Deep learning technig
for Graph Embeddi

\/

€5
25

Yannis Kotidis

Acknowledgements

* Some of the presented material adapted from the following sources:

* |SMB 2018 Tutorial on Deep Learning for Network Biology
(http://snap.stanford.edu/deepnetbio-ismb/)

* DeepWalk: Online Learning of Social Representations, Bryan Perozzi, Rami Al-
Rfou, Steven Skiena, Stony Brook University KDD 2014

* https://towardsdatascience.com/overview-of-deep-learning-on-graph-
embeddings-4305c10ad4a4

* http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-
model/

http://snap.stanford.edu/deepnetbio-ismb/
https://towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4

Motivation

Node embeddings: intuition

Input f Output
Map nodes to d-dimensional space such that similar
nodes in the graph are embedded close together

Deep Learning for Network Biology --
snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Embedding methods

e Several existing methods:
* node2vec, DeepWalk, LINE, struc2vec

* These techniques extract topological features in the form of common
neighbors, paths, random walks, rooted trees, etc in order capture
different notions of node similarity

* They utilize these features in order to embed graph nodes in a d-
dimensional space

Simple Idea: two nodes are similar if they are
connected

* Let A be the adjacency matrix for the graph
* Then A, =1 iff there is an edge between nodes u,v

* Let z,, z, be the n-dim vector representations of
these nodes, respectively
* Let z,'z, denote their similarity (inner product)
* We seek representations such that:

T- ~
L, Ly = Au,v

Simple Idea: two nodes are similar if they are
connected

* Let A be the adjacency matrix for the graph
* Then A, =1 iff there is an edge between nodes u,v

* Let z,, z, be the n-dim vector representations of
these nodes, respectively
* Let z,'z, denote their similarity (inner product)
* We seek representations such that:

Trivial for two nodes:
T. ~
Z, L, = Au,v Zu=(0,1,0)

Zv=(0,1,0)

Simple Idea: two nodes are similar if they are
connected

* Let A be the adjacency matrix for the graph
* Then A, =1 iff there is an edge between nodes u,v

* Let z,, z, be the n-dim vector representations of
these nodes, respectively
* Let z,'z, denote their similarity (inner product)
* We seek representations such that:

T - Zu=(0,1,0)
Z, L, = Au,v Zv=(0,1,0)

Now what?

Adjacency-based Similarity

= Similarity function is the edge weight between u and v
in the network

= Intuition: Dot products between node z,'z, embeddings
approximate edge existence

L= Z HZIZ’U — Au,vH2
/ (u,0)EV XV \

loss (what we want ’\
to minimize)

(weighted)
sum over all adjacency matrix
node pairs for the graph

Adjacency-based Similarity Shortcomings

* Must consider all node pairs 20O(|V|?) runtime
* O([E]) if summing over non-zero edges

* Only considers direct connections:

These two nodes are dissimilar
per our definition of similarity

4
<4

Also, we expect red nodes be more similar to
Green nodes compared to
despite none being directly connected

10

Multi-Hop Similarity

Idea: Define node similarity function based on
higher-order neighborhoods

= Red: Target node
» k=1:1-hop neighbors
" |.e., adjacency matrix A
= k=2: 2-hop neighbors
= k=3: 3-hop neighbors
How to stochastically define
these higher-order
neighborhoods?

mmm) Random Walks ’

k=3

Random Walk Example

* Start from source node v, and walk for a while following graph edges
* Collected path: v, v; 2 v, Vi 2 V; 2 Ve 2 Vg, 2 Vg

= |ntuition: nodes are similar
if they frequently co-occur
In a random walk

k=3

Word2vec

* Popular technique for creating distributed numerical representations
of word features

* Intuition: Two words are similar if the frequently appear in the same context
* Same context = within small distance in the same sentence

* |s believed to capture both syntactic and semantic relationships between
words:

* Let @(x) be the learnt representation (vector) of word x
* O("King") - ®("Man") + ®("Woman") = ®(“Queen”)

A —_— More examples (from product descriptions in online catalogs):
\\ (https://medium.com/arvind-internet/applying-word2vec-on-our-catalog-data-2d74dfee419d)
-

e shirt — buttons = sweater
e suit — shirt — bow — waistcoat = jeans
* party + weekend + clothing = holiday

https://medium.com/arvind-internet/applying-word2vec-on-our-catalog-data-2d74dfee419d

The Skip-gram model

Source Text (window=2) Training
Samples
]) . -quick brown |fox jumps over the lazy dog. == (the, quick)
* Given an input word try to predict (the. brown)
the previous w and following w
words (w=window SiZE) The brown |fox|jumps over the lazy dog. = (quick, the)

