Lecture 2: Theoretical tools of Public Economics

Petros Varthalitis
Fall 2023-24

Theoretical and Empirical Tools

Theoretical tools:

The set of tools designed to understand the mechanics behind economic decision making.

Constrained utility optimization.

Individuals maximize utility functions subject to budget constraints.

Empirical tools:

The set of tools designed to analyze data and answer questions raised by theoretical analysis.

Utility function

A utility function is a mathematical function that translates consumption into utility:

$$
U=f(c)
$$

where c denotes consumption:

Example log-utility: $\quad f(c)=\log (c)$

Simplification with consumption bundle

- Let's assume that, c, denotes the consumption good in the economy.
- 3 units of c yield
- $f(3)$ units of utility
- We assume $f\left(c_{2}\right)>f\left(c_{1}\right)$ if $c_{2}>c_{1}$.

Assumption: More is better (non-satiation)

- Economists assume that more of a good is always better than less.
- Mathematical representation:
- We assume if $c_{2}>c_{1}$ then $f\left(c_{2}\right)>f\left(c_{1}\right)$.
- Since $4>3$ then $f(4)>f(3)$.
- $\frac{\partial f(c)}{\partial c}>0$ utility is an increasing function of the consumption bundle.

Example with two goods

$$
U\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}}
$$

- X_{1} quantity of good 1 , say food
- X_{2} quantity of good 2, say drink

Individual utility increases with the level of consumption of each good X_{1} and X_{2}.

Example with many goods

$$
U\left(X_{1}, X_{2}, X_{3}, \ldots X_{N}\right)=\sqrt{X_{1}, X_{2}, X_{3}, \ldots X_{N}}
$$

- $X_{1}, X_{2}, X_{3}, \ldots X_{N}$ quantity of good $1,2,3 \ldots N$.

For simplicity, X^{\prime} 's can be thought as consumption bundles with goods that exhibits common features.

Preferences and Indifference curves

An indifference curve is a graphical representation of all bundles of goods that make an individual equally well off.

- Thus, an indifference curve yielding utility level, \underline{U}, by the set of bundles $\left(x_{1}, x_{2}\right)$ such that $U\left(x_{1}, x_{2}\right)=\underline{U}$.

Indifference curves have two properties:

- Consumer prefer higher indifference curves.
- Indifference curves are always downward slopping.

Example

Andrea's utility for cakes $\left(Q_{c}\right)$ and movies $\left(Q_{M}\right)$ is:

$$
U\left(Q_{c}, Q_{M}\right)=\sqrt{Q_{C} \times Q_{M}}
$$

How we can construct the indifference curve:

1. Andrea is indifferent between 4 cakes and 1 movie or 1 cake and 4 movies:

- $U\left(Q_{c}, Q_{M}\right)=\sqrt{4 \times 1}=2$
$\cdot \operatorname{or} U\left(Q_{c}, Q_{M}\right)=\sqrt{1 \times 4}=2$

Example

Andrea's utility for cakes $\left(Q_{c}\right)$ and movies $\left(Q_{M}\right)$ is:

$$
U\left(Q_{c}, Q_{M}\right)=\sqrt{Q_{C} \times Q_{M}}
$$

- Andrea prefers 3 cakes and 3 movies to either bundle:

$$
U\left(Q_{c}, Q_{M}\right)=\sqrt{3 \times 3}=3>2
$$

Preferences and Indifference Curves 2

Gruber, Public Finance and Public Policy, 6e, © 2019 Worth Publishers

Questions I

Which of the following option is correct?

1. Andrea is indifferent between bundles A and C
2. Andrea prefers bundle A from bundle B
3. Andrea prefers bundle C from bundle A

Questions II

Which of the following option is correct?

1. Andrea is indifferent between bundles A and C
2. Andrea is indifferent between bundles B and A
3. Andrea is indifferent between bundles B and C

Preferences and Indifference Curves 2

- Consumer is indifferent between A and B.
- C is preferred to A or B.

Gruber, Public Finance and Public Policy, 6e, © 2019 Worth Publishers

Preferences and Indifference Curves 3

- Consumer is indifferent between A and B.
- C is preferred to A or B.

