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1. Introduction

Consider a consumer with a given amount of income. Such a consumer typically
faces two important economic decisions. First, how to allocate his or her current
consumption among goods and services. Second, how to invest among various
assets. These two interrelated consumer or household problems are known as the
consumption-saving decision and the portfolio selection decision.

Beginning with Adam Smith, economists have systematically studied the first
decision. Arguing that a consumer will choose commodities and services that offer
the greatest marginal utility relative to price, a theory of value was developed that
combines subjective notions from consumer utility with objective notions from
the production theory of the firm. By the beginning of the twentieth century,
neoclassical economists had developed a static theory of consumer behavior as
part of an analysis of market pricing under conditions of perfect competition and
certainty.

The asset allocation decision was not adequately addressed by neoclassical
economists, probably because they treated savings as the supply of loanable funds
in developing a theory of interest rate determination instead of portfolio selection.
More importantly, however, these two decisions, although closely interrelated,
require substantially different methodologies. The methodology of deterministic
calculus is adequate for the decision of maximizing a consumer’s utility subject
to a budget constraint. Portfolio selection involves making a decision under
uncertainty. The probabilistic notions of expected return and risk become very
important. Neoclassical economists did not have such a methodology available to
them and despite some very early attempts by probabilists, like Bernoulli {1738] to
define and measure risk, or Irving Fisher [1906] to describe asset returns in terms
of a probability distribution, the twin concepts of expected return and risk had not
yet been fully integrated. An early and important attempt to do that was made by
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Marschak [1938] who expressed preferences for investment by indifference curves
in the mean—variance space.!

The methodological breakthrough of treating axiomatically the theory of choice
under uncertainty was offered by von Neumann & Morgenstern [1947] and it was
only a few years later that Markowitz [1952, 1959] and Tobin [1958], used this
theory to formulate and solve the portfolio selection problem.

In this essay we plan to exposit portfolio theory with a special emphasis on its
historical evolution and methodological foundations. In Section 2, we describe the
early work of Markowitz [1952, 1959] and Tobin [1958] to illustrate the individual
contributions of these authors. Following these general remarks about the early
beginning of portfolio theory, we define and solve the mean-variance portfolio
problem in Section 3 and relate it to. its most famous intellectual first fruits,
namely the two-fund separation and the capital asset pricing theory of Sharpe
[1964] and Lintner [1965] in Sections 4, 5 and 6. In particular, a portion of Section
6 is devoted to the presentation of Roll’s [1977] critique of the asset pricing
theory’s tests and the interplay of analysis and empirical testing. This leads to
an analysis of the foundational assumptions of portfolio theory with respect to
investor preferences and asset return distributions, both reviewed in Section 7.
The contrast of methodologies is illustrated in Sections 8§ and 9 where stochastic
calculus and stochastic control techniques are used to generalize the consumption-
investment problem to an arbitrary number of periods. Market imperfections are
addressed in Section 10. The last section identifies several extensions and refers
the reader to several articles, some included in this volume. It also contains our
summary and conclusions.

2. The early contributions

Markowitz [1952] marks the beginning of modern portfolio theory, where
for the first time, the problem of portfolio selection is clearly formulated and
solved. Earlier contributions of Keynes [1936], Marschak [1938] and others only
tangentially analyze investment decisions. Markowitz’s focus is the explanation of
the phenomenon of portfolio diversification.

Before Markowitz could propose the “expected returns—variance of returns”
rule, he first had to discredit the then widely accepted principle that an investor
chooses a portfolio by selecting securities that maximize discounted expected
returns.”? Markowitz points out that if an investor follows this rule, his or her

! Marschak [1938, p. 312] recognizes that “the unsatistactory state of Monctary Theory as
compared with General Economics is due to the fact that the principle of determinateness so
well established by Walras and Pareto for the world of perishable consumption goods and labor
services has never been applied with much consistency to durable goods and, still less, to claims
(securitics, loans, cash)”. In our modern terminology we could replace the names Monetary Theory
and General Economics with Financial Economics and Microeconomic Theory, respectively.

2 Markowitz refers the reader to a standard investments textbook by Williams [1938] that
elaborates the notion that portfolio choice is guided by the rule of maximizing the discounted
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portfolio will consist of only one stock, namely the one that has the highest
discounted expected return which is contrary to the observed phenomenon of
diversification. Therefore a rule of investor behavior which does not yield portfolio
diversification must be rejected. Furthermore, the rejection of this rule holds no
matter how expectations of future returns are formed and how discount rates are
selected. Markowitz.then proposes the expected mean returns—variance of returns
M-V rule. He concludes that the M-V rule not only implies diversification, it
actually implies the right kind of diversification for the right reason. In trying to
reduce the portfolio variance, it is not enough to just invest in many securities.
It is important to diversify across securities with low return covariances. In 1959,
Markowitz published a monograph on the same topic. In the last part (consisting
of four chapters) and in an appendix, portfolio selection is grounded firmly as
rational choice under uncertainty.

In contrast to Markowitz’s contributions which may be viewed as microeco-
nomic, Tobin [1958] addresses a standard Keynesian macroeconomic problem,
namely liquidity preference. Keynes [1936] used the concept of liquidity prefer-
ence to describe an inverse relationship between the demand for cash balances and
the rate of interest. This aggregative function was postulated by Keynes without a
formal derivation. Tobin derives the economy’s liquidity preference by developing
a theory that explains the behavior of the decision-making units of the economy.?

Numerous contributions followed. To mention just a few, Sharpe {1970}, Merton
[1972], Gonzalez-Gaverra [1973], Fama [1976] and Roll [1977], are important
references. Ziemba & Vickson [1975] have collected numerous classic articles
on both static and dynamic models of portfolio selection. The recent books by
Ingersoll {1987], Huang & Litzenberger [1988], and Jarrow [1988] also contain
a useful analysis of the mean-variance portfolio theory. Our exposition relies
heavily on Roll [1977].

value of future returns. It is not correct to deduce that earlier economists completely ignored
the notion of risk. They simply were unsuccessful in developing a precise microeconomic theory
of investor behavior under conditions of risk. The typical way risk was accounted for in Keynes’
{1936] marginal efficiency of investment or Hicks’ [1939] development of the investment decisions
of a firm was by letting expected future returns include an allowance for risk or by adding a risk
premium to discount rates.

