is a directed path
between any two vertices u, v

deaesia

5 4

AN

Nothing to do: vote to halt

Super Step 1:
Transmit weights
to neighbors

Start of
Super Step 2:
Read messages

Super Step 2:
Update weights,
if necessary

Super Step 2:
Transmit new weights,
if necessary

Super Step 3:
Read messages

Super Step 3:
Update weights

Single Source Shortest Path

* Find shortest path from a source node u to all
nodes

* Solution
— Single CPU machine: Dijkstra’s algorithm

Dijkstra’s algorithm Overview

 Maintain distances of nodes from source
(initially infinite, except source) in a priority
gueue

* At each step
— Remove from queue node with minimum distance
— Update shortest paths of adjacent nodes

Example: initialize queue

Q={0,inf,inf,inf}

Update distances of adjacent nodes

Pop next node from queue

Q={1,10,inf}

Update distances

Pop next node from queue

Q={3,10}

Update distances

Pop last node, finished!

Computed distances

Dijkstra on a billion nodes graph

Parallel Breadth-First Search (PBFS)

e Each node maintains current distance
estimate

* Upon receive of a message from neighbors
update estimate

— If newly computed distance is shorter, inform
neighbors

10

/10

Transmit distance estimates to neighbours

/ Update estimates

Transmit new distance estimates to neighbours

PBFS vs Dijkstra

**) PBFS: More (redundant) computations of
distances until true shortest path is found

BUT

& Many parallel calculations per clock tick. No
need of a global priority query, only local state
maintained at each node

Shortest Path Code

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) 7? O : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgelterator();
for (; 'iter.Done(); iter.Next())
SendMessageTo(iter.Target (),
mindist + iter.GetValue());

}
VoteToHalt () ;

PageRank Code

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !'msgs—->Done(); msgs—>Next())
sum += msgs—>Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

x

if (superstep() < 30) {
const int64 n = GetOutEdgelterator().size();
SendMessageToAl1lNeighbors(GetValue() / n);

} else {
VoteToHalt () ;

>

¥
F;

Semi-clustering in a social graph

* A semi-cluster in a social graph is a group of
people who interact frequently with each
other and less frequently with others.

— A person may belong to multiple semi-clusters

Boundary edge
/ y edg

\ ‘\ Internal edge

Evaluation of Semi-clusters

. sum of weights of I. — BB,
internal edges Sc = Vc(vc B 1)/2

B.: sum of weights of
boundary edges

V_: size of semi-cluster

F.: boundary edge
score factor (0..1)

Computing Semi-clusters in Pregel

Each vertex maintains a list containing at most C__, semi-
clusters, sorted by score.

In super-step 0 each node creates its own cluster and
informs neighbors.

In subsequent super-steps a vertex V iterates over the
semi-clusters sent to it on the previous super-step.

— |If a semi-cluster does not already contain V and is not full then V
is added to that cluster

— The best k semi-clusters (sorted by their scores) are sent to
neighbors

— Node keeps a list of semi-clusters that contain V (itself)

Stop if no new semi-clusters are formed of after a set of
iterations

