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1. Introduct ion 

Consider a consumer with a given amount of income. Such a consumer typically 
faces two important economic decisions. First, how to allocate his or her current 
consumption among goods and services. Second, how to invest among various 
assets. These two interrelated consumer or household problems are known as the 
consumption-saving decision and the portfolio selection decision. 

Beginning with Adam Smith, economists have systematically studied the first 
decision. Arguing that a consumer will choose commodities and services that offer 
the greatest marginal utility relative to price, a theory of value was developed that 
combines subjective notions from consumer utility with objective notions from 
the production theory of the firm. By the beginning of the twentieth century, 
neoclassical economists had developed a static theory of consumer behavior as 
part of an analysis of market pricing under conditions of perfect competition and 
certainty. 

The asset allocation decision was not adequately addressed by neoclassical 
economists, probably because they treated savings as the supply of loanable funds 
in developing a theory of interest rate determination instead of portfolio selection. 
More importantly, however, these two decisions, although closely interrelated, 
require substantially different methodologies. The methodology of deterministic 
calculus is adequate for the decision of maximizing a consumer's utility subject 
to a budget constraint. Portfolio selection involves making a decision under 
uncertainty. The probabilistic notions of expected return and risk become very 
important. Neoclassical economists did not have such a methodology available to 
them and despite some very early attempts by probabilists, like Bernoulli [1738] to 
define and measure risk, or Irving Fisher [1906] to describe asset returns in terms 
of a probability distribution, the twin concepts of expected return and risk had not 
yet been fully integrated. An early and important attempt to do that was made by 
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Marschak [1938] who expressed preferences for investment by indifference curves 
in the mean-var iance space. 1 

The methodological breakthrough of treating axiomatically the theory of choice 
under uncertainty was offered by von Neumann & Morgenstern [1947] and it was 
only a few years later that Markowitz [1952, 1959] and Tobin [1958], used this 
theory to formulate and solve the portfolio selection problem. 

In this essay we plan to exposit portfolio theory with a special emphasis on its 
historical evolution and methodological foundations. In Section 2, we describe the 
early work of Markowitz [1952, 1959] and Tobin [1958] to illustrate the individual 
contributions of these authors. Following these general remarks about the early 
beginning of portfolio theory, we define and solve the mean-variance portfolio 
problem in Section 3 and relate it t o  its most famous intellectual first fruits, 
namely the two-fund separation and the capital asset pricing theory of Sharpe 
[1964] and Lintner [1965] in Sections 4, 5 and 6. In particular, a portion of Section 
6 is devoted to the presentation of Roll's [1977] critique of the asset pricing 
theory's tests and the interplay of analysis and empirical testing. This leads to 
an analysis of the foundational assumptions of portfolio theory with respect to 
investor preferences and asset return distributions, both reviewed in Section 7. 
The contrast of methodologies is illustrated in Sections 8 and 9 where stochastic 
calculus and stochastic control techniques are used to generalize the consumption- 
investment problem to an arbitrary number of periods. Market imperfections are 
addressed in Section 10. The last section identifies several extensions and refers 
the reader to several articles, some included in this volume. It also contains our 
summary and conclusions. 

2. The early contributions 

Markowitz [1952] marks the beginning of modern portfolio theory, where 
for the first time, the problem of portfolio selection is clearly formulated and 
solved. Earlier contributions of Keynes [1936], Marschak [1938] and others only 
tangentially analyze investment decisions. Markowitz's focus is the explanation of 
the phenomenon of portfolio diversification. 

Before Markowitz could propose the "expected returns-variance of returns" 
rule, he first had to discredit the then widely accepted principle that an investor 
chooses a portfolio by selecting securities that maximize discounted expected 
returns. 2 Markowitz points out that if an investor follows this rule, his or her 

I Marschak [1938, p. 312] recognizes that "the unsatisfactory state of Monctary Theory as 
compared with General Economics is due to the fact that the principle of determinateness so 
well established by Walras and Pareto for the world of perishable consumption goods and labor 
services has never been applied with much consistency to durable goods and, still less, to claims 
(securities, loans, cash)". In our modern terminology we could replace the names Monetary Theory 
and General Economics with Financial Economics and Microeconomic Theory, respectively. 

2 Markowitz refers the reader to a standard investments textbook by Williams [1938] that 
elaborates the notion that portfolio choice is guided by the rule of maximizing the discounted 
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por t fo l io  will consist of only one stock, namely  the one that  has the highest  
d iscounted expected re tu rn  which is contrary  to the observed  p h e n o m e n o n  of  
diversification. The re fo re  a rule of investor  behavior  which does not  yield por t fo l io  
diversification must  be  rejected.  Fur the rmore ,  the re ject ion of  this rule holds no 
mat te r  how expecta t ions  of  future  re turns  are fo rmed  and how discount  rates are  
selected.  Markowi tz  t h e n  proposes  the expected mean  r e tu rns -va r i ance  of  re turns  
M - V  rule. H e  concludes  that  the M - V  rule not  only implies  diversification, it 
actually implies the right k ind of diversification for the  r ight  reason.  In trying to 
reduce the  por t fo l io  var iance,  it is not  enough to just  invest in many securit ies.  
It is impor t an t  to diversify across securit ies with low re turn  covariances.  In  1959, 
Markowi tz  publ i shed  a monograph  on the same topic. In the last pa r t  (consist ing 
of four chapters)  and  in an appendix,  por t fol io  select ion is g rounded  firmly as 
ra t ional  choice unde r  uncertainty.  

In contras t  to Markowi tz ' s  contr ibut ions Which may be viewed as microeco-  
nomic, Tobin [1958] addresses  a s tandard  Keynes ian  macroeconomic  p rob lem,  
namely l iquidity preference .  Keynes [1936] used the concept  of l iquidity prefer -  
ence to descr ibe  an inverse re la t ionship be tween the d e m a n d  for cash balances and 
the ra te  of  interest .  This aggregative function was pos tu la ted  by Keynes wi thout  a 
formal  derivation.  Tobin derives the economy's  l iquidity p re fe rence  by developing  
a theory tha t  explains the behavior  of  the  decis ion-making units of the economy.  3 

Numerous  contr ibut ions  followed. To ment ion  just  a few, Sharpe  [1970], M e r t o n  
[1972], Gonza l ez -Gave r r a  [1973], Fama  [1976] and Roll  [1977], are  impor t an t  
references.  Z i e m b a  & Vickson [1975] have col lected numerous  classic art icles 
on both  static and dynamic  models  of  por t fo l io  selection. The  recent  books  by 
Ingersol l  [1987], H u a n g  & Li tzenberger  [1988], and Jarrow [1988] also conta in  
a useful analysis of  the mean -va r i ance  por t fol io  theory.  Our  exposi t ion rel ies 
heavily on Rol l  [1977]. 

value of future returns. It is not correct to deduce that earlier economists completely ignored 
the notion of risk. They simply were unsuccessful in developing a precise microeconomic theory 
of investor behavior under conditions of risk. The typical way risk was accounted for in Keynes' 
[1936] marginal efficiency of investment or Hicks' [1939] development of the investment decisions 
of a firm was by letting expected future returns include an allowance for risk or by adding a risk 
premium to discount rates. 