3 One may wonder what is the connection between liquidity preference and portfolio theory.
You may recall that Keynes identified three motives for holding cash balances: transactions,
precautionary and speculative. Furthermore, while the transactions and precautionary motives were
determined by income, the amount of cash balances held for speculative purposes was influenced
by the rate of interest. Tobin analyzes this speculative motive of investors to offer a theoretically
sound foundation of the interest clasticity of the liquidity preference. Because he wishes to explain
the demand for cash, he considers an investor whose portfolio selection includes only two assets:
cash and consoles. Of course, the yield of cash is zero while the yield of consoles is positive. Tobin
posits and solves a two-asset portfolio selection problem using a quadratic expected utility function.
He justifies his choice of a quadratic utility function by arguing that the investor considers two
parameters in his or her portfolio selection: expected return and risk (measured by the standard
deviation of the portfolio return). Finally, having developed his portfolio selection theory, he
applies it to show that changes in real interest rates affect inversely the demand for cash, which is
what Keynes had conjectured without offering a proof.
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3. Mean-variance portfolio selection

In the formulation of the mean—variance portfolio we use the following nota-
tion: x is an n-column vector whose components xi, ... x, denote the weight or
proportion of the investor’s wealth allocated to the ith asset in the portfolio with
i =1,2,...n. Obviously the sum of weights is equal to 1, i.e. Y7 x; = 1; 1 is an
n-column vector of ones and superscript T denotes the transpose of a vector or a
matrix. R is an n-column vector of mean returns Ry, ..., R, of the n assets, where
it is assumed that not all elements of R are equal, and V is the n x n covariance
matrix with entries o;;, i, j = 1,2,...n. We assume that V is nonsingular. This
essentially requires that none of the asset returns is perfectly correlated with the
return of a portfolio made up of the remaining assets; and that none of the assets
or portfolios of the assets is riskless. The case where one of the assets is riskless
will be treated separately at a later stage. Observe that V is symmetric and positive
definite being a covariance matrix. We say that an # x n matrix V is positive definite,
if for any nonzero n-vector x, it follows that x'Vx > 0. In our case the property
of positive definiteness of V follows from the fact that variances of risky portfolios
are strictly positive. The mean returns and covariance matrix of the assets are
assumed to be known. We do not specify if n denotes the entire population or just
a sample of assets. Finally, for a given portfolio p, its variance, denoted by ag, is
given by ¥ Vx, while the portfolio mean, denoted by R, is given by R, = x'R.

Much in the spirit of Markowitz’s [1952] formulation* the portfolio selection
problem can be stated as

minimize o2 =xTVx

p
subjectto x'1=1 (3.1
xR =R,.

In problem (3.1) we minimize the portfolio variance cr[% subject to two con-
straints: first, the portfolio weights must sum to unity, which means that all the
wealth is invested, and second the portfolio must earn an expected rate of return
equal to R,. Technically, we minimize a convex function subject to linear con-
straints. Observe that xT Vx is convex because V is positive definite and also note
that the two linear constraints define a convex set. Therefore, the problem has a
unique solution and we only need to obtain the first-order conditions.

Two remarks are appropriate. First, the investor’s preferences, as represented
by a utility function, do not enter explicitly in (3.1). We only assume that a utility
function exists which is defined over the mean and variance of the portfolio return
and which has the further property of favoring higher mean and smaller variance.
Second, unlike Tobin who explicitly considers cash in his portfolio selection

4 Markowitz [1952] considers only three securities because he solves the same probiem as (3.1)
using geometric methods. He does not allow short sales in order to simplify the analysis. In (3.1)
short sales are permitted, which means that portfolio weights are allowed to be negative.
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problem, (3.1) does not include a riskless asset. A riskless asset will be included in
Section 5.
Form the Lagrangian function

L=x"Vx ("R~ Ry) ~ ha(x'1—1). (3.2)
The first-order conditions are
aL
— =2Vx — R — 1 =6, 33
ox x ! 2 (3:3)
where 0 in (3.3) is an n-vector of zeros, and
oL
— =R,—x'R=0 3.4
a)\'l r x ? ( )
L
— =1-x"1=0. 3.5
92 * (3.5)
From equation (3.3) we obtain
1 1 A
= -V IR+ =-VIR 1]| . 3.6
x=3 (MR + A1) 5 [R 1] [)\2 (3.6)

In this last equation the term AR - A,1 is written in a matrix form because we will

use (3.4) and (3.5) to solve for [i:l } Doing this we write (3.4) and (3.5) as
2

(R 1]7x = [Rlp} . (3.7)
Premultiply both sides of (3.6) by [R 1 ]T and use (3.7) to obtain
T 1 Ty— Py R
[R 1] x=_[R 1]V R 1]{}3}:[117] (3.8)

For notational convenience denote by
A=[R1]'V[R 1] (3.9)
the 2 x 2 symmetric matrix with entries

a b R'™V-'R R'v 11
[b C]Z[RTV”I 1v-11 | (3-10)

We need to establish that A is positive definite. For any y{, y; such that at least
one of the elements y,, y; is nonzero, observe that

(R 1] Bﬂ = [y1R + y,1]

is a nonzero a-vector because, by assumption, the elements of R are not all equal.
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Then A is positive definite because

[1 »2]A [)ﬂ} = [ »][R 1]'V'[R 1] [}’1}

y2 Y2
= [yiR+ »21]'V ! [y1R+ y1] > 0

by the positive definiteness of V™!
Substitute the newly defined A in (3.9) to get

ALY

from which we can immediately solve for the multipliers since A is nonsingular
and its inverse exists. Thus

Ll _ g1 R ]
E[kz}_A Nk (3.11)
From these manipulations we obtain the desired result using (3.11) and (3.6).

Thus, the n-vector of portfolio weights x that minimizes portfolio variance for a
given mean return is

x = %V”[R 1) Pl} ~v-[R 1]A7! [Rll’] . (3.12)

The result of this analysis can be stated as:

Theorem 3.1 (Mean—variance portfolio selection). Let V be the n x n positive def-
inite covariance matrix and R be the n-column vector of mean returns of the n assets
where it is assumed that not all elements of R are equal. Then the minimum variance
portfolio with given mean return R, is unique and its weights are given by (3.12).

Let us compute the variance of any minimum variance portfolio with a given
mean R,. Using the definitions of the variance o2, matrix A in (3.9) and the

P’
solution of weights in (3.12), calculate

P 1

= [R, 1]a~! [RH

o2 = TVy = [RP I]A—I[R I]TV*IVVJ[R 1]A41 [Rp]

1 o TR (3.13)
=[& 1](ac—b2>[—b aH ﬂ
a-2bRp+cR12)
= (ac—bd)

In (3.13) the relation between the variance of the minimum variance porttolio
012, for any given mean R, is expressed as a parabola and is called the minimum
variance portfolio frontier or locus. In mean-standard-deviation space the relation
is expressed as a hyperbola.
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Fig. 1. Portfolips of n risky assets.

Figure 1 graphs equation (3.13) and distinguishes between the upper half (solid
curve) and the bottom half (broken curve). The upper half of the minimum
variance portfolio frontier identifies the set of portfolios having the highest return
for a given variance; these are called mean-variance efficient portfolios. The
portfolios on the bottom half are called inefficient portfolios. The mean—variance
efficient portfolios are a subset of the minimum variance portfolios. Portfolios
to the right of the parabola are called feasible. For a given variance the mean
return of a feasible portfolio is less than the mean return of an efficient portfolio
and higher than the mean return of an inefficient one, both having the same
variance.