* Inthe last training sample for

(quick, brown)

(quick, fox)
input = fox try to predict quick,
brow, jumps, over The quick- fox|Jjumps|over the lazy dog. = (brown, the)
prediction (brown, quick)
(brown, fox)
uick (brown, jumps)
The|gquick|brown - Jumps| over |the lazy dog. = (fox, quick)
brown (fox, brown)
(fox, jJumps)
(fox, over)
jumps

P[“quick”

over
I | P[“brown” | ®(“fox”)]
P[Iljumpsﬂ |q)(llfoxll)]

Learn a representation @(“fox”) that maximizes these probabilities:

P[“over”

|O(“Fox”)]

| D(“fox”)] for this training input

Neat Idea (Deep Walk)

* In the previous discussion replace
* Words with graph nodes
* Sentences with node sequences from short random words

* Observation
* Words frequency in a natural language corpus follows a power law

* Vertex frequency in random walks on scale free graphs also follows a power
law

* Advantages

* Flexibility: captures local and higher-order neighborhoods

* Efficiency: Do not need to consider all node pairs when training
e Consider only node pairs that co-occur in random walks

Deep Walk Framework

window =1

v49| V3 2 V2 Vg 2 Vy 2 Vg 2 Vg 2 Vgg
W W2 o
.t :. - 'l' .i Y 9 o Randﬂm Walks T,]:l Uj =i LT
'. " .u 2N . —> 5}
o ® o\ » 1 (I)
S Il/"_'“'\\] .
1) Input: Graph 3) Representation Mapping
s
D » .‘
0+ Sy a o o im 4
10t ' o) ' : n_
1.2 -:. ®
(v,) oo s ®

(4) Hierarchical Softmax

2.5

’3} Output: Representation

Il i i Il Il Il Il
-1La 05 0o 0.5 1.0 1.5 2.0

17

node2vec: Biased Walks

Two classic strategies to define a neighborhood Ny (1) of
a given node u:

Nprs(u) = {s1,52,53} Local microscopic view
Nprs(u) = {s4,55,5,} Global macroscopic view

Interpolate BFS and DFS

Biased random walk R that given a node u generates
neighborhood Ny (u)

* TwWo parameters:
* Return parameter p:
* Return back to the previous node

* |[n-out parameter q:
* Moving outwards (DFS) vs. inwards (BFS)

Biased Random Walks

Biased 2"d-order random walks explore network neighborhoods:
* Rnd. walk started at u and is now at w
* Insight: Neighbors of w can only be:

Idea: Remember where that walk came from

23

Biased Random Walks

* Walker is at W. Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

started at u ‘ @

* p», q model transition probabilities
* p.."“return” parameter (lower values are preferable)
* g .. "walk away” parameter (lower values are preferable)

24

Biased Random Walks

* Walker is at W. Where to go next?

Si||1/p
s, | 1
ss| 1 1/q
* BFS-like walk: Low value of p /
* DFS-like walk: Low value of g Unnormalized

Ns(u) are the nodes visited by the walker

transition prob.

25

BFS vs. DFS

BFS:
Micro-view of
neighbourhood

DFS:
Macro-view of
neighbourhood

26

Experiment: Micro vs. Macro

Interactions of characters in a novel:

p=1, =2
Microscopic view of the
network neighbourhood

% 0..:..: -

f.' @9 0o%

-l ® :i.i..: :

u%' %

p=1, g=0.5
Macroscopic view of the
network neighbourhood

27

Node2vec example

Input network Clustering of resulting 2-dim vectors

(p=1,9=2,w=3) with k-Means (k=2)

Mel

Mike

/}ohn : Maia

Jim _ _ / *
//Tlm | Maya
/Helen ’ Sara
Sara .
Mary/
i o Helen
Mel aria
Maya \Mike John

im

Graph Convolutional
Networks

GCNs application

* Semi-supervised learning: Given a single network with partial nodes
being labelled and others remaining unlabelled, GCN’s model can
identify the class labels for the unlabelled nodes

* Graph node embedding: We can use GCNs to represent each node as
an aggregate of its neighbourhood and derive node embeddings

* For more details see https://arxiv.org/pdf/1609.02907.pdf

What is Convolution
(image processing)

* Try to learn from the provided image by
computing weighted averages of pixel values of the
red pixel along with its neighbours

e Pass the computed result to an activation function
that propagates the result to the next layer of the
CNN.