3 One may wonder what is the connection between liquidity preference and portfolio theory. 
You may recall that Keynes identified three motives for holding cash balances: transactions, 
precautionary and speculative. Furthermore, while the transactions and precautionary motives were 
determined by income, the amount of cash balances held for speculative purposes was influenced 
by the rate of interest. Tobin analyzes this speculative motive of investors to offer a theoretically 
sound foundation of the interest elasticity of the liquidity preference. Because he wishes to explain 
the demand for cash, he considers an investor whose portfolio selection includes only two assets: 
cash and consoles. Of course, the yield of cash is zero while the yield of consoles is positive. Tobin 
posits and solves a two-asset portfolio selection problem using a quadratic expected utility function. 
He justifies his choice of a quadratic utility function by arguing that the investor considers two 
parameters in his or her portfolio selection: expected return and risk (measured by the standard 
deviation of the portfolio return). Finally, having developed his portfolio selection theory, he 
applies it to show that changes in real interest rates affect inversely the demand for cash, which is 
what Keynes had conjectured without offering a proof, 
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3. M e a n - v a r i a n c e  portibl io select ion 

In the  fo rmula t ion  of  the m e a n - v a r i a n c e  por t fo l io  we use the following nota-  
tion: x is an n-co lumn vector  whose componen t s  X l , . . .  Xn deno te  the weight or  
p r o p o r t i o n  of  the investor 's  weal th  a l located  to the i th  asset in the  por t fo l io  with 
i = 1, 2 . . . .  n. Obviously the sum of weights is equal  to 1, i.e. Y~/~ xi = 1; 1 is an 
n -co lumn vector  of ones and superscr ip t  T denotes  the  t ranspose  of a vector  or a 
matrix.  R is an n -co lumn vector  of mean  re turns  R 1 , . . . ,  Rn of the n assets, where  
it is a ssumed  that  not  all e lements  of  R are  equal,  and ¥ is the n x n covar iance 
matr ix  with entr ies aij, i, j = 1, 2 . . . .  n. We assume that V is nonsingular .  This 
essential ly requires  that  none  of the asset  re turns  is perfect ly cor re la ted  with the  
re tu rn  of a por t fo l io  m a d e  up of the remain ing  assets; and that  none  of the assets 
or  por t fo l ios  of the assets is riskless. The  case where  one of the assets i s r i sk le s s  
will be t r ea ted  separa te ly  at a la ter  stage. Observe  that  V is symmetr ic  and posit ive 
def ini te  be ing  a covariance matrix. We say that  an n x n matr ix  ¥ is positive definite, 
if for  any nonzero  n-vector  x, it follows that  x T y x  > 0. In our case the p roper ty  
of posi t ive defini teness  of V follows f rom the fact that  variances of  risky por t fol ios  
are  strictly positive. The  mean  re turns  and covariance matr ix of  the assets are  
assumed to be  known. We do not  specify if n denotes  the ent ire  popu la t ion  or just  
a sample  of  assets. Finally,  for a given por t fo l io  p, its variance, deno ted  by crp 2, is 
given by xTyx ,  while the por t fol io  mean ,  deno t e d  by Rp, is given by Rp = xTR. 

M u c h  in the  spiri t  of  Markowitz ' s  [1952] formula t ion  4 the por t fo l io  select ion 
p r o b l e m  can be s ta ted  as 

minimize cr 2 = xTVx 

subject  to xT1 = 1 

xTR = Rp. 

(3.1) 

2 subject  to two con- In p rob l em (3.1) we minimize the por t fo l io  variance ~p 
straints:  first, the por t fo l io  weights must  sum to unity, which means  that  all the 
wea l th  is invested,  and  second the por t fo l io  must  earn  an expected rate  of  re turn  
equal  t o  Rp. Technically, we minimize a convex function subject  to l inear  con- 
straints.  Observe  that  xTVx is convex because  V is posit ive definite and also note  
that  the  two l inear  constraints  define a convex set. Therefore ,  the  p rob lem has a 
un ique  solut ion and we only need  to obta in  the  f irst-order condit ions.  

Two remarks  are appropr ia te .  First ,  the investor 's  preferences ,  as r ep resen ted  
by a util i ty function, do  not  en ter  explicitly in (3.1). We only assume that  a utility 
funct ion exists which is defined over the  m e a n  and var iance of  the por t fo l io  re turn  
and which has the fur ther  p roper ty  of favoring higher  mean  and smal ler  variance.  
Second,  unl ike Tobin who explicitly considers  cash in his por t fo l io  select ion 

4 Markowitz [1952] considers only three securities becausc he solves the same problem as (3.1) 
using geometric methods. He does not allow short sales in order to simplify the analysis. In (3.l) 
short sales are permitted, which means that portfolio weights are allowed to be negative. 
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problem, (3.1) does not  include a riskless asset. A riskless asset will be included in 
Section 5. 

Form the Lagrangian function 

L = x T V x  - -  )~I(xTR -- Rp)  - L2(xT1 -- 1). (3.2) 

The first-order conditions are 

OL 
- -  = 2Vx - )~IR - )~21 = 0, (3.3) 
Ox 

where 0 in (3.3) is an n-vector of zeros, and 

OL 
0)~ 1 - Rp - x T R  = 0, (3.4) 

OL 
-- 1 - x T 1  ---0. (3.5)  

0L2 

From equation (3.3) we obtain 

x =  lva l(XlR+X21)= v I[R 1] ;,2 

In this last equation the term )~jR ÷ )~21 is written in a matrix form because we will 
r- 7 

)~1 ]. Doing this we write (3 .4)and  (3.5)as use (3.4) and (3.5) to solve for )~2 

Premultiply both sides of (3.6) by [R 1] T and use (3.7) to obtain 

, Tv ]. [R 1]~x = ~[R x2 

For notational convenience denote  by 

A - =  [R 1 ] T v - ' [ R  1] (3.9) 

the 2 x 2 symmetric matrix with entries 

L RTV_l l  ITv_I1  ] . (3.10) 

We need to establish that A is positive definite. For any Yl, Y2 such that at least 
one of the elements Yl, Y2 is nonzero, observe that 

[R 1 ] [  yl]y2 = [ y I R + y 2 I ]  

is a nonzero n-vector because, by assumption, the elements of R are not all equal. 
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Then A is positive definite because 

= [ y l R + y 2 1 ] T v  I [ y l R + y 2 1 ]  > 0 

by the positive definiteness of V - 1  
Substitute the newly defined A in (3.9) to get 

from which we can immediately solve for the multipliers since A is nonsingular 
and its inverse exists. Thus 

1 

From these manipulations we obtain the desired result using (3.11) and (3.6). 
Thus, the n-vector of portfolio weights x that minimizes portfolio variance for a 
given mean return is 

The result of this analysis can be stated as: 

Theorem 3.1 (Mean-variance portfolio selection). Let  ¥ be the n x n positive def- 
inite covariance matrix and R be the n-column vector o f  mean returns o f  the n assets 
where it is assumed that not all elements of  R are equal. Then the m i n i m u m  variance 
portfolio with given mean  return Rp is unique and its weights" are given by (3.12). 

Let us compute the variance of any minimum variance portfolio with a given 
mean Rp. Using the definitions of the variance or} 2, matrix A in (3.9) and the 
solution of weights in (3.12), calculate 

1 

a - 2bRp + cR 2 

(ac - b 2) 

In (3.13) the relation between the variance of the minimum variance portfolio 
2 for any given m e a n  Rp is expressed as a parabola and is called the m i n i m u m  O"17 

variance portfolio frontier or locus. In mean-standard-deviation space the relation 
is expressed as a hyperbola. 
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Expected 
Return 

" Minimum Variance Efficient Portfolios • . - ~ - ~ ~  
Rp ~ ' ~ ]  

R 1 = a/b I 
I 

I Feasible Portfolios 

I I 
I I 
I I 

I I 
R G = b/c Global Minimum Variance Portfolio 

I ,  I 1 

I \ ~ " "  Minimum Variance Inefficient Portfolios 
t X I X  z I I 

Rz ~/ - - - - - - I - - - -  I I 
I - -  I I 

2 2 0 ~G = 1/0 ~z dr12 = a/b2 et~ Variance 
of Return 

Fig. 1. Portfol igs of  n risky assets .  