Figure 1 also identifies the global minimum variance portfolio. This is the
portfolio with the smallest possible variance for any mean return. Its mean,
denoted by Rg is obtained by minimizing (3.13) with respect to R, to yield

Rg = — (3.14)

and its variance, denoted by o, is calculated by inserting (3.14) into the general
equation (3.13) to obtain

, a—2bRg+ cRé a —2bbjc)+cblc)> 1 3
= = = -, 3.15
96 ac —b? ac — b? c (3.15)

Similarly, by inserting R from (3.14) into (3.12) we find the weights of the global



8 G.M. Constantinides, A.G. Malliaris
minimum variance portfolio, denoted by xg,

~1 c —b b/c
L 0 ] v

1]~ (ac — b2) c
(3.16)

xg =V7[R 1]A7! [

An additional notion that will be used later in this section and which is
illustrated in Figure 1 also, is the concept of an orthogonal portfolio. We say that
two minimum variance portfolios x, and x, are orthogonal if their covariance is
zero, that is,

x, Vxp = 0. (3.17)

We want to show that for every minimum variance portfolio, except the global
minimum variance portfolio, we can find a unique orthogonal minimum variance
portfolio. Furthermore, if the first portfolio has mean R, its orthogonal one has
mean R, with

__a~bRp

Ry=— "
b—cR,

(3.18)
To establish (3.18), let first p and z be two arbitrary minimum variance portfolios
with weights x,, given by (3.12) and x, given by

x, = VIR 1]A"! [’H . (3.19)

The covariance between portfolios p and z, being zero implies
0=xVx, = [R, 1]A7! HP} , (3.20)

from which (3.18) follows.

In Figure 1, we also illustrate the geometry of orthogonal portfolios. Given an
arbitrary efficient portfolio p on the efficient portfolio frontier, the line passing
between p and the global minimum variance portfolio can be shown to intersect
the expected return axis at R;. Once R, is known, then the orthogonal portfolio z
can be uniquely identified on the minimum variance portfolio frontier. Note that
if a portfolio p is efficient and therefore lics on the positively sloped segment of
the portfolio frontier, as in Figure 1, then its orthogonal portfolio z is inefficient
and lies on the negatively sloped segment. In general, orthogonal portfolios lie on
opposite-sloped segments of the portfolio frontier.

4. Two-fund separation

We now present the important property of two-fund separation. The mathe-
matics of this property is straightforward; its economic implications however are
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significant because the following theorem establishes that the minimum variance
portfolio frontier can be generated by any two distinct frontier portfolios.

Theorem 4.1 (Two-fund separation). Let x, and x, be iwo minimum variance
portfolios with mean returns R, and Ry, respectively, such that R, # Rp.

(a) Then every minimum variance portfolio x. is a linear combination of x,
and xp.

(b) Conversely, every portfolio which is a linear combination of x, and x;, ie,
ax, + (1 — a)x, is a minimum variance porifolio.

(c) In particular, if x, and x, are minimum variance efficient portfolios, then
axg + (1 ~ a)xy is a minimum variance efficient porifolio for 0 < o < 1.

Proof. (a) Let R, denote the mean return of the given minimum variance portfolio
x.. Choose parameter o such that

R =R, + (1~ )Ry (4.1)

that is, choose « given by

R, — Ry
e 4.2
] Ry — Ry ( )
Note that o exists and is unique because by hypothesis R, # Rp.
We claim that
x, =ax, + (1 —o)xp. (4.3)
To establish (4.3) use first (3.12) and next (4.1) to write
— 1| R
xe =V [R 1]A7! fjl
=VMI[R I]A—l aR(l+(1 —OZ)R})]
a+(1—a) (4.4)

=aV7'[R 1]A7! [’i] +(1-a)VR 1]A7] [Rlb}

= ax, + (1 —a)xp.

(b) Consider portfolio x, which is a linear combination of x,, and x; as in (4.3).
Then

X =ax, + (1 —a)xy
=aV7'[R 1]A7 [1” + (1 —-a)V'[R 1]JA7 [’ﬂ

aR, + (1~ a)ijI

=V~'[R 1]A7" [ .

By (3.12) we conclude that x, is the minimum variance portfolio with expected
return o R, + (1 — ) Ryp.
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(c) This is proved as in (b) noting that the restriction 0 < o < 1 implies,
Ry SaRy+ (1 —a)Rp = Ry, it Ry < Ryp.
This completes the proof. [

It is of historical interest that this fact was discovered by Tobin [1958]. Tobin
uses only two assets (riskless cash and a risky consol), and demonstrates that
nothing essential is changed if there are many risky assets. He argues that the
risky assets can be viewed as a single composite asset (mutual fund) and investors
find it optimal to combine their cash with a specific portfolio of risky assets. In
particular, Theorem 4.1 shows that any mean variance efficient portfolio can be
generated by two arbitrary distinct mean-variance efficient portfolios. In other
words, if an investor wishes to invest in a mean-variance efficient portfolio with
a given expected return and variance, he or she can achieve this goal by investing
in an appropriate linear combination of any two mutual funds which are also
mean—variance efficient. Practically this means that the n original assets can be
purchased by only two mutual funds and investors then can just choose to allocate
their wealth, not in the original n assets directly but in these two mutual funds
in such a way that the investment results (mean-variance) of the two actions
(portfolios) would be identical.

There is, however, an additional implication from part (c) of the two-fund
separation theorem. Suppose that utility functions are restricted so that all
investors choose to invest in mean-variance efficient portfolios and choose x,
and x;, to be the investment proportions of two distinct mean—variance efficient
portfolios that generate all the others. In particular x, and x;, can be used to
generate the market portfolio, that is, the wealth weighted sum of the portfolio
holdings of all investors.” This implies that the market portfolio is also mean-
variance efficient. Black [1972] employs this result in deriving the capital asset
pricing model.

Having shown that any two distinct portfolios can generate all other portfolios,
it is of practical interest to select two portfolios whose means and variances are
easy to compute. One such portfolio is the global minimum variance portfolio
with Rg, Ué and xg given in the previous section. The other one is identified in
Figure 1, with Ry = a/b, 0 = a/b?, and

-1
X1 = A b R. (4.5)

3 To clarify the concept of market portfolio, it is helpful to proceed inductively. Suppose that
investors 1 and 2 have wealth w; and w; invested in minimum variance cfficient portfolios with
weights x; and x;. Then the sum of their holdings is a portfolio with wealth wy + w; and portfolio
weights ax; + (1 — a)x2 where o = wy/(w; + wp). Since 0 < a < 1, from Theorem 4.1(c), the sum
total of their holdings is also an efficient portfolio. Next suppose that the wealth w, of n investors
is invested in an efficient portfolio with weights x, and investor n + 1 has wealth w, invested in
an efficient portfolio with weights x,.;. Again from Theorem 4.1(c) the sum total of the holdings
of all n+ 1 investors is an efficient portfolio. Proceeding in this manner we conclude that the
sum total of all the investors’ portfolios is an efficient portfolio. By definition, however, this is the
market portfolio. Thus we conclude that the market portfolio is cfficient.
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Observe from Figure 1 that this second portfolio’s orthogonal portfolio has an
expected return of zero. Theorem 4.2 below uses these two portfolios xg and x;.

We state a theorem about the relation of individual asset parameters which will
be useful in the analysis of the capital asset pricing model.

