# Lecture 2: Theoretical tools of Public Economics

**Petros Varthalitis** 

Fall 2023-24

# Theoretical and Empirical Tools

#### Theoretical tools:

The set of tools designed to understand the mechanics behind <u>economic decision</u> <u>making</u>.

Constrained utility optimization.

Individuals maximize utility functions subject to budget constraints.

#### **Empirical tools:**

The set of tools designed to analyze data and answer questions raised by theoretical analysis.

# Utility function

A utility function is a mathematical function that translates consumption into utility:

U = f(c)

where *c* denotes consumption:

Example log-utility:  $f(c) = \log(c)$ 

### Simplification with consumption bundle

- Let's assume that, c, denotes the consumption good in the economy.
- 3 units of c yield
- f(3) units of utility
- We assume  $f(c_2) > f(c_1)$  if  $c_2 > c_1$ .

## Assumption: More is better (non-satiation)

- Economists assume that more of a good is always better than less.
- Mathematical representation:
- We assume if  $c_2 > c_1$  then  $f(c_2) > f(c_1)$ .
- Since 4>3 then f(4) > f(3).

•  $\frac{\partial f(c)}{\partial c} > 0$  utility is an increasing function of the consumption bundle.

#### Example with two goods

 $U(X_1, X_2) = \sqrt{X_1 X_2}$ 

- X<sub>1</sub> quantity of good 1, say food
- X<sub>2</sub> quantity of good 2, say drink

Individual utility increases with the level of consumption of each good  $X_1$  and  $X_2$ .

#### Example with many goods

$$U(X_1, X_2, X_3, \dots X_N) = \sqrt{X_1, X_2, X_3, \dots X_N}$$

• 
$$X_1, X_2, X_3, \dots X_N$$
 quantity of good 1,2,3... N.

For simplicity, X's can be thought as consumption bundles with goods that exhibits common features.

### Preferences and Indifference curves

An indifference curve is a graphical representation of all bundles of goods that make an individual equally well off.

• Thus, an indifference curve yielding utility level,  $\underline{U}$ , by the set of bundles  $(x_1, x_2)$  such that  $U(x_1, x_2) = \underline{U}$ .

#### **Indifference curves have two properties:**

- Consumer prefer higher indifference curves.
- Indifference curves are always downward slopping.





### Example

And rea's utility for cakes  $(Q_c)$  and movies  $(Q_M)$  is:

$$U(Q_c, Q_M) = \sqrt{Q_c \times Q_M}$$

How we can construct the indifference curve:

1. Andrea is indifferent between 4 cakes and 1 movie or 1 cake and 4 movies: • $U(Q_c, Q_M) = \sqrt{4 \times 1} = 2$ •or  $U(Q_c, Q_M) = \sqrt{1 \times 4} = 2$ 

#### Example

And rea's utility for cakes  $(Q_c)$  and movies  $(Q_M)$  is:

$$U(Q_c, Q_M) = \sqrt{Q_c \times Q_M}$$

• Andrea prefers 3 cakes and 3 movies to either bundle:

$$U(Q_c, Q_M) = \sqrt{3 \times 3} = 3 > 2$$

#### Preferences and Indifference Curves 2



Gruber, *Public Finance and Public Policy*, 6e, © 2019 Worth Publishers

#### Questions I

#### Which of the following option is correct?

- 1. Andrea is indifferent between bundles A and C
- 2. Andrea prefers bundle A from bundle B
- 3. Andrea prefers bundle C from bundle A

### Questions II

#### Which of the following option is correct?

- 1. Andrea is indifferent between bundles A and C
- 2. Andrea is indifferent between bundles B and A
- 3. Andrea is indifferent between bundles B and C

#### Preferences and Indifference Curves 2

 Consumer is indifferent between A and B.

• C is preferred to A or B.



Gruber, Public Finance and Public Policy, 6e, © 2019 Worth Publishers

#### Preferences and Indifference Curves 3

 Consumer is indifferent between A and B.

• C is preferred to A or B.



Gruber, Public Finance and Public Policy, 6e, © 2019 Worth Publishers

## Marginal Utility

Marginal utility: The additional increment to utility obtained by consuming an additional unit of a good.

Marginal utility of good 1 is the derivative of utility with respect to  $x_1$  keeping  $x_2$  constant:  $U(X_1X_2) = \sqrt{X_1X_2}$ 

$$\frac{\partial U}{\partial X_1} = \frac{\sqrt{X_2}}{2\sqrt{X_1}}$$

The utility function exhibits the important principle of diminishing marginal utility

Marginal utility  $\frac{\partial U}{\partial x_1}$  decreases as  $x_1$  increases

The consumption of each additional unit of a good gives less extra utility than the consumption of the previous unit.