Figure 1 graphs equation (3.13) and distinguishes between the upper half (solid 
curve) and the bottom ha l f  (broken curve). The upper half of the minimum 
variance portfolio frontier identifies the set of portfolios having the highest return 
for a given variance; these are called mean-variance efficient portfolios. The 
portfolios on the bottom half are called inefficient portfolios. The mean-variance 
efficient portfolios are a subset of the minimum variance portfolios. Portfolios 
to the right of the parabola are called feasible. For a given variance the mean 
return of a feasible portfolio is less than the mean return of an efficient portfolio 
and higher than the mean return of an inefficient one, both having the same 
variance. 

Figure I also identifies the global m in imum variance portfolio. This is the 
portfolio with the smallest possible variance for any mean return. Its mean, 
denoted by RG is obtained by minimizing (3.13) with respect to Rp, to yield 

b 
RG = - (3.14) 

c 

and its variance, denoted by cr~, is calculated by inserting (3.14) into the general 
equation (3.13) to obtain 

~2 = a - 2bRG + c'R~ a - 2b(b/c) 4- c'(b/c) 2 1 (3.15) 
a c  - b 2 = a c  - b 2 = -'c 

Similarly, by inserting R(~ from (3.14) into (3.12) we find the weights of the global 
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minimum variance portfolio, denoted by xG, 

]I c -b 
V-I[R 1 - b  a 

XG : V-I[R I]A-I [ RG ] : ~/~ b;)- 
lib;el V-I 1 

c 
(3.16) 

An additional notion that will be used later in this section and which is 
illustrated in Figure 1 also, is the concept of an orthogonal portfolio. We say that 
two minimum variance portfolios Xp and xz are orthogonal if their covariance is 
zero, that is, 

x f V x p  = 0. (3.17) 

We want to show that for every minimum variance portfolio, except the global 
minimum variance portfolio, we can find a unique orthogonal minimum variance 
portfolio. Furthermore, if the first portfolio has mean Rp, its orthogonal one has 
mean Rz with 

a - bRp 
Rz -- (3.18) 

b - cRp 

To establish (3.18), let first p and z be two arbitrary minimum variance portfolios 
with weights Xp given by (3.12) and Xz given by 

xz=V-I[R I]A-I [Rz] . (3.19) 

The covariance between portfolios p and z, being zero implies 

O:xTVxp : [Rz ]]A-I [RP], (3.20) 

from which (3.18) follows. 
In Figure 1, we also illustrate the geometry of orthogonal portfolios. Given an 

arbitrary efficient portfolio p on the efficient portfolio frontier, the line passing 
between p and the global minimum variance portfolio can be shown to intersect 
the expected return axis at Rz. Once Rz is known, then the orthogonal portfolio z 
can be uniquely identified on the minimum variance portfolio frontier. Note that 
if a portfolio p is efficient and therefore lies on the positively sloped segment of 
the portfolio frontier, as in Figure 1, then its orthogonal portfolio z is inefficient 
and lies on the negatively sloped segment. In general, orthogonal portfolios lie on 
opposite-sloped segments of the portfolio frontier. 

4. Two-fund separation 

We now present the important property of two-fund separation. The mathe- 
matics of this property is straightforward; its economic implications however are 
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significant because the following theorem establishes that the minimum variance 
portfolio frontier can be generated by any two distinct frontier portfolios. 

Theorem 4.1 (Two-fund separation). Let  xa and xb be two min imum variance 
portfolios with mean returns Ra and Rb respectively, such that Ra ~ Rb. 

(a) Then every m i n i m u m  variance portfolio Xc is a linear combination of" x ,  
and Xb. 

(b) Conversely, every portfolio which is a linear combination o f  x ,  and xb, i.e, 
ce&, + (1 -- OOXb, is a m i n i mum variance portfolio. 

(c) In particular, i f  Xa and xb are m in imum variance efficient portfolios, then 
cex~, + (1 - ~)Xb is a m i n i m u m  variance efficient portJblio for  0 < e~ < 1. 

Proof. (a) Let Rc denote the mean return of the given minimum variance portfolio 
xc. Choose parameter oe such that 

Rc = o~Ra + (I - oe)Rb 

that is, choose c~ given by 

Rc - Rb 

Ra - Rb 

Note that oe exists and is unique because by hypothesis Ra ~ Rb. 
We claim that 

(4.1) 

(4.2) 

x~ = oex. + (1 - oe )Xb. 

To establish (4.3) use first (3.12) and next (4.1) to write 

l 
= V-I[R I]A-I L~R: ÷+ (i(i- o~)°0Rb II 
=t~V-I[R 1]A-1 [~a] ff-(I-o~)V-I[R I]A-I [~ b] 
= c~x. + (1 - o~)xb. 

(4.3) 

(4.4) 

(b) Consider portfolio xc which is a linear combination of x. and Xb as in (4.3). 
Then 

x~. = ax.  + (1 - a)Xb 

=c~V-I[R 1 ] A - I [ R a ] + ( 1 - ~ ) V - I [ R  1 ] A - l [  Rb] 

By (3.12) we conclude that Xc is the minimum variance portfolio with expected 
return oeRa + (1 - o0Rb. 
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(c) This is proved as in (b) noting that the restriction 0 _< oe < I implies, 
Ra < olRa + (1 -- oz)Rb < Rb, if Ra <_ Rb. 

This completes the proof. [] 

It is of historical interest that this fact was discovered by Tobin [1958]. Tobin 
uses only two assets (riskless cash and a risky consol), and demonstrates that 
nothing essential is changed if there are many risky assets. He argues that the 
risky assets can be viewed as a single composite asset (mutual fund) and investors 
find it optimal to combine their cash with a specific portfolio of risky assets. In 
particular, Theorem 4.1 shows that any mean variance efficient portfolio can be 
generated by two arbitrary distinct mean-variance efficient portfolios. In other 
words, if an investor wishes to invest in a mean-variance efficient portfolio with 
a given expected return and variance, he or she can achieve this goal by investing 
in an appropriate linear combination of any two mutual funds which are also 
mean-var iance  efficient. Practically this means that the n original assets can be 
purchased by only two mutual funds and investors then can just choose to allocate 
their wealth, not in the original n assets directly but in these two mutual funds 
in such a way that the investment results (mean-variance) of the two actions 
(portfolios) would be identical. 

There is, however, an additional implication from part (c) of the two-fund 
separation theorem. Suppose that utility functions are restricted so that all 
investors choose to invest in mean-variance efficient portfolios and choose x ,  
and xb to be the investment proportions of two distinct mean-variance efficient 
portfolios that generate all the others. In particular Xa and xt, can be used to 
generate the market portfolio, that is, the wealth weighted sum of the portfolio 
holdings of all investors. 5 This implies that the market portfolio is also mean -  
variance efficient. Black [1972] employs this result in deriving the capital asset 
pricing model. 

Having shown that any two distinct portfolios can generate all other portfolios, 
it is of practical interest to select two portfolios whose means and variances are 
easy to compute. One such portfolio is the global minimum variance portfolio 
with Re,  cr 2 and xo given in the previous section. The other one is identified in 
Figure 1, with R1 = a/b, 0 .2 = a/b 2, and 

V-1R 
Xl : b --" (4.5) 

5 To clarity the concept of market portfolio, it is helpful to proceed inductively. Suppose that 
investors 1 and 2 have wealth Wl and w2 invested in minimum variance efficient portfolios with 
weights xl and x2. Then the sum of their holdings is a portfolio with wealth wj + w2 and portfolio 
weights OlXl + (1 - ~ ) x 2  where c~ = Wl/(Wl + w2). Since 0 < c~ < 1, from Theorem 4.1(c), the sum 
total of their holdings is also an efficient portfolio. Next suppose that the wealth w,, of n investors 
is invested in an efficient portfolio with weights xn and investor n + 1 has wealth w,,+l invested in 
an efficient portfolio with weights xn+1. Again from Theorem 4.1(c) the sum total of the holdings 
of all n + 1 investors is an efficient portfolio. Proceeding in this manner we conclude that the 
sum total of all the investors' portfolios is an efficient portfolio. By definition, however, this is the 
market portfolio. Thus we conclude that the market portfolio is efficient. 
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Observe from Figure 1 that this second portfolio's orthogonal portfolio has an 
expected return of zero. Theorem 4.2 below uses these two portfolios xa  and xl. 