Theorem 4.2. For a given porifolio x,, the covariance vector of individual assets
with respect to portfolio p is linear in the vector of mean returns R if and only if p is
a minimum variance portfolio.

Proof. Let x;, be the weights of a minimum variance portfolio which can be written
as (3.12). The vector of covariances between individual assets and x,, is given by

Vx, = VWW-I[R 1]A~" [le’} = [R 1]a~" [RIP] (4.6)

which verifies the linearity between the covariance vector and the vector of
expected returns, R.

Conversely, let the vector of covariances with an arbitrary portfolio x, be
expressed linearly as

Vx, = gR+ hl 4.7
where g and h are arbitrary constants. From (4.7), solving for x, we get
xp =gV IR + V1 = gbx; + hexg. (4.8)

Note that in this last equation x,, is generated by two distinct efficient portfolios
x; and xg. Recall that xg is the vector of investment proportions of the global
minimum variance portfolio and x; is the vector of investment proportions
described in (4.5). Since both x; and x; are investment proportions, they satisfy
x51 = x{1 = 1 which combined with the property that xJ1 = 1 allows us to
conclude that gb + hc = 1. Thus we conclude from Theorem 4.1 that x, is a
minimum variance portfolio. This completes the proof. O

We close this section by expressing (4.6) in a way that will be useful in the
discussion of the capital asset pricing model in Section 6. From (4.6) write

cov(R;, Rp) =[0 ... 1...0]vx,
=[0...1...0][R l]A‘l[Rlp} (4.9)
~i[R
=[R; 1]A 1[ 11’],

where the 1 in the row vector is placed in the position of the ith asset. Let x, be
orthogonal to x, and calculate their covariance as in (3.20). Subtract (3.20) from
(4.9) to get

cov (R;, Rp) = [r; 0]A™! [Rlp] = Yr; (4.10)
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where the two new variables r; and y are defined as

}"i —_ Ri —_ RZ’ (411)
and
cR,—b
=t 4,12
V= (4.12)

Observe that (4.10) holds for each i and must therefore hold for all assets, i.e.
cov (Ry, Ry) = o) =yrp, (4.13)

where r), expresses the excess mean return of portfolio p from its orthogonal z.
From this last equation obtain y = J[%/rp and substitute in (4.10) to conclude that

cov (R;, Rp)

2
%p

r; =

rp = Birp (4.14)

which expresses the excess mean return of the ith asset as a proportion of its beta,
Bi, with respect to portfolio p, where
cov (R;, Rp)

2
p

Bi = (4.15)

These mathematical manipulations show that (4.14), which has a capital asset
pricing appearance, holds true for any minimum variance portfolio, in general,
and for any minimum variance efficient portfolio, in particular.

5. Mean-variance portfolio with a riskless asset

The previous two sections presented and solved the portfolio selection problem
for n risky assets, and then established the two fund separation theorem. We
now return to Tobin’s original idea of introducing a riskless asset. The portfolio
selection problem with n risky assets and one riskless, i.c. a total of (n + 1) assets
can easily be formulated and solved. Let there be n + 1 assets, i = 0,1,2, ..., #,
where 0 denotes the riskless asset with return Ry. The vector of expected excess
returns has elements definedasr;, = R; — Rg, i = 1,2, ..., n, and is denoted by r.
Wealth is now allocated among (n + 1) assets with weights wg, w1, ..., w,. In the
various calculations we denote the vector of weights wy, ..., w, as w and write
wy=1—wll.

For a given portfolio p, the mean excess return is

rp=wR+ (1 —w )Ry — Ry=w'r. (5.1)
The variance of p is

oy =w'Vw, (5.2)
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where in (5.1) and (5.2), R and V are as in Section 3. Note that in (5.2) the riskless
asset does not contribute to the variance.

The mean-variance portfolio selection problem with a riskless asset can be
stated as

minimize w'Vw
subjectto wlr=r,. (5.3)
In (5.3), the variance of the n-risky assets is minimized subject to a given excess
return rp. Note that w'1 = 1 is not a constraint because the wealth need not all be
allocated to the n-risky assets; some may be held in the riskless asset.
Following the method of (3.1) one obtains the solution

"p ) -1
w= Vir 5.4

(rTV‘lr (54)
which gives the variance of the minimum-variance portfolio with excess mean )
as

_ p L T R
- (rTV"lr) rvVowWer (5-5)
2

"p

ATV
The Sharpe’s measure of portfolio p, defined as the ratio of its excess mean return
to the standard deviation of its return, is obtained from (5.5) as

VA2 i, >0

p

£ = (5.6)
o =GV I e, <0

The tangency portfolio T is the minimum-variance portfolio for which
1Ty = 1. (5.7)
Combining equations (5.4) and (5.7) we obtain
riv=lp
o= ——_—“ITV_lr = U. (58>

It is economically plausible to assert that the riskless return is lower than the
mean return of the global minimum variance portfolio of the risky assets, that
is, Ry < Rg. We may then prove that 1TV~lr > 0. Also rTV~!r > 0 by the
positive definiteness of the matrix V. It then follows that »r > 0 and the
slope of the tangency line in Figure 2 is positive. This positively-sloped line
is the capital market line and defines the set of minimum variance efficient
portfolios. For an actual calculation of Figure 2, see Ziemba, Parkan & Brooks-
Hill [1974].
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Capital Market Line .

Mean T
Return
Tangency Portfolio

Standard
Deviation

Fig. 2. Portfolios of n-risky assets and a riskless asset.

The correlation coefficient of the return of any portfolio ¢, with weights w,, and
any portfolio p on the efficient segment of the minimum-variance frontier is

wng,J
p(p,q)=——
Gy0Op
_ I'ply
- 'V-1ro,0,
_ rqloy

rplop

(5.9)

__ Sharpe’s measure of portfolio g

~ Sharpe’s measure of portfolio p

Referring to Figure 2, the correlation p(p, ¢) is the ratio of the slope of the line
from Ry to g to the slope of the efficient frontier.

6. The capital asset pricing model

Markowitz’s approach to portfolio selection may be characterized as normative.
The analysis of Sections 3, 4 and 5 concentrates on a typical investor and by
making several simplifying assumptions, solves the investor’s portfolio selection
problem. Recall the assumptions: (i) the investor considers only the first two
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moments of the probability distribution of returns; (it) given the mean portfolio
return, the investor chooses a portfolio with the lowest variance .of returns;
'and (iii) the investment horizon is one period. There are also a few additional
assumptions that are implicit: (i) the investor’s individual decisions do not affect
market prices; (ii) fractional shares may be purchased (i.e. investments are
infinitely divisible); (iii) transaction costs and taxes do not exist, and (iv) investors
can sell assets short.

It is historically worth observing that six years had to eclapse before the
normative results of portfolio selection could be generalized into a positive
theory of capital markets. Brennan [1989] claims that “[t]he reason for delay was
undoubtedly the boldness of the assumption required for progress, namely that all
investors hold the same beliefs about the joint distribution of a security®”. Indeed,
Sharpe [1964] emphasizes that in order to obtain equilibrium conditions in the
capital market the homogeneity of investor expectations’ assumption must be made.