Gruber, Public Finance and Public Policy, 6e, © 2019 Worth Publishers

Marginal Utility

Marginal utility: The additional increment to utility obtained by consuming an additional unit of a good.

Marginal utility of good 1 is the derivative of utility with respect to x_{1} keeping x_{2} constant:

$$
\begin{gathered}
U\left(X_{1} X_{2}\right)=\sqrt{X_{1} X_{2}} \\
\frac{\partial U}{\partial X_{1}}=\frac{\sqrt{X_{2}}}{2 \sqrt{X_{1}}}
\end{gathered}
$$

The utility function exhibits the important principle of diminishing marginal utility

Marginal utility $\frac{\partial U}{\partial x_{1}}$ decreases as x_{1} increases

The consumption of each additional unit of a good gives less extra utility than the consumption of the previous unit.

Marginal Rate of Substitution

- The rate at which a consumer is willing to trade one good for another.
- Moving along an indifference curve keeps a consumer equally well off, so:
- The $M R S$ is equal to the slope of the indifference curve, the rate at which the consumer will trade the good on the vertical axis for the good on the horizontal axis:
- $M R S=-M U_{M} / M U_{C}$

Example

$$
U\left(Q_{c}, Q_{M}\right)=\sqrt{Q_{C} \times Q_{M}}
$$

$\mathrm{MRS}: M R S_{C, M}=\frac{M U_{C}}{M U_{M}}$

$$
\begin{gathered}
\frac{\partial U}{\partial Q_{C}}=\frac{\sqrt{Q_{M}}}{2 \sqrt{Q_{C}}} \\
\frac{\partial U}{\partial Q_{M}}=\frac{\sqrt{Q_{C}}}{2 \sqrt{Q_{M}}}
\end{gathered}
$$

Example (cont'ed)

$$
\begin{gathered}
M R S_{C, M}=\frac{M U_{C}}{M U_{M}} \\
\frac{\frac{\partial U}{\partial Q_{C}}}{\partial U}=\frac{\frac{\sqrt{Q_{M}}}{\partial \sqrt{Q_{C}}}}{\frac{\sqrt{Q_{C}}}{2 \sqrt{Q_{M}}}} \\
\frac{\frac{\partial U}{\partial Q_{C}}}{\frac{\partial U}{\partial Q_{M}}}=\frac{2{\sqrt{Q_{M}}}^{2}}{2{\sqrt{Q_{C}}}^{2}}
\end{gathered}
$$

Example (cont’ed)

$$
\begin{gathered}
U\left(Q_{c}, Q_{M}\right)=\sqrt{Q_{C} \times Q_{M}} \\
M R S_{C, M}=\frac{Q_{M}}{Q_{C}}
\end{gathered}
$$

Intuitively: Individual is indifferent between 1 unit of good C and $M R S_{C, M}$ units of good M

Budget constraint

- Budget constraint: A mathematical representation of all the combinations of goods an individual can afford to buy if she spends her entire income:
- $Y=p_{1} X_{1}+p_{2} X_{2}$

Where p_{i} price of good $i=\left(X_{1}, X_{2}\right)$, and Y is disposable income.

- Opportunity cost: The cost of any purchase is the next best alternative use of that money or the forgone opportunity.
- Quick hint: When a person's budget is fixed, if he buys one thing, he is, by definition, reducing the money he has to spend on other things. Indirectly, this purchase has the same effect as a direct good-for-good trade.