We state a theorem about the relation of individual asset parameters  which will 
be useful in the analysis of the capital asset pricing model. 

Theorem 4.2. For a given portJblio xp, the covariance vector of  individual assets 
with respect to portfolio p is linear in the vector of  mean returns R if and only if p is 
a minimum variance portfolio. 

Proof. Let Xp be the weights of a minimum variance portfolio which can be written 
as (3.12). The vector of covariances between individual assets and Xp is given by 

V x p = W - I [ R  1]A-I[Rp] =JR I]A-'[ Rp] (4.6, 
which verifies the linearity between the covariance vector and the vector of 
expected returns, R. 

Conversely, let the vector of covariances with an arbitrary portfolio Xp be 
expressed linearly as 

YXp = gR + h l  (4.7) 

where g and h are arbitrary constants. From (4.7), solving for Xp we get 

Xp = g V - l R  + V - l l  = gbx~ + hcxo. (4.8) 

Note that in this last equation xp is generated by two distinct efficient portfolios 
xl and x~. Recall that xo is the vector of investment proportions of the global 
minimum variance portfolio and xl is the vector of investment proportions 
described in (4.5). Since both xo and xl are investment proportions, they satisfy 
x~,l = XlVl = 1 which combined with the property that xpT1 = 1 allows us to 
conclude that gb + hc = 1. Thus we conclude from Theorem 4.1 that xp is a 
minimum variance portfolio. This completes the proof. [] 

We close this section by expressing (4.6) in a way that will be useful in the 
discussion of the capital asset pricing model in Section 6. From (4.6) write 

cov (Ri, Rp) = [0 . . .  1 . . .  0]Vxp 

- - i o ,  oli.,l lL1, J 
r ~ 

=[Ri  1]A-|  [ R P ]  , 

where the 1 in the row vector is placed in the position of the ith asset. Let xz be 
orthogonal to Xp and calculate their covariance as in (3.20). Subtract (3.20) from 
(4.9) to get 

cov(Ri,Rp) = [ri LIJ 



12 G.M. Constant inides,  A.  G. Mall iaris  

where the two new variables r i and V are defined as 

ri = Ri  - Rz ,  

and 

(4.11) 

c R p  - b 
?" - -  a c  - b 2 " (4.12) 

Observe that (4.10) holds for each i and must therefore hold for all assets, i.e. 

cov ( Rp ,  Rp )  = 0-2 = y r p ,  (4.13) 

where rp expresses the excess mean return of  portfolio p from its or thogonal  z. 
From this last equation obtain V = o-12/rp and substitute in (4.10) to conclude that 

coy ( R i ,  R p )  
ri - -  0- 2 rp = f l i rp  (4.14) 

which expresses the excess mean return of the ith asset as a propor t ion of  its beta, 
/~i, with respect to portfolio p, where 

COy ( R i ,  R p )  
/3i - crp2 (4.15) 

These mathematical  manipulations show that (4.14), which has a capital asset 
pricing appearance,  holds true for any minimum variance portfolio, in general, 
and for any minimum variance efficient portfolio, in particular. 

5. Mean-var iance  portfolio with a riskless asset 

The previous two sections presented and solved the portfolio selection problem 
for n risky assets, and then established the two fund separation theorem. We 
now return to Tobin's original idea of  introducing a riskless asset. The portfolio 
selection problem with n risky assets and one riskless, i.e. a total of  (n + 1) assets 
can easily be formulated and solved. Let there be n + 1 assets, i = 0, 1, 2 . . . . .  n, 
where 0 denotes the riskless asset with return R0. The vector of  expected excess 
returns has elements defined as ri = R i  - Ro, i = 1, 2 . . . . .  n ,  and is denoted by r. 
Wealth is now allocated among (n + 1) assets with weights w0, wl . . . . .  w,~. In the 
various calculations we denote the vector of  weights Wl . . . . .  wr, as w and write 
w0 = ] --wT1. 

For  a given portfolio p, the mean excess return is 

rp = w T R  + (1 -- w T I ) R o  -- Ro = wTr .  (5.1) 

The variance of p is 

~t~ = wTVw' (5.2) 
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where in (5.1) and (5.2), R and V are as in Section 3. Note  that in (5.2) the riskless 
asset does not  contribute to the variance. 

The mean-var iance  portfolio selection problem with a riskless asset can be 
stated as 

minimize wTvw 

subject to wVr = rp. (5.3) 

In (5.3), the variance of the n-risky assets is minimized subject to a given excess 
return rp. Note  that wT1 = 1 is not a constraint because the wealth need not  all be 
allocated to the n-risky assets; some may be held in the riskless asset. 

Following the method of (3.1) one obtains the solution 

Fp 
w -  lr  

which gives the variance of the minimum-variance portfolio with excess mean  rp 
as  

= wTVw 

= ( rp ] 2 r T V _ l W _ I  r (5.5) \ r rV- lr]  

4 
rTV-lr" 

The Sharpe's  measure of portfolio p, defined as the ratio of its excess mean return 
to the standard deviation of  its return, is obtained from (5.5) as 

rp ] ( r T V - l r )  1/2, i f  rp > 0 I 
(5.6) 

Crp -- [ --(rTV-lr) 1/2, if rp < 0 ] " 

The tangency portfolio T is the minimum-variance portfolio for which 

1TwT = 1. (5.7) 

Combining equations (5.4) and (5.7) we obtain 

r T V - I r 

rx - 1TV_lr  ~ 0. (5.8) 

It is economically plausible to assert that the riskless return is lower than the 
mean  return of the global minimum variance portfolio of  the risky assets, that  
is, R0 < Re.  We may then prove that 1TV-I r  > 0. Also rTV-lr > 0 by the 
positive definiteness of  the matrix V. It then follows that rT > 0 and the 
slope of  the tangency line in Figure 2 is positive. This positively-sloped line 
is the capital market  line and defines the set of minimum variance efficient 
portfolios. For an actual calculation of Figure 2, see Ziemba, Parkan & Brooks- 
iIill [1974]. 
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Mean Return 

RG 

Ro 

Capital Ma r k i ~ . ~ . . . . ~  

j Tangency Portfolio 

f /  \ 

Fig. 2. Portfolios of n-risky assets and a riskless asset. 

Standard 
Deviation 

The correlation coefficient of the return of any portfolio q, with weights Wq, and 
any portfolio p on the efficient segment of the minimum-variance frontier is 

wXq Vw p 
P(P,  q) -- ~qC~p 

Fp Fq 
(rTV-lr) crq~ (5.9) 

rq/crq 
rp/O-p 
Sharpe's measure of portfolio q 

Sharpe's measure of portfolio p 

Referring to Figure 2, the correlation p(p ,  q) is the ratio of the slope of the line 
from R0 to q to the slope of the efficient frontier. 

6. The capital asset pricing model 

Markowitz's approach to portfolio selection may be characterized as normative. 
The analysis of Sections 3, 4 and 5 concentrates on a typical investor and by 
making several simplifying assumptions, solves the investor's portfolio selection 
problem. Recall the assumptions: (i) the investor considers only the first two 
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moments  of  the probabil i ty distribution of returns; (ii) given the mean  portfol io 
r e t u r n ,  the investor chooses a portfolio with the lowest variance o f  returns; 
and (iii) the investment  horizon is one period. There  are also a few additional 
assumptions that are implicit: (i) the investor 's  individual decisions do not affect 
marke t  prices; (ii) fractional shares may be purchased (i.e. investments are 
infinitely divisible); (iii) t ransaction costs and taxes do not exist, and (iv) investors 
can sell assets short. 