Under these assumptions we have demonstrated that all investors hold mean—
variance efficient portfolios. With the added homogeneity assumption, Theorem
4.1 shows that a portfolio which consists of two (or more) mean—variance efficient
portfolios is mean variance efficient. Therefore the market portfolio is mean
variance efficient. Therefore, the mean asset returns are linear in their covariance
with the market return as shown in Theorem 4.2. This simple, yet powerful
argument due to Black [1972] does not rely on the existence of a riskless asset,
unlike the original derivation of the Capital Asset Pricing Model (CAPM) by
Sharpe [1964]. From equation (4.14) we may write the CAPM as

R — Rz = ,Bi(RM - Rz) (6'1)

where Ry is the mean return of the market portfolio, 8; is cov(R;, Ry)/var(Ry)
and R, is the mean return of a minimum variance portfolio which is orthogonal to
the market portfolio. In the special case that a riskless asset exists, R, must equal
the riskless rate of return. Ferson [1994] surveys in this volume both the theory
and testing of the capital asset pricing model.

Fama [1976] and Roll [1977] pointed out that testing the capital asset pricing
model is equivalent to testing the market’s mean—variance efficiency. If the only
testable hypothesis of the capital asset pricing theory is that the market portfolio
is mean-variance efficient, then such testing is infeasible. The infeasibility is due
to our ignorance of the exact composition of the true market portfolio. In other
words, the capital asset pricing theory is not testable unless all individual assets
are included in the market. Using a proxy for the true market portfolio does not
solve the problem for two reasons: first, the proxy itself may be mean-variance

% See Brennan {1989, p. 93}.

7 Rwo brief remarks are in order. First, Sharpe attributes the term of homogeneity of investor
expectations to one of the referees of his paper. Second, he acknowledges that this assumption
is highly restrictive and unrealistic but defends it because of its implication, i.e. attainment of
equilibrium. See also Lintner [1965] and Mossin [1966]. Numerous papers have appeared which
have relaxed some of the stated assumptions. For example see Levy & Samucison [1992]
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efficient even when the true market portfolio is not; second, the chosen proxy may
be inefficient even though the true market portfolio is actually efficient.

We conclude this section by pointing out that the empirical methodologies of
testing for the mean-variance efficiency of a given portfolio may be applied in
testing a broad class of asset pricing models. Absence of arbitrage among n assets
with returns represented by the random variables, Ié,- i =1,...,n, implies the
existence of a strictly positive pricing kernel represented by the random variable

m such that
E[m R]=1, i=1...,n (6.2)

For example, in the consumption asset pricing model, m stands for the marginal
rate of substitution in consumption between the beginning and end of the period.

Let x denote the weights of a portfolio of n assets which has return maximally
correlated with the pricing operator /iz. Then we can write 72 as

n
m =a2xj1§,- +E (6.3)
j=1

where o is a constant. The property of maximal correlation implies that
cov(¢, R;) =0, j =1,...,n Combining equations (6.2) and (6.3) we obtain

n
1= E[fﬁ él] = E[I’Fl]E[l’él] + @ cov (ZXJ'RJ', ﬁ,) , 1=1,...,n.
j=t (6.4)

This implies that the n assets’ covariances with the portfolio x are linear in their
mean returns. By Theorem 4.2 we conclude that the portfolio x must lie on the
minimum-variance frontier of the n assets, a property which can be tested by
the methodologies which test for the efficiency of a given portfolio. For further
discussion of these issues see the papers of Hansen & Jagannathan [1991] and
Ferson [1995].

7. Theoretical justification of mean—variance analysis, mutual fund separation
and the CAPM

In this section we first address the following question: what set of assumptions
is needed on the investor’s utility function or distribution of asset returns so that
the investor chooses a mean—variance efficient portfolio?

Tobin [1958] uses a quadratic utility function represented by

2
u(c):c—B~2~, B=>0 (7.1)
and defined only for ¢ < 1/B, where ¢ denotes consumption. Arrow [1971]
has remarked that quadratic utility exhibits increasing absolute risk aversion
which implies that risky assets are inferior goods in the context of the portfolio
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selection problem. It can be easily shown that utility is increasing in the mean
and decreasing in the variance, and that moments higher than the variance do
not matter. Therefore only mean—variance efficient portfolios will be selected by
expected quadratic utility maximizing investors.

Next note that multivariate normality is a special distribution of asset returns
for which mean—variance analysis is consistent with expected utility maximization
without assuming quadratic utility. To show this recall that the distribution of any
portfolio is completely specified by its mean and variance. This follows from the
basic property that any linear combination of multivariate normally distributed
variables has a distribution in the same family.

Chamberlain [1983a] shows that the most general class of distributions that
allow investors to rank portfolios based on the first two generalized moments is
the family of elliptical distributions. A vector x of n random variables is said to be
elliptically distributed if its density function is of the form

Fx) =191 2g[(x — )T (x — p); x] (7.2)

where €2 is an 1 x n positive definite dispersion matrix and p is the vector of
medians. From (7.1) Ingersoll [1987] obtains as special cases both the multivariate
normal and the multivariate Student-¢ distributions.

Having presented a theoretical justification for mean-variance analysis® we can
now ask a second and broader question: which is the class of utility functions that
imply two-fund separation? Without assuming the existence of a riskless asset,
Cass & Stiglitz [1970] prove that a necessary and sufficient condition for two-fund
separation is that preferences are either quadratic or of the constant-relative-
risk-aversion family, u(c) = (1 — A)~'c!™4, A > 0, A # 1 (with u(c) = Inc
corresponding to the case A = 1). Actually constant relative risk aversion implies
the stronger property of one-fund separation. If a riskless asset is assumed to exist,
the necessary and sufficient condition for two-fund separation is either quadratic
preferences or HARA preferences defined as u(¢) = (1 — A)~'(c - &)!74, A > 0,
A # 1 (with u(c) = In(c — ¢) corresponding to the case A = 1). Their main
conclusion is that utility-based conditions under which separation holds are very
restrictive. But more to the point, utility-based two-fund separation, with the
exception of quadratic utility, does not imply mean-variance choice and does not
imply the CAPM.

Ross [1978] establishes the necessary and sufficient conditions on the stochastic
structure of asset returns such that two-fund portfolio separation would obtain
tor any increasing and concave von Neumann—-Morgenstern utility function. More
specifically, a vector of asset returns R is said to exhibit two-fund separability if

# Ingersoll [1975] and Kraus & Litzenberger [1976] address the interesting question of how
portfolios are formed when either the utility function or the distribution of returns are not of
the type that imply mean—variance analysis. In particular, Kraus & Litzenberger {1976] cxtend the
portfolio selection problem to include the effect of skewness. The rate of return on the investor’s
portfolio is assumed to be nonsymmetrically distributed and the investor’s utility function considers
the first three moments of such a distribution. See also Ziemba [1994], Ohlson & Ziemba [1976},
and Kallberg & Ziemba [1983].
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there are two mutual funds o and 8 of n assets such that for any portfolio ¢ there
exists a portfolio weight A such that

E[u(\Ry + (1 — M Rg)] = E[u(R,)] (7.3)

for each monotone increasing and concave utility functions u(-). Observe that (7.3)
captures analytically the intuitive notion that portfolios generated by the two funds
are preferred to arbitrary portfolios. There is an extensive literature that deals
with this important issue of comparing portfolios for a class of investor preferences
known as stochastic dominance. Ingersoll [1987] or Huang & Litzenberger [1988]
give a general overview of these ideas and Rothschild & Stiglitz [1970] offer a
detailed analysis.