Image source
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee

Convolution in graphs

* Derive a hidden representation of the red node,
by taking the average value of the available features
of the red node along with its neighbours

Image source
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee

Let's see an example

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']
Original adjacency matrix:
Graph [[0. 0. 0. 0. 1. 1. 0. 0. 0. 0.1
[0. 0. 1. 0. 0. 0. 1. 1. 1. 0.]
[0. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
john [0. 0. 1. 0. 1. 1. 0. 0. 0. 0.]
[1. 0. 0. 1. 0. 1. 0. 0. 0. 0.] . .
Z>Tim [1. 0. 0. 1. 1. 0. 0. 0. 0. 0.] - Adjacency Matrix A
Jim [0. 1. 0. 0. 0. 0. 0. 1. 1. 0.]
\‘:e [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.1
len [0. 1. 0. 0. 0. 0. 1. 1. 0. 1.] L . .
0. 0. 0. 0. 0. 0. 0. 0. 1. 0.11 | Note: in this example the graph is
\ undirected, thus A is symmetric
Sara
Mary :
\vana
Mike
Mel —
/

Maya

Encode two features using matrix X

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']

#PLAY WITH TWO FEATURES (PAO, AEK)
#John, Tim = PAO
#Mel, Maya = AEK

X=np.matrix ([
1,07,

-

-

]

]

-

-

Maya

-

 ~/ /A /7 & Ak ek e
o O O O OB O O o

-
il = & B o I o i ab N ol o

[EEE - - - - - - -

-

Aggregate features

Mel

e Let X be a n*k matrix encoding k features

for each of the n nodes - Maya
AEK
* Question: what does A*X produce? | [,
A [[0. 0. 0. O. 1. 1. 0. 0. 0. 0O.] [0 |0f] X

Mary — | [0 0. 1. 0. 0. 0. 1. 1. L. 0.]

(0. 1. 0. 1. 0. 0. 0. 0. 0. 0.] [0/]0]

(0. 0. 1. 0. 1. 1. 0. 0. 0. 0.] [0 [O]]

[1. 0. 0. 1. 0. 1. 0. 0. 0. 0.] [1 O]

(1. 0. 0. 1. 1. 0. 0. 0. 0. 0.] [0 |0}

(0. 1. 0. 0. 0. 0. 0. 1. 1. 0.] ro lol]

(0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] 0 lol
(0. 1. 0. 0. 0. 0. 1. 1. 0. 1.]

(0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]] [0 4]

[0 (1]]

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mava'l]

Result for our running example

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']

A*X=
[[1. O.]
[O.
[O.
[1.
[1.
[2.
[O.
[0.
[O.
[O.

A\

Maya Mike

Ma
A*X i

H R R 200 OO

e e)]] e]]
2

Mel

Maya

Issue #1

* Node’s own features are not taken into consideration in A*X
e This is because A[i,i]=0

)

Issue #1

* Trick: add a self-loop
* make Ali,i]=1
e equivalently add identity matrix I: I[i,i]=1

Issue #2

* Ais not normalized. Thus, vertices with large degree will have large values
in their feature representation while nodes with small degrees will have
small values

* Solve by using the symmetrically normalized adjacency matrix D~%°(A4 + [)D~%>

* D is a diagonal matrix with DI[i,i] = degree of node i (computed on adjusted
matrix A+l)
e Lefthand side D0 scales the aggregate feature on i based on the degree on node i
* Righthand side scales the aggregate feature on i based on the degree on node j

* Intuition: often low-degree neighbours provide more useful information than high-
degree neighbours

Recap (aggregation
step)

* Compute normalized sum of

neighboring nodes plus own ,
features: D™%°>(4 + I)D~%°X ~
* Where \
* A: Graph Adjacency matrix
/

* |: Identity matrix
e D: Degree matrix of A+l
e X: Node’s features

Graph Convolutional
Networks

* |n supervised learning we will use
o H(l+1) — f(D—OS(A+I)D—05H(l)W(l))

Where

« HW js the input to layer | (initially the node
features X we know from the dataset)

« HU+D s the output to the next layer

Image source: https://towardsdatascience.com/designing-your-neural-networks-a5e4617027ed

« WO are the weights to learn via training
 fis an non-linear function such as RelLU

Continue our example

* Initialize nodes with random features
e Use three hidden layers

* On the right see output with a single
forward pass (no learning)

[npost Inyer Hixlbrder logerrs Clatpet Inyer

John

: \T'
S — im
¢
len
Sara
Ma
ri’§<Maria
= —~__Mike
/
Maya
8] hn
m™m
: | Jielen
goara
1
May Mary
01 el J““TB