It  is historically worth  observing that  six years had to elapse before  the 
normat ive  results of  portfolio selection could be  general ized into a positive 
theory of capital markets .  Brennan [1989] claims that  "[t]he reason for delay was 
undoubtedly  the boldness of the assumption required for progress,  namely that  all 
investors hold the same  beliefs about  the joint distribution of a security 6''. Indeed,  
Sharpe [1964] emphasizes  that  in order to obtain equil ibrium conditions in the 
capital marke t  the homogeneity of investor expectations 7 assumption must  be made.  

Under  these assumptions we have demonst ra ted  that  all investors hold m e a n -  
variance efficient portfolios.  With the added homogenei ty  assumption,  T h e o r e m  
4.1 shows that  a portfol io which consists of two (or more)  mean -va r i ance  efficient 
portfolios is mean  variance efficient. There fore  the marke t  portfol io is mean  
variance efficient. Therefore ,  the mean  asset returns are linear in their covariance 
with the marke t  re turn  as shown in T h e o r e m  4.2. This simple, yet powerful  
a rgument  due to Black [1972] does not  rely on the existence of a riskless asset, 
unlike the original derivation of the Capital Asset  Pricing Model  (CAPM) by 
Sharpe [1964]. From equat ion (4.14) we may write the C A P M  as 

Ri - Rz = t~i(RM - -  Rz) (6.1) 

where RM is the m e a n  re turn of the marke t  portfolio, fii is cov(Ri, RM)/var(RM) 
and Rz is the mean  re turn  of a min imum variance portfolio which is or thogonal  to 
the marke t  portfolio.  In  the special case that a riskless asset exists, R z must  equal  
the riskless rate of return.  Ferson [1994] surveys in this volume both the theory 
and testing of the capital asset pricing model. 

Fama [1976] and Roll [1977] pointed out that  testing the capital asset pricing 
model  is equivalent to testing the market ' s  mean-va r i ance  efficiency. If  the only 
testable hypothesis of  the capital asset pricing theory is that  the marke t  portfol io 
is mean -va r i ance  efficient, then such testing is infeasible. The  infeasibility is due 
to our ignorance of the exact composit ion of the t rue marke t  portfolio. In o ther  
words, the capital asset pricing theory is not testable unless all individual assets 
are included in the market .  Using a proxy for the true marke t  portfolio does not  
solve the p rob lem for two reasons: first, the proxy itself may be mean-va r i ance  

6 See Brennan [1989, p. 93]. 
7 Two brief remarks are in order. First, Sharpe attributes the term of homogeneity of investor 

expectations to one of the referees of his paper. Second, he acknowledges that this assumption 
is highly restrictive and unrealistic but defends it because of its implication, i.e. attainment of 
equilibrium. See also Lintner [1965] and Mossin [1966]. Numerous papers have appeared which 
have relaxed some of the stated assumptions. For example see Levy & Samuelson [1992] 
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efficient even when the true market portfolio is not; second, the chosen proxy may 
be inefficient even though the true market  portfolio is actually efficient. 

We conclude this section by pointing out that the empirical methodologies of 
testing for the mean-variance efficiency of a given portfolio may be applied in 
testing a broad class of asset pricing models. Absence of arbitrage among n assets 
with returns represented by the random variables, /~i i = 1 . . . . .  u, implies the 
existence of a strictly positive pricing kernel represented by the random variable 
& such that 

E[& /~i] = 1, i = 1 . . . . .  n. (6.2) 

For example, in the consumption asset pricing model, rh stands for the marginal 
rate of substitution in consumption between the beginning and end of the period. 

Let x denote the weights of a portfolio of n assets which has return maximally 
correlated with the pricing operator 6t. Then we can write r~ as 

17l = Ol Z )c j R.j -}- 8 (6.3) 
j = l  

where o! is a constant. The property of maximal correlation implies that 
cov(5,/~i) = 0, j = 1 . . . . .  n. Combining equations (6.2) and (6.3) we obtain 

l = E [ r ~  R i ] = E [ r ~ ] E [ R i ] + c ~ c o v  x jRi ,  Ri , i = l , . . . , n .  
\ ,i=1 

(6.4) 

This implies that the n assets' covariances with the portfolio x are linear in their 
mean returns. By Theorem 4.2 we conclude that the portfolio x must lie on the 
minimum-variance frontier of the n assets, a property which can be tested by 
the methodologies which test for the efficiency of a given portfolio. For further 
discussion of these issues see the papers of Hansen & Jagannathan [1991] and 
Ferson [1995]. 

7. Theoretical justification of mean-variance analysis, mutual fund separation 
and the CAPM 

In this section we first address the following question: what set of assumptions 
is needed on the investor's utility function or distribution of asset returns so that 
the investor chooses a mean-variance efficient portfolio? 

Tobin [1958] uses a quadratic utility function represented by 

C 2 
u(c) : c -  B~- ,  B > 0 (7.1) 

and defined only for c < 1/B, where c denotes consumption. Arrow [1971] 
has remarked that quadratic utility exhibits increasing absolute risk aversion 
which implies that risky assets are inferior goods in the context of the portfolio 
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selection problem. It can be easily shown that utility is increasing in the mean 
and decreasing in the variance, and that moments higher than the variance do 
not matter. Therefore only mean-variance efficient portfolios will be selected by 
expected quadratic utility maximizing investors. 

Next note that multivariate normality is a special distribution of asset returns 
for which mean-variance analysis is consistent with expected utility maximization 
without assuming quadratic utility. To show this recall that the distribution of any 
portfolio is completely specified by its mean and variance. This follows from the 
basic property that any linear combination of multivariate normally distributed 
variables has a distribution in the same family. 

Chamberlain [1983a] shows that the most general class of distributions that 
allow investors to rank portfolios based on the first two generalized moments is 
the family of elliptical distributions. A vector x of n random variables is said to be 
elliptically distributed if its density function is of the form 

f ( x )  = 1~21-1/2 g[  (x  - ~ ) T ~ ' ~ - I ( x  --  ~ ) ;  x] (7.2) 

where f~ is an n x n positive definite dispersion matrix and /~ is the vector of 
medians. From (7.1) Ingersoll [1987] obtains as special cases both the multivariate 
normal and the multivariate Student-t distributions. 

Having presented a theoretical justification for mean-variance analysis 8 we can 
now ask a second and broader question: which is the class of utility functions that 
imply two-fund separation? Without assuming the existence of a riskless asset, 
Cass & Stiglitz [1970] prove that a necessary and sufficient condition for two-fund 
separation is that preferences are either quadratic or of the constant-relative- 
risk-aversion family, u(c) = ( 1 -  A)-lc l-A, A > 0, A ¢ 1 (with u(c) = lnc 
corresponding to the case A = 1). Actually constant relative risk aversion implies 
the stronger property of one-fund separation. If a riskless asset is assumed to exist, 
the necessary and sufficient condition for two-fund separation is either quadratic 
preferences or H A R A  preferences defined as u(c) = (1 - A) - t  (c - ~ ) I - A ,  A :> 0, 

A ¢ 1 (with u(c) = l n ( c -  ~) corresponding to the case A = 1). Their main 
conclusion is that utility-based conditions under which separation holds are very 
restrictive. But more to the point, utility-based two-fund separation, with the 
exception of quadratic utility, does not imply mean-variance choice and does not 
imply the CAPM. 