From the above definition, Ross [1978, p. 267] proves that two-fund separability
is equivalent to the following conditions: there exist random variables R, ¥ and &

and weights x;, le and x},i=1,2,...,n,such that
Ri=R+bY +5 for all i (7.4)
E[gi |R+£Y]=0 for all i, & (7.5)

dowit=1, Y owi=1 (7.6)
i i
> wlE =0, > wiE =0 (1.7)
i i
and either b; = b foralli, or »_ wMb; # »  wib;. (7.8)
i i

Observe that conditions (7.4)-(7.8) represent the most general form of distri-
bution of returns which permits two-fund separation. In particular, Ross [1978,
p. 273] shows that all multivariate normally distributed random variables satisfy
condition (7.7). But, more to the point Ross shows that, if asset returns are drawn
from the family of two-fund separating distributions, and if asset variances are
finite, then the CAPM holds.

Having reviewed the assumptions needed on asset distributions for mean-
variance portfolio theory and two-fund separation to hold, we close with a
brief evaluation of these assumptions. Osborne [1959], Mandelbrot [1963], Fama
{1965a, b], Boness, Chen & Jatusipitak [1974] and numerous other studies have
shown that there are substantial deviations from normality in the distribution
of actual stock prices. Although actual returns are not normally distributed and
the use of quadratic utility cannot be supported empirically, the mean-variance
portfolio theory remains theoretically useful and empirically relevant. Actually,
portfolio theory is a prime example of Milton Friedman’s assertion that a theory
should not be judged by the relevance of its assumptions, but rather, by the realism
of its predictions.’

9 Stiglitz [1989] evaluates the various assumptions placed on investor prefercnces, and Markowitz
[1991] in his Nobel Lecture supports the appropriateness of the approximation. See also Levy &
Markowitz [1979] and Markowitz [1987].
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8. Consumption and portfolio selection in continuous time

Mean-variance portfolio theory addresses the investor’s asset selection problem
for an investment horizon of one period. Progress in portfolio theory came as
financial economists relaxed this restrictive assumption. In so doing, however, they
were faced with the twin decisions discussed in the introduction: consumption-
saving and portfolio selection. The relaxation of the single-period assumption
proceeded along two lines: first, in discrete time multiperiod models by Samuelson
[1969], Hakansson [1970], Fama [1970], Rubinstein [1976], Long [1974] and others,
and second, in continuous time models by Merton [1969, 1971, 1973], Breeden
[1979, 1986}, Cox, Ingersoll & Ross [1985a, b], and others. Ingersoll [1987]
presents a detailed overview of discrete time models. Here, we follow Merton
[1973] to develop and solve a continuous-time intertemporal portfolio selection
problem.!?

Assume that there exist continuously trading markets for all n + 1 assets and
that prices per share P;(t) are generated by It6 processes, i.e.

g;—)Di=oz,'()c,t)dz‘-+~al~(x,t)dzi(t), i=1,...,n+1 (8.1)
il

where o; is the conditional arithmetic expected rate of return and O’iz dr is the
conditional variance of the rate of return of asset i{. We either assume zero
dividends on the stock or, more plausibly, we assume that the dividends are
continuously reinvested in the stock and P; represents the price of one share
plus the value of the reinvested dividends. The random variable z;(¢) is a Wiener
process. The variance of the increment of the Wiener process is df. The processes
z;(t) and z;(t) have correlated increments and we denote

cov [07dz; (1), 07dz; (1)] = oy;dt.

In the particular case (not assumed hereafter) where «; and o; are constants,
the price P;(¢) is lognormally distributed.

The conditional mean and variance of the rate of return are functions of the
random variable x (¢), assumed here to be a scalar solely for expositional ease. The
random variable x(t), referred to here as the state variable, is an Itd process

dx = m(x, t)dt + s(x, t)sdZ(1). (8.2)
The covariance cov[sdz(z), o;dz;(¢)] is denoted by o, dr.

10 The appropriateness of the continuous-time approach to the intertemporal portfolio selection

problem in particular, and to problems of financial economics in general, is skillfully evaluated in
Merton {1975, 1982]. He argues that the use of stochastic calculus methods in finance allows the
financial theorist to obtain important generalizations by making realistic assumptions about trading
and the evolution of uncertainty. These methods are briefly exposited in Ingersoll [1987] or morc
extensively in Malliaris & Brock [1982]. The remainder of this paper assumes some familiarity with
these techniques.
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An investor has wealth W(¢) at time ¢. The investor consumes C(¢)dt over
[z, t + dt] and invests fraction w;(¢) of the wealthin asset i, i =1,...,n,n+ 1.
The budget constraint, or wealth dynamics, is

n+1
P.
AW (@) = dy(t) — Cdt + Y " w;—W (8.3)
= h
where dy(t) is the labor income, or generally the exogenous endowment income
over the infinitesimal interval [z, r + dt].

For expositional simplicity we assume that the labor income is zero. We also
assume that the (n -+ 1)st asset is riskless, i.e. 0,1 = 0 and we denote «,, by r,
the instantaneously riskless rate of interest. Then the wealth dynamics equation
simplifies to

n H
AW = —~Cdt +rW (1 = > w;)ds + Z w; W(a;dt + 03dz;)
ijl i=1 (84)
= —Cdt + rWdt + Y w; W (e — r)dt + 07dz].
i=1

We assume that the investor makes sequential consumption and investment
decisions with the objective to maximize the von Neumann—-Morgenstern expected
utility i.e.

o0
max Ey /u(C,x, t)dt (8.5)
0

where u is monotone increasing and concave in the consumption flow C. Note that
in the above representation of preferences utility is time-separable but nonstate
separable since preferences depend on x. The case of nontime-separable prefer-
ences is discussed in Sundaresan {1989], Constantinides [1990], and Detemple &
Zapatero [1991].

To derive the optimal consumption and investment policies we define

J(W,x,t) = max E; /u(C, X, T) d”L’—] .
(Cou) J

t

Assuming sufficient regularity conditions as presented in Fleming & Richel [1975],
so that a solution exists, the derived utility of wealth, J, satisfies the equation
derived by Merton [1971, 1973]

0 = max {M(C, x, 1)+
{C,w)

n
~C+rW 4 Wwa(ai -«r)} Jw+mde+ 7+

i=1
H n n

1 52
+ EWZ]WW ; ; wiw;o;; + Wiy ; WiOix + —Z—J“}.(Sﬁ)
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The first-order conditions with respect to C and w; are
uc—Jw =20 (8.7)
and

n
Wi, —r)Jw + WZJWW Z?U./’Uij + Wliwoix =0, i=1...,n.
= (8.8)
The concavity of the utility function implies that J is concave in W; hence the
second-order conditions are satisfied.