Budget constraint

$\cdot Y=p_{1} X_{1}+p_{2} X_{2}$

Budget constraint defines a linear set of bundles the consumer can purchase with its disposable income:

$$
X_{2}=\frac{Y}{p_{2}}-\frac{p_{1}}{p_{2}} X_{1}
$$

$\mathrm{X}_{2}($ qty of good 2)

X_{1} (qty of good 1)

Putting it all together

Utility and budget constraint

Constrained utility maximization

Individual maximizes utility subject to their budget constraint:

$$
\max _{X_{1}, X_{2}} U\left(X_{1}, X_{2}\right)
$$

Subject to:

$$
Y=p_{1} X_{1}+p_{2} X_{2}
$$

Substitute the constraint into the objective function, $X_{2}=Y-\frac{p_{1}}{p_{2}} X_{1}$,

Utility Maximization

Individual maximizes utility subject to budget constraint:

$$
\max U\left(X_{1}, Y-\frac{p_{1}}{p_{2}} X_{1}\right)
$$

Taking the first order condition with respect to X_{1} :

$$
\frac{\partial U\left(X_{1}, Y-\frac{p_{1}}{p_{2}} X_{1}\right)}{\partial X_{1}}=\frac{\partial U(.)}{\partial X_{1}}-\frac{p_{1}}{p_{2}} \frac{\partial U(.)}{\partial X_{2}}
$$

$$
M R S_{1,2}=\frac{p_{1}}{p_{2}}
$$

Income and Substitution Effects

Maximization problem in slide 30 generates the following demand functions:

$$
\begin{aligned}
& X_{1}(p, Y) \\
& X_{2}(p, Y)
\end{aligned}
$$

Demands for goods X_{1} and X_{2} are functions of price and income.

Income and Substitution Effects

Using the following functional form:

$$
U\left(X_{1}, X_{2}\right)=\sqrt{X_{1} \times X_{2}}
$$

The solution of the maximization problem and the budget constraint:

$$
M R S_{1,2}=\frac{X_{2}}{X_{1}}=\frac{p_{1}}{p_{2}}
$$

The demand functions are:

$$
\begin{aligned}
& X_{1}(p, Y)=\frac{Y}{2 p_{1}} \\
& X_{2}(p, Y)=\frac{Y}{2 p_{2}}
\end{aligned}
$$

Changes in Income

Suppose that the income of the individual increases by $\Delta Y>0$:

The budget constraint changes from:

$$
Y=p_{1} X_{1}+p_{2} X_{2}
$$

to:

$$
Y+\Delta Y=p_{1} X_{1}+p_{2} X_{2}
$$

How will this change the optimization problem?

Income Effects: \mathbf{Y} increases to $\mathbf{Y}+\Delta \mathbf{Y}$

Income effects and type of goods

How does the demand for good X_{1} vary with Y ?

Normal goods: Goods for which demand increases as income rises

- $Y \uparrow$
- $X_{1} \uparrow$

Income effects and type of goods

How does the demand for good X_{1} vary with Y ?

Inferior goods: Goods for which demand falls as income rises

- $Y \uparrow$
- X_{1}

Change in prices

Suppose that p_{1} increases by $\Delta p_{1}>0$:

The budget constraint changes from:

$$
Y=p_{1} X_{1}+p_{2} X_{2}
$$

to:

$$
Y=\left(p_{1}+\Delta p_{1}\right) X_{1}+p_{2} X_{2}
$$

How will this change the optimization problem?

Change in prices

A change in p_{1} affects the slope of the budget constraint and can be decomposed into two effects:

1) Substitution effect: Holding utility constant, a relative rise in the price of a good will always cause an individual to choose less of that good.
2) Income effect: A rise in the price of a good will typically cause an individual to choose less of all goods because her income can purchase less than before.

Price Effects: \mathbf{p}_{1} increases to $\mathbf{p}_{1}+\Delta \mathbf{p}_{1}$

```
X (qty of good 2)
```


Price Effects: \mathbf{p}_{1} increases to $\mathbf{p}_{\mathbf{1}}+\Delta \mathbf{p}_{1}$

Price Effects: $\mathbf{p}_{\mathbf{1}}$ increases to $\mathbf{p}_{\mathbf{1}}+\Delta \mathbf{p}_{\mathbf{1}}$

Price Effects: \mathbf{p}_{1} increases to $\mathbf{p}_{1}+\Delta \mathbf{p}_{\mathbf{1}}$

Price Effects: p_{1} increases to $\mathbf{p}_{1}+\Delta p_{1}$

$$
\mathrm{X}_{2}(\text { qty of good } 2)
$$