Ross [1978] establishes the necessary and sufficient conditions on the stochastic 
structure of asset returns such that two-fund portfolio separation would obtain 
for any increasing and concave yon Neumann-Morgenstern  utility function. More 
specifically, a vector of asset returns R is said to exhibit two-fund separability if 

8 Ingersoll [1975] and Kraus & Litzenberger [1976] address the interesting question of how 
portfolios are formed when either the utility function or the distribution of returns are not of 
the type that imply mean-variance analysis. In particular, Kraus & Litzenberger [1976] extend the 
portfolio selection problem to include the effect of skewness. The rate of return on the investor's 
porttolio is assumed to be nonsymmetrically distributed and the investor's utility function considers 
the first three moments of such a distribution. See also Ziemba [1994], Ohlson & Ziemba [1976], 
and Kallberg & Ziemba [1983]. 
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there are two mutual funds oe and/7 of n assets such that for any portfolio q there 
exists a portfolio weight X such that 

E[u(XRc~ + (1 - X)R/~)] > E[u(Rq)] (7.3) 

for each monotone increasing and concave utility functions u(.). Observe that (7.3) 
captures analytically the intuitive notion that portfolios generated by the two funds 
are preferred to arbitrary portfolios. There is an extensive literature that deals 
with this important issue of comparing portfolios for a class of investor preferences 
known as stochastic dominance. Ingersoll [1987] or Huang & Litzenberger [1988] 
give a general overview of these ideas and Rothschild & Stiglitz [1970] offer a 
detailed analysis. 

From the above definition, Ross [1978, p. 267] proves that two-fund separability 
is equivalent to the following conditions: there exist random variables R, Y and 
and weights xi, xi M and x z, i = 1, 2 . . . . .  n, such that 

R,i = R + bi Y + ei for all i (7.4) 

E[si [ /~ + ~ 1~] = 0 for all i, ~ (7.5) 

E wM = 1, wz = 1 (7.6) 
i i 

wM ' = 0, wz i = 0 (7.7) 
i i 

and either bi = b for all i, or Z wMbi 7t= Z wZbi (7.8) 
i i 

Observe that conditions (7.4)-(7.8) represent the most general form of distri- 
bution of returns which permits two-fund separation. In particular, Ross [1978; 
p. 273] shows that all multivariate normally distributed random variables satisfy 
condition (7.7). But, more to the point Ross shows that, if asset returns are drawn 
from the family of two-fund separating distributions, and if asset variances are 
finite, then the CAPM holds. 

Having reviewed the assumptions needed on asset distributions for mean-  
variance portfolio theory and two-fund separation to hold, we close with a 
brief evaluation of these assumptions. Osborne [1959], Mandelbrot [1963], Fama 
[1965a, b], Boness, C h e n &  Jatusipitak [1974] and numerous other studies have 
shown that there are substantial deviations from normality in the distribution 
of actual stock prices. Although actual returns are not normally distributed and 
the use of quadratic utility cannot be supported empirically, the mean-variance 
portfolio theory remains theoretically useful and empirically relevant. Actually, 
portfolio theory is a prime example of Milton Friedman's assertion that a theory 
should not be judged by the relevance of its assumptions, but rather, by the realism 
of its predictions. 9 

9 Stiglitz [1989] evaluates the various assumptions placed on investor preferences, and Markowitz 
[1991] in his Nobel Lecture supports the appropriateness of the approximation. See also Levy & 
Markowitz [1979] and Markowitz [1987]. 
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8. Consumption and portfolio selection in continuous time 

Mean-var iance  portfolio theory addresses the investor's asset selection problem 
for an investment horizon of one period. Progress in portfolio theory came as 
financial economists relaxed this restrictive assumption. In so doing, however, they 
were faced with the twin decisions discussed in the introduction: consumption- 
saving and portfolio selection. The relaxation of the single-period assumption 
proceeded along two lines: first, in discrete time multiperiod models by Samuelson 
[1969], Hakansson [1970], Fama [1970], Rubinstein [1976], Long [1.974] and others, 
and second, in continuous time models by Merton [1969, 1971, 1973], Breeden 
[1979, 1986], Cox, Ingersoll & Ross [1985a, b], and others. Ingersoll [1987] 
presents a detailed overview of discrete time models. Here,  we follow Mer ton  
[1973] to develop and solve a continuous-time intertemporal  portfolio selection 
problem, t° 

Assume that there exist continuously trading markets for all n + 1 assets and 
that prices per share Pi (t) are generated by It6 processes, i.e. 

dPi 
- - = o e i ( x , t ) d t + c r i ( x , t ) d z i ( t ) ,  i = 1  . . . . .  n + l  (8.1) 
Pi 

where c~i is the conditional arithmetic expected rate of return and a/2 dt is the 
conditional variance of the rate of return of asset i. We either assume zero 
dividends on the stock or, more plausibly, we assume that the dividends are 
continuously reinvested in the stock and Pi represents the price of one share 
plus the value of the reinvested dividends. The random variable zi (t) is a Wiener  
process. The variance of  the increment of  the Wiener process is dt. The processes 
zi (t) and z i (t) have correlated increments and we denote 

coy [cridz i (t ), ojdz] (t)] = crijdt. 

In the particular case (not assumed hereafter) where c~i and o-1. are constants, 
the price Pi (t) is lognormally distributed. 

The conditional mean  and variance of  the rate of  return are functions of  the 
random variable x (t), assumed here to be a scalar solely for expositional ease. The 
random variable x(t) ,  referred to here as the state variable, is an It6 process 

dx = re(x, t)dt + s(x,  t)sd~(t). (8.2) 

The  covariance cov[sd~(t), {ridz i (t)] is denoted by {rixdt. 

1{I The appropriateness of the continuous-time approach to the intertemporal portfolio selection 
problem in particular, and to problems of financial economics in general, is skillfully evaluated in 
Merton [1975, 1982]. He argues that the use of stochastic calculus methods in finance allows the 
financial theorist to obtain important generalizations by making realistic assumptions about trading 
and the evolution of uncertainty. These methods are briefly exposited in Ingersoll [1987] or morc 
extensively in Matliaris & Brock [1982]. The remainder of this paper assumes some familiarity with 
these techniques. 
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An investor has wealth W(t) at t ime t. The  investor consumes C(t)dt over 
[t, t + dr] and invests fraction wi(t) of the wealth in asset i, i = 1, . . . ,  n, n + 1. 
The  budget  constraint, or wealth dynamics, is 

~+1 dPi 
d W ( t ) - - - d y ( t ) - C d t + Z w i  Pi W (8.3) 

i 1 

where  dy( t )  is the labor  income, or generally the exogenous endowment  income 
over  the infinitesimal interval [t, t + dt]. 

For  expositional simplicity we assume that  the labor income is zero. We also 
assume that  the (n + 1)st asset is riskless, i.e. ~n+l = 0 and we denote  oen+ 1 by r, 
the instantaneously riskless rate of interest. Then  the wealth dynamics equat ion 
simplifies to 

dW = - C d t  + r W ( 1 -  wi)dt + Z w i W ( ~ i d t  +o'idzi) 
i=1 i=1 (8.4) 

= -Cdt  + rWdt + Z wi W [(c~i - r)dt + ~Yidzi]. 
i-1 

We assume that the investor makes  sequential  consumption and investment  
decisions with the objective to maximize the von N e u m a n n - M o r g e n s t e r n  expected 
utility i.e. 

VJ l max E(I u(C, x, t) dt (8.5) 

k.0 

where  u is mono tone  increasing and concave in the consumption flow C. Note  that  
in the above representa t ion of preferences  utility is t ime-separable  but nonstate  
separable  since preferences  depend on x. The  case of nont ime-separable  prefer-  
ences is discussed in Sundaresan [1989], Constantinides [1990], and De temple  & 
Zapa t e ro  [1991]. 