Under appropriate regularity conditions which are not discussed here a verifica-
tion theorem can be stated to the effect that the solution of the partial differential
equation is unique, and therefore is the solution of the original optimal consump-
tion and investment problem.

Since the topic of this essay is the portfolio problem we focus on the first-order
conditions (8.8) implied by optimal investment which we write in matrix notation
as

(o —rD)Jy 4+ WIwww'V + Jwroy =0, (8.9)

where V is the n x n covariance matrix with i x j element o;; and o, is a vector
with ith element o;,. Solving for the optimal portfolio weights we obtain

~Jw 1 Jwx -1
W= Vv —rl) - ——V o,. 8.10
(WJWW) (a—rl) W ww x ( )
Before we analyze the optimal portfolio decision in its full generality, consider
first the important special case where the term [Jw, /(W Jww)IV lo, is a vector
of zeros. We will shortly discuss three cases where this occurs. Then we may write
equation (8.10) as

W= (va&%) 1TV (e~ rD)]wr (8.11)
where
V-ia—rl)
- 8.12
T = V"1 — 1) (8.12)

From our discussion in Section 5, we recognize wr as the vector of portfolio
weights of the tangency portfolio on the frontier of minimum variance portfolios
generated by the n risky assets. We also interpret (—Jw /W Jww) ™! as the relative
risk aversion (RRA) coefficient of the investor. Then equation (8.11) states
that the investor invests in just two portfolios, namely the riskless asset and
the tangency portfolio. The extent of the investment in the tangency portfolio
depends on the investor’s RRA coefficient. Thus we have proved that there is
two-fund separation with the two funds being the riskless asset and the tangency
portfolio. From here it is a small step, outlined in Section 9, to show that the
CAPM holds.
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We present three sets of conditions each of which implies two-fund separation
and the CAPM:

(a) Logarithmic utility. Then we may show that the derived utility J(W, x) is
the sum of a function of W and a function of x. Hence the cross-derivative Jy
equals zero and the second term in equation (8.10) becomes a vector of zeros.

(b) All assets’ returns are uncorrelated with the change in x, ie. 0, = 0,
i=1,...,n.

(c) All assets have distributions of returns which are independent of x, i.e. «;,
o; are independent of x fori =1, ..., n.

We now return to the general case where none of the assumptions (a)—(c) hold
and the term [Jw./(WJww)]V 1o, is not a vector of zeros. Define by wy; the
weights of a portfolio

V7ig,
1Tv-1g,°

Then we may write equation (8.10) as

—J —J o
W= (mé";) 1TV (a—rD)]wr + (va:w> 1"V~ o, wu. (8.13)
We observe that three-fund portfolio separation obtains: The investor invests in
the riskless asset, the tangency portfolio wr and the hedging portfolio wy. The
weights which the investor assigns to each portfolio depend on his/her preferences
and are, therefore, investor-specific.

We may further interpret the hedging portfolio by solving the following max-
imization problem: Choose vector y such that 17y = 1 (i.e. y is the vector of
a portfolio’s weights) to maximize the correlation of dx and Y, , y;(dP;/P).
The solution to this problem is easily shown to be y = wy. That is, the hedging
portfolio is the portfolio of the risky assets with returns maximally correlated with
the change in the state variable x.

Note that x enters into the decision problem through «; and o;, that is,
it causes changes in the investment opportunity set and through the utility of
consumption, u(C, x, t), that is, it causes shifts in tastes. We may interpret the
three fund separation result as follows: The investor invests in the riskless asset
and in the tangency portfolio, as in the mean—variance case, but modifies his or
her portfolio investing in (or selling short) a third portfolio which has returns
maximally correlated with changes in the variable x which represents shifts in the
investment opportunity set and tastes.

As we stated earlier we have chosen x to be a scalar solely for expositional ease.
If instead, x is a vector with m elements we obtain (m + 2)-fund separation where
the investor invests in the riskless asset, the tangency portfolio and the m hedging
portfolios.

In evaluating Merton’s [1971, 1973] intertemporal continuous-time portfolio
theory at least two important contributions need to be identified: first, its gen-
eralization of the static mean-variance theory is achieved by considering both
the consumption and portfolio selection over time and by dropping the quadratic

WH =
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utility assurmption; and second, its realism and tractability compared to the
discrete-time portfolio theories which assume normally distributed asset prices
implying a nonzero probability of negative asset prices. By replacing the assump-
tion of normally distributed asset prices with the assumption that prices follow
(8.1), the continuous-time portfolio theory becomes more realistic as well as more
tractable in view of the extensive mathematical literature on diffusion processes.

Merton’s work was extended in several directions. Among them, Breeden
[1979] and Cox, Ingersoll & Ross [1985a, b] consider a generalization of the
intertemporal continuous-time portfolio theory in a general equilibrium model
with production. Another contribution was made by Breeden [1979] who shows
that Merton’s [1973] multi-beta pricing model can be expressed with a single
beta measured with respect to.changes in aggregate consumption assuming that
consumption preferences are time separable. One interesting result of Breeden’s
work is that, in an intertemporal economy, the portfolio that has the highest
correlation of returns with aggregate real consumption changes is mean-variance
efficient.

Several authors have considered equation (8.1) which is the most significant
assumption of continuous-time portfolio theory and have asked the question:
under what conditions is a price system representable by It6 processes such as
(8.1)? Huang [1985a, b] shows that when the information structure is a Brownian
filtration then any arbitrage-free price system is an It process. The arbitrage-free
concept is analyzed in Harrison & Kreps [1979] and Harrison & Pliska [1981]
who make a connection to a martingale representation theorem. The role of
information is analyzed in Duffie & Huang [1986].

Finally, in contrast to the stochastic dynamic programming approach to the con-
tinuous time consumption and portfolio problem, Pliska [1986] and Cox & Huang
[1989], among others have used the martingale representation methodology. In
the martingale approach, first, the dynamic consumption and portfolio problem is
transformed and solved as a static utility maximization problem to find the opti-
mal consumption and, second, the martingale representation theorem is applied
to determine the portfolio trading strategy which is consistent with the optimal
consumption. It is usually assumed that markets are dynamically complete which
allows for the determination of a budget constraint and the solution of the static
utility maximization. The case when markets are dynamically incomplete with the
dimension of the Brownian motion driving the security prices being greater than
the mumber of risky securities is presented in He & Pearson [1991].