# Marginal Rate of Substitution

- The rate at which a consumer is willing to trade one good for another.
- Moving along an indifference curve keeps a consumer equally well off, so:
- The *MRS* is equal to <u>the slope of the indifference curve</u>, the rate at which the consumer will trade the good on the vertical axis for the good on the horizontal axis:
- $MRS = -MU_M/MU_C$

# Example

$$U(Q_c, Q_M) = \sqrt{Q_c \times Q_M}$$

MRS: 
$$MRS_{C,M} = \frac{MU_C}{MU_M}$$

$$\frac{\partial U}{\partial Q_C} = \frac{\sqrt{Q_M}}{2\sqrt{Q_C}}$$
$$\frac{\partial U}{\partial Q_M} = \frac{\sqrt{Q_C}}{2\sqrt{Q_M}}$$

#### Example (cont'ed)



#### Example (cont'ed)

$$U(Q_c, Q_M) = \sqrt{Q_c \times Q_M}$$

$$MRS_{C,M} = \frac{Q_M}{Q_C}$$

Intuitively: Individual is indifferent between 1 unit of good C and  $MRS_{C,M}$  units of good M



### Budget constraint

- Budget constraint: A mathematical representation of all the combinations of goods an individual can afford to buy if she spends her entire income:
- $\bullet Y = p_1 X_1 + p_2 X_2$

Where  $p_i$  price of good  $i = (X_1, X_2)$ , and Y is disposable income.

- **Opportunity cost:** The cost of any purchase is the next best alternative use of that money or the forgone opportunity.
- Quick hint: When a person's budget is fixed, if he buys one thing, he is, by definition, reducing the money he has to spend on other things. Indirectly, this purchase has the same effect as a direct good-for-good trade.

#### Budget constraint

$$\bullet Y = p_1 X_1 + p_2 X_2$$

Budget constraint defines a linear set of bundles the consumer can purchase with its disposable income:

$$X_2 = \frac{Y}{p_2} - \frac{p_1}{p_2} X_1$$





# Putting it all together

Utility and budget constraint

#### Constrained utility maximization

Individual maximizes utility subject to their budget constraint:

 $max_{X_1,X_2} U(X_1,X_2)$ 

Subject to:

$$Y = p_1 X_1 + p_2 X_2$$

Substitute the constraint into the objective function,  $X_2 = Y - \frac{p_1}{p_2}X_1$ ,

#### Utility Maximization

Individual maximizes utility subject to budget constraint:

$$max U(X_1, Y - \frac{p_1}{p_2}X_1)$$

Taking the first order condition with respect to  $X_1$ :

 $\frac{\partial U(X_1, Y - \frac{p_1}{p_2} X_1)}{\partial X_1} = \frac{\partial U(.)}{\partial X_1} - \frac{p_1}{p_2} \frac{\partial U(.)}{\partial X_2}$ 

$$MRS_{1,2} = \frac{p_1}{p_2}$$





#### Utility maximization

 $X_2 \ (\text{qty of good 2})$ 





#### Utility maximization

 $X_2 \ (\text{qty of good 2})$ 



#### Income and Substitution Effects

Maximization problem in slide 30 generates the following demand functions:

 $X_1(p, Y)$  $X_2(p, Y)$ 

Demands for goods  $X_1$  and  $X_2$  are functions of price and income.

### Income and Substitution Effects

Using the following functional form:

$$U(X_1, X_2) = \sqrt{X_1 \times X_2}$$

*The solution of the maximization problem and the budget constraint:* 

$$MRS_{1,2} = \frac{X_2}{X_1} = \frac{p_1}{p_2}$$

The demand functions are:

$$X_1(p , Y) = \frac{Y}{2p_1}$$
$$X_2(p , Y) = \frac{Y}{2p_2}$$

## Changes in Income

Suppose that the income of the individual increases by  $\Delta Y > 0$ :

The budget constraint changes from:  $Y = p_1 X_1 + p_2 X_2$ 

to:

$$Y + \Delta Y = p_1 X_1 + p_2 X_2$$

How will this change the optimization problem?









## Income effects and type of goods

How does the demand for good  $X_1$  vary with Y?

Normal goods: Goods for which demand increases as income rises

• X<sub>1</sub>

• Y

## Income effects and type of goods

How does the demand for good  $X_1$  vary with Y?

Inferior goods: Goods for which demand falls as income rises

## Change in prices

Suppose that  $p_1$  increases by  $\Delta p_1 > 0$ :

The budget constraint changes from:  $Y = p_1 X_1 + p_2 X_2$ 

to:

$$Y = (p_1 + \Delta p_1) X_1 + p_2 X_2$$

How will this change the optimization problem?

# Change in prices

A change in  $p_1$  affects the slope of the budget constraint and can be decomposed into two effects:

- 1) <u>Substitution effect: Holding utility constant</u>, a relative rise in the price of a good will always cause an individual to choose less of that good.
- 2) Income effect: A rise in the price of a good will typically cause an individual to choose less of all goods because her income can purchase less than before.

### Price Effects: $p_1$ increases to $p_1 + \Delta p_1$



#### Price Effects: $p_1$ increases to $p_1 + \Delta p_1$



### Price Effects: $p_1$ increases to $p_1 + \Delta p_1$





### Price Effects: $p_1$ increases to $p_1+\Delta p_1$

 $X_2 \ (\text{qty of good 2})$ 