To derive the opt imal  consumption and investment  policies we define 

J(W'x ' t )  = maxEt l f  u(C'x' r)dr l 

Assuming sufficient regularity conditions as presented in Fleming & Richel [1975], 
so that  a solution exists, the derived utility of  wealth, J ,  satisfies the equat ion 
derived by Mer ton  [1971, 1973] 

+ f2Jww  , iw/o j + w J w x  wio x 
i ~ l  j = l  i--1 
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The first-order conditions with respect to C and wi are 

uc - Yw = 0 

and 

(8.7) 

where 

v - l ( a  - r l )  (8.12) 
WT ---- 1TV_I( a _ r l )  

From our discussion in Section 5, we recognize WT as the vector of portfolio 
weights of the tangency portfolio on the frontier of minimum variance portfolios 
generated by the n risky assets. We also interpret ( - J w / W J w w )  -1 as the relative 
risk aversion (RRA) coefficient of the investor. Then equation (8.11) states 
that the investor invests in just two portfolios, namely the riskless asset and 
the tangency portfolio. The extent of the investment in the tangency portfolio 
depends on the investor's RRA coefficient. Thus we have proved that there is 
two-fund separation with the two funds being the riskless asset and the tangency 
portfolio. From here it is a small step, outlined in Section 9, to show that the 
CAPM holds. 

W(oq - r ) J w  + W 2 J w w  ~ wjcrij + WJwx~ix  = O, i = 1 . . . . .  n. 

j=l (8.8) 

The concavity of the utility function implies that J is concave in W; hence the 
second-order conditions are satisfied. 

Under appropriate regularity conditions which are not discussed here a verifica- 
tion theorem can be stated to the effect that the solution of the partial differential 
equation is unique, and therefore is the solution of the original optimal consump- 
tion and investment problem. 

Since the topic of this essay is the portfolio problem we focus on the first-order 
conditions (8.8) implied by optimal investment which we write in matrix notation 
a s  

(o¢ - -  r l ) Y w  + W JwwwTV q- Jwxo'x = 0 ,  (8.9) 

where V is the n x n covariance matrix with i x j element aij and ~rx is a vector 
with ith element Crix. Solving for the optimal portfolio weights we obtain 

w = W-~ww V - l ( ~ _  r l )  W J w w V - l r r x "  (8.10) 

Before we analyze the optimal portfolio decision in its full generality, consider 
first the important special case where the t e r m  [ J w x / ( W J w w ) ] V  -1  ry x is a vector 
of zeros. We will shortly discuss three cases where this occurs. Then we may write 
equation (8.10) as 

( - Y w  ) [ 1 T v  l ( c ~ _ r l ) ] w T  (8.11) 
W = W J w w  
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We present three sets of conditions each of which implies two-fund separation 
and the CAPM: 

(a) Logarithmic utility. Then we may show that the derived utility J(W, x) is 
the sum of a function of W and a function of x. Hence the cross-derivative Jwx 
equals zero and the second term in equation (8.10) becomes a vector of zeros. 

(b) All assets' returns are uncorrelated with the change in x, i.e. C~ix = O, 
i = l , . . . , n .  

(c) All assets have distributions of returns which are independent of x, i.e. o!i, 
o-i are independent of x for i = 1 . . . . .  n. 

We now return to the general case where none of the assumptions (a)-(c)  hold 
and the t e r m  [Jwx/(WJww)]V-lo'x  is not a vector of zeros. Define by WII the 
weights of a portfolio 

V-1crx 
WH = 1Tv_lo.x . 

Then we may write equation (8.10) as 

w =  [1Tv- I (c~- - r l ) ]WT+ k W ~ w w ] [ 1  T Crx] WH. (8.13) 

We observe that three-fund portfolio separation obtains: The investor invests in 
the riskless asset, the tangency portfolio WT and the hedging portfolio wn. The 
weights which the investor assigns to each portfolio depend on his/her preferences 
and are, therefore, investor-specific. 

We may further interpret the hedging portfolio by solving the following max- 
imization problem: Choose vector y such that IVy = l (i.e. y is the vector of 
a portfolio's weights) to maximize the correlation of dx and ~i~1 yi(dPi/Pi). 
The solution to this problem is easily shown to be y = wH. That is, the hedging 
portfolio is the portfolio of the risky assets with returns maximally correlated with 
the change in the state variable x. 

Note that x enters into the decision problem through o~i and o-i, that is, 
it causes changes in the investment opportunity set and through the utility of 
consumption, u(C, x, t), that is, it causes shifts in tastes. We may interpret the 
three fund separation result as follows: The investor invests in the riskless asset 
and in the tangency portfolio, as in the mean-variance case, but modifies his or 
her portfolio investing in (or selling short) a third portfolio which has returns 
maximally correlated with changes in the variable x which represents shifts in the 
investment opportunity set and tastes. 

As we stated earlier we have chosen x to be a scalar solely for expositional ease. 
If instead, x is a vector with m elements we obtain (m + 2)-fund separation where 
the investor invests in the riskless asset, the tangency portfolio and the m hedging 
portfolios. 

In evaluating Merton's [1971, 1973] intertemporal continuous-time portfolio 
theory at least two important contributions need to be identified: first, its gen- 
eralization of the static mean-variance theory is achieved by considering both 
the consumption and portfolio selection over time and by dropping the quadratic 
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utility assumption; and second, its realism and tractability compared to the 
discrete-time portfolio theories which assume normally distributed asset prices 
implying a nonzero probability of negative asset prices. By replacing the assump- 
tion of normally distributed asset prices with the assumption that prices follow 
(8.1), the continuous-time portfolio theory becomes more realistic as well as more 
tractable in view of the extensive mathematical literature on diffusion processes. 

Merton's work was extended in several directions. Among them, Breeden 
[1979] and Cox, Ingersoll & Ross [1985a, b] consider a generalization of the 
intertemporal continuous-time portfolio theory in a general equilibrium model 
with production. Another contribution was made by Breeden [1979] who shows 
that Merton's [1973] multi-beta pricing model can be expressed with a single 
beta measured with respect to.changes in aggregate consumption assuming that 
consumption preferences are time separable. One interesting result of Breeden's 
work is that, in an intertemporal economy, the portfolio that has the highest 
correlation of returns with aggregate real consumption changes is mean-variance 
efficient. 

Several authors have considered equation (8.1) which is the most significant 
assumption of continuous-time portfolio theory and have asked the question: 
under what conditions is a price system representable by It6 processes such as 
(8.1)? Huang [1985a, b] shows that when the information structure is a Brownian 
filtration then any arbitrage-free price system is an It6 process. The arbitrage-free 
concept is analyzed in Harrison & Kreps [1979] and Harrison & Pliska [1981] 
who make a connection to a martingale representation theorem. The role of 
information is analyzed in Duffle & Huang [1986]. 

Finally, in contrast to the stochastic dynamic programming approach to the con- 
tinuous time consumption and portfolio problem, Pliska [1986] and Cox & Huang 
[1989], among others have used the martingale representation methodology. In 
the martingale approach, first, the dynamic consumption and portfolio problem is 
transformed and solved as a static utility maximization problem to find the opti- 
mal consumption and, second, the martingale representation theorem is applied 
to determine the portfolio trading strategy which is consistent with the optimal 
consumption. It is usually assumed that markets are dynamically complete which 
allows for the determination of a budget constraint and the solution of the static 
utility maximization. The case when markets are dynamically incomplete with the 
dimension of the Brownian motion driving the security prices being greater than 
the number of risky securities is presented in He & Pearson [1991]. 

9. The Intertemporal Asset Pricing Model (ICAPM) and the Arbitrage Pricing 
Theory (APT) 

In the last section we solved for the optimal weights of the portfolio of risky 
assets held by an investor with given preferences. If all consumers in the economy 
have identical preferences and endowments then the above optimal portfolio may 
be identified as the market portfolio of risky assets. The condition that consumers 
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have identical preferences and endowments may be relaxed under conditions 
which imply demand aggregation as in Rubinstein [1974] and Constantinides 
[1980] or under complete markets as in Constantinides [1982]. Hereafter  we 
assume that either through demand aggregation or through complete markets we 
can claim that the optimal portfolio in (8.10) is indeed the market portfolio of 
risky assets. We denote the weights of this portfolio by w M and its return by 

dPM _ ~ w M d P i  

PM i=1 ~ Pi 

We should stress that, in general, the market portfolio does not coincide with 
the tangency portfolio. In the last section we discussed conditions under which the 
two portfolios coincide but these conditions will not be imposed here. 