9. The Intertemporal Asset Pricing Model (ICAPM) and the Arbitrage Pricing
Theory (APT)

In the last section we solved for the optimal weights of the portfolio of risky
assets held by an investor with given preferences. If all consumers in the economy
have identical preferences and endowments then the above optimal portfolio may
be identified as the market portfolio of risky assets. The condition that consumers
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have identical preferences and endowments may be relaxed under conditions
which imply demand aggregation as in Rubinstein [1974] and Constantinides
[1980] or under complete markets as in Constantinides [1982]. Hereafter we
assume that either through demand aggregation or through complete markets we
can claim that the optimal portfolio in (8.10) is indeed the market portfolio of
risky assets. We denote the weights of this portfolio by wM and its return by

n
d Py WM ap;
Pu o ki
We should stress that, in general, the market portfolio does not coincide with
the tangency portfolio. In the last section we discussed conditions under which the
two portfolios coincide but these conditions will not be imposed here.
To derive the intertemporal capital asset pricing model (ICAPM) we rewrite
equation (8.8) as

wWJ J
Ol,‘—}’:( WW)Z MU;/ ( J“V/;)Uix
j=1

:)‘M,BiM+)\xﬂix i=1,...,n.

(9.1)

where
cov (dPi/Pi, dPM/PM)
Pt = s AP/ Py) !
W Jww var (dPy/ Pm)
A,M == —
: Jw dt
cov (dP;/P;, dx)
bic = var (dx)
and
e = Jw, var (dx)

Jw dr

This result generalizes in a routine fashion to the case where the state variable 1s a
vector.

We conclude this section by discussing the empirically testable implications of
the theory, along with the arbitrage pricing theory of Ross [1976a, b]. The common
starting point of both the ICAPM and the APT is a linear multivariate regression
of the n x 1 vector of asset returns, R, on a k x 1 vector of state variables (in the
ICAPM) or factors (in the APT), f:

R=R+Bf-p+¢ (9.2)

where R = E[R], f = E[f] and E[¢] = 0. In both theories the elements of f are
assumed to have finite variance. The covariance matrix Q = E[£&"] is assumed to
have finite elements. Furthermore, in the APT the elements of f are assumed to be
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factors in the sense that the largest eigenvalue of 2 remains bounded as n — oo
[see Chamberlain, 1983b].

The pricing restriction implied by the I[CAPM is that there exist a constant, A,
and a k x 1 vector of risk “premia”, A, such that

R =1ol+ BA (9.3)

where 1 is the n x 1 vector of ones as before. The pricing restriction implied by
the APT is

lim R — Al — BAYTR -2l —BA) = A, A <00 (9.4)
n—>00

which, in empirical work (where # is finite), is interpreted to imply (9.3).

If the proxies for state variables in the ICAPM or factors in the APT are
portfolios of the n assets, the ICAPM or APT pricing restrictions, (9.3), state
that there exists a portfolio of these proxy portfolios which has mean and
variance on the mean—variance, minimum-variance frontier. See Jobson & Korkie
[1985], Grinblatt & Titman [1987] and Huberman, Kandel & Stambaugh [1987].
Therefore the econometric methods for testing that a given portfolio lies on the
minimum-variance frontier may be extended to test the ICAPM and the APT. See
Kandel & Stambaugh [1989] and the Connor & Korajczyk [1995] essay in this
volume.

10. Market imperfections

Market imperfections were suppressed in our earlier discussion by implicitly
assuming that (i) transaction costs are zero, (ii) the capital gains tax is zero (or,
capital gains and losses are realized and taxed in every period), and (iii) the assets
may be sold short with full use of the proceeds which, in the case of a riskless
asset, implies that the borrowing rate equals the lending rate. How sensitive
are our conclusions on portfolio selection and equilibrium asset pricing to the
presence of these imperfections? Whereas a comprehensive discussion of these
issues is beyond the scope of this essay, we discuss briefly one instance of market
imperfections.

Consider first the discrete-time intertemporal investment and consumption
problem with proportional transaction costs. The agent maximizes the expectation
of a time-separable utility function where the period utility is of the convenient
power form. The agent consumes in every period and invests the remaining wealth
in only two assets. The agent enters period 7 with x; units of account of the first
asset and y, units of account of the second asset. If the agent buys (or, sells)
Vs units of account of the second asset, the holding of the first asset becomes
x; — vy — max[kyvy, —kov], net of transaction costs where the constants ki, kp
satisfy 0 < k; < 1 and 0 < ky < 1. The optimal investment policy, described in
terms of two parameters ¢, and &;, o, < &;, is to refrain from transacting as long
as the portfolio proportions, x;/y;, lie within the interval [¢,, &, ]; and transact
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to the closer boundary, o, or &, of the region of no transactions whenever the
portfolio proportions lie outside this interval (provided, of course, that this is
feasible). The parameters (o, @;) are functions of time and of the state variables
which define the conditional distribution of the assets’ return. This general form of
the optimal portfolio policy also holds in a mode] with continuous trading under
additional assumptions on the distribution of asset returns. See Kamin [1975],
Constantinides [1979], Taksar, Klass & Assaf [1988] and Davis & Norman [1990].

In numerical solutions of the portfolio problem with even small proportional
transaction costs one finds that the region of no transactions is wide. We conclude
from these examples and extrapolate in more general cases with transaction costs
that even small transaction costs distort significantly the optimal portfolio policy
which is optimal in the absence of transaction costs. See Constantinides [1986],
Dumas & Luciano [1991], Fleming, Grossman, Vila & Zariphopoulou [1990] and
Gennotte & Jung [1991]. An encouraging finding, however, is that transaction
costs have only a second-order effect on equilibrium asset returns: investors
accommodate large transaction costs by drastically reducing the frequency and
volume of trade. It turns out that the agent’s utility is insensitive to deviations of
the asset proportions from those proportions which are optimal in the absence of
transaction costs. Therefore, a small liquidity premium is sufficient to compensate
an agent for deviating significantly from the target portfolio proportions. These
results need to be qualified as they apply to the case where the only motive for
trade is portfolio rebalancing. Transaction costs may have a first-order effect on
equilibrium asset returns in cases where the investors receive exogenous income
or trade on the basis of inside information.

11. Concluding remarks

Portfolio theory is the analysis of the real world phenomenon of diversification.
This paper has exposited this theory in its historical evolution, from the ecarly
work on static mean—variance mathematics to its generalization of dynamic
consumption and portfolio rules. In its intellectual development portfolio theory
has benefitted from empirical work which came from capital asset pricing tests
and from statistical investigations of the distributions of asset prices. Furthermore,
as more powerful techniques were developed, such as stochastic calculus, portfolio
theory became dynamic and many results were generalized.

Because the topic of our paper is theoretical, we have not mentioned any
issues related to real world portfolio management. Interested readers can find
such topics in standard graduate textbooks such as Lee, Finnerty & Wort [1990]
or papers in this volume on performance evalvation by Grinblatt & Titman
[1995], on market microstructure by Easley & O’Hara {1995], and on world wide
security market regularities by Hawawini & Keim [1995], among others. Although
our topic was on portfolio theory, numerous important theoretical developments
are not mentioned. Fortunately again, some are treated in this volume such as
futures and options markets by Carr & Jarrow [1995], market volatility by LeRoy
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& Steigerwald [1995], and the extension of portfolio theory from national to
international markets by Stulz [1995]. A useful companion survey is presented in
Constantinides {1989}, where theoretical issues of financial valuation are presented
in a unified way.
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