To derive the intertemporal capital asset pricing model (ICAPM), we rewrite 
equation (8.8) as 

W J w w  Zw.Mcri.  j + \-Tw-w /I (9 .1)  c~i - r = Jw j = l  

= XMfliM + Xxfiix i = 1 . . . . .  n. 

where 

and 

coy (dPi/  Pi, dPM/ PM) 
]~i M 

var (dPM/ PM) 

W Jww var (dPM/ PM) 

Jw dt 

coy (dPi/Pi,  dx) 
~ix 

var (dx) 

Jwx var (dx) 
)~x - -  

Jw dt 

This result generalizes in a routine fashion to the case where the state variable is a 
vector. 

We conclude this section by discussing the empirically testable implications of 
the theory, along with the arbitrage pricing theory of Ross [1976a, b]. The common 
starting point of both the ICAPM and the APT is a linear multivariate regression 
of the n x 1 vector of asset returns,/~, on a k x 1 vector of state variables (in the 
ICAPM) or factors (in the APT),j)  

= R + B(] ' -3' )  + ~ (9.2) 

where R ~ E[R], f --= E~J and E[~] = 0. In both theories the elements o f j  ~ are 
assumed to have finite variance. The covariance matrix ~2 _= E [ ~  v] is assumed to 
have finite elements. Furthermore, in the APT the elements of f a r e  assumed to be 
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factors in the sense that the largest eigenvalue of S2 remains bounded as n ~ ec 
[see Chamberlain, 1983b]. 

The pricing restriction implied by the ICAPM is that there exist a constant, )~0, 
and a k x 1 vector of risk "premia", ,~, such that 

R = ;~01 + B X  (9 .3 )  

where 1 is the n x 1 vector of ones as before. The pricing restriction implied by 
the APT is 

lim (R - L o l  - B A ) T ( R  - )~ol - B A )  = A ,  
n----> o<~ 

A < oc (9.4) 

which, in empirical work (where n is finite), is interpreted to imply (9.3). 
If the proxies for state variables in the ICAPM or factors in the APT are 

portfolios of the n assets, the ICAPM or APT pricing restrictions, (9.3), state 
that there exists a portfolio of these proxy portfolios which has mean and 
variance on the  mean-variance,  minimum-variance frontier. See Jobson & Korkie 
[1985], Grinblatt & Titman [1987] and Huberman,  Kandel & Stambaugh [1987]. 
Therefore the econometric methods for testing that a given portfolio lies on the 
minimum-variance frontier may be extended to test the ICAPM and the APT. See 
Kandel & Stambaugh [1989] and the Connor & Korajczyk [1995] essay in this 
volume. 

10.  M a r k e t  i m p e r f e c t i o n s  

Market imperfections were suppressed in our earlier discussion by implicitly 
assuming that (i) transaction costs are zero, (ii) the capital gains tax is zero (or, 
capital gains and losses are realized and taxed in every period), and (iii) the assets 
may be sold short with full use of the proceeds which, in the case of a riskless 
asset, implies that the borrowing rate equals the lending rate. How sensitive 
are our conclusions on portfolio selection and equilibrium asset pricing to the 
presence of these imperfections? Whereas a comprehensive discussion of these 
issues is beyond the scope of this essay, we discuss briefly one instance of market  
imperfections. 

Consider first the discrete-time intertemporal investment and consumption 
problem with proportional transaction costs. The agent maximizes the expectation 
of a time-separable utility function where the period utility is of the convenient 
power form. The agent consumes in every period and invests the remaining wealth 
in only two assets. The agent enters period t with x¢ units of account of the first 
asset and Yt units of account of the second asset. If  the agent buys (or, sells) 
vt units of account of the second asset, the holding of the first asset becomes 
xt - vt - max[klVt, -k2vt], net of transaction costs where the constants kl, k2 
satisfy 0 <_ kl < 1 and 0 < k2 < 1. The optimal investment policy, described in 
terms of two parameters  ~-t and ~t, ~-t -< Nt, is to refrain from transacting as long 
as the portfolio proportions, xt/yt,  lie within the interval [oe t, ~t]; and transact 
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to the closer boundary, ~-t or ~ ,  of the region of no transactions whenever the 
portfolio proportions lie outside this interval (provided, of course, that this is 
feasible). The parameters (~-t, Nt) are functions of time and of the state variables 
which define the conditional distribution of the assets' return. This general form of 
the optimal portfolio policy also holds in a model with continuous trading under 
additional assumptions on the distribution of asset returns. See Kamin [1975], 
Constantinides [1979], Taksar, Klass & Assaf [1988] and Davis & Norman [1990]. 

In numerical solutions of the portfolio problem with even small proportional 
transaction costs one finds that the region of no transactions is wide. We conclude 
from these examples and extrapolate in more general cases with transaction costs 
that even small transaction costs distort significantly the optimal portfolio policy 
which is optimal in the absence of transaction costs. See Constantinides [1986], 
Dumas & Luciano [1991], Fleming, Grossman, Vila & Zariphopoulou [1990] and 
Gennotte & Jung [1991]. An encouraging finding, however, is that transaction 
costs have only a second-order effect on equilibrium asset returns: investors 
accommodate large transaction costs by drastically reducing the frequency and 
volume of trade. It turns out that the agent's utility is insensitive to deviations of 
the asset proportions from those proportions which are optimal in the absence of 
transaction costs. Therefore, a small liquidity premium is sufficient to compensate 
an agent for deviating significantly from the target portfolio proportions. These 
results need to be qualified as they apply to the case where the only motive for 
trade is portfolio rebalancing. Transaction costs may have a first-order effect on 
equilibrium asset returns in cases where the investors receive exogenous income 
or trade on the basis of inside information. 

11. Concluding remarks 

Portfolio theory is the analysis of the real world phenomenon of diversification. 
This paper has exposited this theory in its historical evolution, from the early 
work on static mean-variance mathematics to its generalization of dynamic 
consumption and portfolio rules. In its intellectual development portfolio theory 
has benefitted from empirical work which came from capital asset pricing tests 
and from statistical investigations of the distributions of" asset prices. Furthermore, 
as more powerful techniques were developed, such as stochastic calculus, portfolio 
theory became dynamic and many results were generalized. 

Because the topic of our paper is theoretical, we have not mentioned any 
issues related to real world portfolio management. Interested readers can find 
such topics in standard graduate textbooks such as Lee, Finnerty & Wort [1990] 
or papers in this volume on performance evaluation by Grinblatt & Titman 
[1995], on market microstructure by Easley & O'Hara [1995], and on world wide 
security market regularities by Hawawini & Keim [1995], among others. Although 
our topic was on portfolio theory, numerous important theoretical developments 
are not mentioned. Fortunately again, some are treated in this volume such as 
futures and options markets by Carr & Jarrow [1995], market volatility by LeRoy 
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& S t e ige rwa ld  [1995], and  the  ex tens ion  of  po r t fo l i o  t h e o r y  f r o m  na t iona l  to  

i n t e r n a t i o n a l  m a r k e t s  by Stulz  [1995]. A useful  c o m p a n i o n  survey  is p r e s e n t e d  in 

C o n s t a n t i n i d e s  [1989], w h e r e  t heo re t i c a l  issues o f  f inancia l  v a l u a t i o n  are  p r e s e n t e d  

in a un i f i ed  way. 
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